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Abstract

In this paper, we propose an effective face completion

algorithm using a deep generative model. Different from

well-studied background completion, the face completion

task is more challenging as it often requires to generate

semantically new pixels for the missing key components

(e.g., eyes and mouths) that contain large appearance varia-

tions. Unlike existing nonparametric algorithms that search

for patches to synthesize, our algorithm directly generates

contents for missing regions based on a neural network.

The model is trained with a combination of a reconstruc-

tion loss, two adversarial losses and a semantic parsing

loss, which ensures pixel faithfulness and local-global con-

tents consistency. With extensive experimental results, we

demonstrate qualitatively and quantitatively that our model

is able to deal with a large area of missing pixels in arbi-

trary shapes and generate realistic face completion results.

1. Introduction

Image completion, as a common image editing oper-

ation, aims to fill the missing or masked regions in im-

ages with plausibly synthesized contents. The generated

contents can either be as accurate as the original, or sim-

ply fit well within the context such that the completed im-

age appears to be visually realistic. Most existing com-

pletion algorithms [2, 10] rely on low-level cues to search

for patches from known regions of the same image and

synthesize the contents that locally appear similarly to the

matched patches. These approaches are all fundamentally

constrained to copy existing patterns and structures from

the known regions. The copy-and-paste strategy performs

particularly well for background completion (e.g., grass,

sky, and mountain) by removing foreground objects and fill-

ing the unknown regions with similar pattens from back-

grounds.

However, the assumption of similar patterns can be

found in the same image does not hold for filling missing

parts of an object image (e.g., face). Many object parts

contain unique patterns, which cannot be matched to other

(a) (b) (c)

Figure 1. Face completion results. In each row from left to right:

(a) original image (128 × 128 pixels). (b) masked input. (c) com-

pletion results by our method. In the top row, the face is masked

by a square. In the bottom row we show a real example where the

mouth region is occluded by the microphone.

patches within the input image, as shown in Figure 1(b).

An alternative is to use external databases as references [9].

Although similar patches or images may be found, the

unique patterns of objects that involve semantic representa-

tion are not well modeled, since both low-level [2] and mid-

level [10] visual cues of the known regions are not sufficient

to infer semantically valid contents in missing regions.

In this paper, we propose an effective object completion

algorithm using a deep generative model. The input is first

masked with noise pixels on randomly selected square re-

gion, and then fed into an autoencoder [25]. While the en-

coder maps the masked input to hidden representations, the

decoder generates a filled image as its output. We regularize

the training process of the generative model by introducing

two adversarial losses [8]: a local loss for the missing region

to ensure the generated contents are semantically coherent,

and a global one for the entire image to render more realistic

and visually pleasing results. In addition, we also propose

a face parsing network [14, 22, 13] as an additional loss to

regularize the generation procedure and enforce a more rea-

sonable and consistent result with contexts. This generative

model allows fast feed-forward image completion without

requiring an external databases as reference. For concrete-
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ness, we apply the proposed object completion algorithm on

face images.

The main contributions of this work are summarized

as follows. First, we propose a deep generative comple-

tion model that consists of an encoding-decoding generator

and two adversarial discriminators to synthesize the miss-

ing contents from random noise. Second, we tackle the

challenging face completion task and show the proposed

model is able to generate semantically valid patterns based

on learned representations of this object class. Third, we

demonstrate the effectiveness of semantic parsing in gener-

ation, which renders the completion results that look both

more plausible and consistent with surrounding contexts.

2. Related Work

Image completion. Image completion has been studied in

numerous contexts, e.g., inpainting, texture synthesis, and

sparse signal recovery. Since a thorough literature review

is beyond the scope of this paper, and we discuss the most

representative methods to put our work in proper context.

An early inpainting method [4] exploits a diffusion

equation to iteratively propagate low-level features from

known regions to unknown areas along the mask bound-

aries. While it performs well on inpainting, it is limited to

deal with small and homogeneous regions. Another method

has been developed to further improve inpainting results by

introducing texture synthesis [5]. In [29], the patch prior is

learned to restore images with missing pixels. Recently Ren

et al. [20] learn a convolutional network for inpainting. The

performance of image completion is significantly improved

by an efficient patch matching algorithm [2] for nonpara-

metric texture synthesis. While it performs well when sim-

ilar patches can be found, it is likely to fail when the source

image does not contain sufficient amount of data to fill in

the unknown regions. We note this typically occurs in ob-

ject completion as each part is likely to be unique and no

plausible patches for the missing region can be found. Al-

though this problem can be alleviated by using an external

database [9], the ensuing issue is the need to learn high-level

representation of one specific object class for patch match.

Wright et al. [27] cast image completion as the task for

recovering sparse signals from inputs. By solving a sparse

linear system, an image can be recovered from some cor-

rupted input. However, this algorithm requires the images

to be highly-structured (i.e., data points are assumed to lie

in a low-dimensional subspace), e.g., well-aligned face im-

ages. In contrast, our algorithm is able to perform object

completion without strict constraints.

Image generation. Vincent et al. [24] introduce denois-

ing autoencoders that learn to reconstruct clean signals from

corrupted inputs. In [7], Dosovitskiy et al. demonstrate

that an object image can be reconstructed by inverting deep

convolutional network features (e.g., VGG [21]) through a

decoder network. Kingma et al. [11] propose variational au-

toencoders (VAEs) which regularize encoders by imposing

prior over the latent units such that images can be generated

by sampling from or interpolating latent units. However,

the generated images by a VAE are usually blurry due to its

training objective based on pixel-wise Gaussian likelihood.

Larsen et al. [12] improve a VAE by adding a discrimina-

tor for adversarial training which stems from the generative

adversarial networks (GANs) [8] and demonstrate more re-

alistic images can be generated.

Closest to this work is the method proposed by Deepak et

al. [17] which applies an autoencoder and integrates learn-

ing visual representations with image completion. How-

ever, this approach emphasizes more on unsupervised learn-

ing of representations than image completion. In essence,

this is a chicken-and-egg problem. Despite the promising

results on object detection, it is still not entirely clear if im-

age completion can provide sufficient supervision signals

for learning high-level features. On the other hand, seman-

tic labels or segmentations are likely to be useful for im-

proving the completion results, especially on a certain ob-

ject category. With the goal of achieving high-quality im-

age completion, we propose to use an additional semantic

parsing network to regularize the generative networks. Our

model deals with severe image corruption (large region with

missing pixels), and develops a combined reconstruction,

adversarial and parsing loss for face completion.

3. Proposed Algorithm

In this section, we describe the proposed model for ob-

ject completion. Given a masked image, our goal is to syn-

thesize the missing contents that are both semantically con-

sistent with the whole object and visually realistic. Figure 2

shows the proposed network that consists of one generator,

two discriminators, and a parsing network.

3.1. Generator

The generator G is designed as an autoencoder to con-

struct new contents given input images with missing re-

gions. The masked (or corrupted) input, along with

the filled noise, is first mapped to hidden representations

through the encoder. Unlike the original GAN model [8]

which directly starts from a noise vector, the hidden rep-

resentations obtained from the encoder capture more vari-

ations and relationships between unknown and known re-

gions, which are then fed into the decoder for generating

contents.

We use the architecture from “conv1” to “pool3” of the

VGG-19 [21] network, stack two more convolution layers

and one more pooling layer on top of that, and add a fully-

connected layer after that as the encoder. The decoder is

symmetric to the encoder with unpooling layers.
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Figure 2. Network architecture. It consists of one generator, two discriminators and a parsing network. The generator takes the masked

image as input and outputs the generated image. We replace pixels in the non-mask region of the generated image with original pixels.

Two discriminators are learned to distinguish the synthesize contents in the mask and whole generated image as real and fake. The parsing

network, which is a pretrained model and remains fixed, is to further ensure the new generated contents more photo-realistic and encourage

consistency between new and old pixels. Note that only the generator is needed during the testing.

3.2. Discriminator

The generator can be trained to fill the masked region or

missing pixels with small reconstruction errors. However,

it does not ensure that the filled region is visually realis-

tic and coherent. As shown in Figure 3(c), the generated

pixels are quite blurry and only capture the coarse shape

of missing face components. To encourage more photo-

realistic results, we adopt a discriminator D that serves as

a binary classifier to distinguish between real and fake im-

ages. The goal of this discriminator is to help improve the

quality of synthesized results such that the trained discrim-

inator is fooled by unrealistic images.

We first propose a local D for the missing region which

determines whether the synthesized contents in the missing

region are real or not. Compared with Figure 3(c), the net-

work with local D (shown in Figure 3(d)) begins to help

generate details of missing contents with sharper bound-

aries. It encourages the generated object parts to be se-

mantically valid. However, its limitations are also obvious

due to the locality. First, the local loss can neither regu-

larize the global structure of a face, nor guarantee the sta-

tistical consistency within and outside the masked regions.

Second, while the generated new pixels are conditioned on

their surrounding contexts, a local D can hardly generate a

direct impact outside the masked regions during the back

propagation, due to the unpooling structure of the decoder.

Consequently, the inconsistency of pixel values along re-

gion boundaries is obvious.

Therefore, we introduce another global D to determine

the faithfulness of an entire image. The fundamental idea is

that the newly generated contents should not only be real-

istic, but also consistent to the surrounding contexts. From

Figure 3(e), the network with additional global D greatly

alleviates the inconsistent issue and further enforce the gen-

erated contents to be more realistic. We note that the archi-

tecture of two discriminators are similar to [19].

3.3. Semantic Regularization

With a generator and two discriminators, our model can

be regarded as a variation of the original GAN [8] model

that is conditioned on contexts (e.g., non-mask regions).

However as a bottleneck, the GAN model tends to generate

independent facial components that are likely not suitable to

the original subjects with respect to facial expressions and

parts shapes, as shown in Figure 3(e). The top one is with

big weird eyes and the bottom one contains two asymmetric

eyes. Furthermore, we find the global D is not effective in

ensuring the consistency of fine details in the generated im-

age. For example, if only one eye is masked, the generated

eye does not fit well with another unmasked one. We show

another two examples in Figure 4(c) where the generated

eye is obviously asymmetric to the unmasked one although

the generated eye itself is already realistic. Both cases in-

dicate that more regularization is needed to encourage the

generated faces to have similar high-level distributions with

the real faces.

Therefore we introduce a semantic parsing network to

further enhance the harmony of the generated contents and

existing pixels. The parsing network is an autoencoder

which bears some resemblance to the semantic segmenta-

tion method [28]. The parsing result of the generated image

is compared with the one of the original image. As such,

the generator is forced to learn where to generate features

with more natural shape and size. In Figure 3(e)-(f) and Fig-

ure 4(c)-(d), we show the generated images between models

without and with the smenatic regularization.

3.4. Objective Function

We first introduce a reconstruction loss Lr to the gener-

ator, which is the L2 distance between the network output

and the original image. With the Lr only, the generated con-

tents tend to be blurry and smooth as shown in Figure 3(c).

The reason is that since the L2 loss penalizes outliers heav-
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(a) Original image (b) Masked input (c) M1 (d) M2 (e) M3 (f) M4 (g) M5

Figure 3. Completion results under different settings of our model. (c) M1: Lr . (d) M2: Lr + La1
. (e) M3: Lr + La1

+ La2
. (f) M4:

Lr + La1
+ La2

+ Lp. The result in (f) shows the most realistic and plausible completed content. It can be further improved through

post-processing techniques such as (g) M5: M4 + Poisson blending [18] to eliminate subtle color difference along mask boundaries.

(a) original (b) masked input (c) w/o parsing (d) w/ parsing

Figure 4. Comparison between the result of models without and

with the parsing regularization.

ily, and the network is encouraged to smooth across various

hypotheses to avoid large penalties.

By using two discriminators, we employ the adversarial

loss which is a reflection of how the generator can maxi-

mally fool the discriminator and how well the discriminator

can distinguish between real and fake. It is defined as

(1)
Lai

= min
G

max
D

Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))],

where pdata(x) and pz(z) represent the distributions of

noise variables z and real data x. The two discrimina-

tive networks {a1, a2} share the same definition of the loss

function. The only difference is that the local discriminator

only provides training signals (loss gradients) for the miss-

ing region while the global discriminator back-propagates

loss gradients across the entire image.

In the parsing network, the loss Lp is the simple pixel-

wise softmax loss [16, 28]. The overall loss function is de-

fined by

L = Lr + λ1La1
+ λ2La2

+ λ3Lp, (2)

where λl, λ2 and λ3 are the weights to balance the effects

of different losses.

3.5. Training Neural Networks

To effectively train our network, we use the curriculum

strategy [3] by gradually increasing the difficulty level and

network scale. The training process is scheduled in three

stages. First, we train the network using the reconstruction

loss to obtain blurry contents. Second, we fine-tune the net-

work with the local adversarial loss. The global adversarial

loss and semantic regularization are incorporated at the last

stage, as shown in Figure 3. Each stage prepares features for

the next one to improve, and hence greatly increases the ef-

fectiveness and efficiency of network training. For example,

in Figure 3, the reconstruction stage (c) restores the rough

shape of the missing eye although the contents are blurry.

Then local adversarial stage (d) then generates more details

to make the eye region visually realistic, and the global ad-

versarial stage (e) refines the whole image to ensure that

the appearance is consist around the boundary of the mask.

The semantic regularization (f) finally further enforces more

consistency between components and let the generated re-

sult to be closer to the actual face. When training with the

adversarial loss, we use a method similar to [19] especially

to avoid the case when the discriminator is too strong at the

beginning of the training process.

4. Experimental Results

We carry out extensive experiments to demonstrate the

ability of our model to synthesize the missing contents on

face images. The hyper-parameters (e.g., learning rate) for

the network training are set as suggested in [26]. To balance

the effects of different losses, we use λl = 300, λ2 = 300
and λ3 = 0.005 in our experiments.
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Figure 5. Examples of our parsing results on Helen test dataset

(top) and CelebA test dataset (bottom). In each panel, all pixels

in the face image (left) are classified as one of 11 labels which are

shown in different colors (right).

4.1. Datasets

We use the CelebA [15] dataset to learn and evaluate our

model. It consists of 202,599 face images and each face im-

age is cropped, roughly aligned by the position of two eyes,

and rescaled to 128×128×3 pixels. We follow the standard

split with 162,770 images for training, 19,867 for validation

and 19,962 for testing. We set the mask size as 64× 64 for

training to guarantee that at least one essential facial com-

ponent is missing. If the mask only covers smooth regions

with a small mask size, it will not drive the model to learn

semantic representations. To avoid over-fitting, we do data

augmentation that includes flipping, shift, rotation (+/- 15

degrees) and scaling. During the training process, the size

of the mask is fixed but the position is randomly selected.

As such, the model is forced to learn the whole object in an

holistic manner instead of a certain part only.

4.2. Face Parsing

Since face images in the CelebA [15] dataset do not have

segment labels, we use the Helen face dataset [13] to train a

face parsing network for regularization. The Helen dataset

consists of 2,330 images and each face has 11 segment la-

bels covering every main component of the face (e.g., hair,

eyebrows, eyes) labelled by [22]. We roughly crop the face

in each image with the size of 128×128 first and then feed

it into the parsing network to predict the label for each

pixel. Our parsing network bears some resemblance to the

semantic segmentation method [28] and we mainly modify

its last layer with 11 outputs. We use the standard train-

ing/testing split and obtain a parsing model, which achieves

the f-score of 0.851 with overall facial components on the

Helen test dataset, compared to the state-of-the-art multi-

objective based model [14], with the corresponding f-score

of 0.854. This model can be further improved with more

careful hyperparameter tuning but is currently sufficient to

improve the quality of face completion. Several parsing re-

sults on the Helen test images are presented in Figure 5.

Once the parsing network is trained, it remains fixed in

our generation framework. We first use the network on the

CelebA training set to obtain the parsing results of orig-

inally unmasked faces as the ground truth, and compare

them with the parsing on generated faces during training.

The parsing loss is eventually back-propagated to the gen-

erator to regularize face completion. We show some parsing

results on the CelebA dataset in Figure 5. The proposed se-

mantic regularization can be regarded as measuring the dis-

tance in feature space where the sensitivity to local image

statistics can be achieved [6].

4.3. Face Completion

Qualitative results. Figure 6 shows our face completion

results on the CelebA test dataset. In each test image, the

mask covers at least one key facial components. The third

column of each panel shows our completion results are visu-

ally realistic and pleasing. Note that during the testing, the

mask does not need to be restricted as a 64×64 square mask,

but the number of total masked pixels is suggested to be no

more than 64 × 64 pixels. We show typical examples with

one big mask covering at least two face components (e.g.,

eyes, mouths, eyebrows, hair, noses) in the first two rows.

We specifically present more results on eye regions since

they can better reflect how realistic of the newly generated

faces are, with the proposed algorithm. Overall, the algo-

rithm can successfully complete the images with faces in

side views, or partially/completely corrupted by the masks

with different shapes and sizes.

We present a few examples in the third row where the

real occlusion (e.g., wearing glasses) occurs. As sometimes

whether a region in the image is occluded or not is subjec-

tive, we give this option for users to assign the occluded

regions through drawing masks. The results clearly show

that our model is able to restore the partially masked eye-

glasses, or remove the whole eyeglasses or just the frames

by filling in realistic eyes and eyebrows.

In the last row, we present examples with multiple, ran-

domly drawn masks, which are closer to real-world applica-

tion scenarios. Figure 7 presents completion results where

different key parts (e.g., eyes, nose, and mouth) of the same

input face image are masked. It shows that our completion

results are consistent and realistic regardless of the mask

shapes and locations.

Quantitative results. In addition to the visual results, we

also perform quantitative evaluation using three metrics on

the CelebA test dataset (19,962 images). The first one is

the peak signal-to-noise ratio (PSNR) which directly mea-

sures the difference in pixel values. The second one is the

structural similarity index (SSIM) that estimates the holistic

similarity between two images. Lastly we use the identity

distance measured by the OpenFace toolbox [1] to deter-

mine the high-level semantic similarity of two faces. These

three metrics are computed between the completion results

obtained by different methods and the original face images.

The results are shown in Table 1-3. Specifically, the step-
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Figure 6. Face completion results on the CelebA [15] test dataset. In each panel from left to right: original images, masked inputs, our

completion results.

Figure 7. Face part completion. In each panel, left: masked input,

right: our completion result.

wise contribution of each component is shown from the 2nd

to the 5th column of each table, where M1-M5 correspond

to five different settings of our own model in Figure 3 and

O1-O6 are six different masks for evaluation as shown in

Figure 8.

We then compare our model with the ContextEn-

coder [17] (CE). Since the CE model is originally not

trained for faces, we retrain the CE model on the CelebA

dataset for fair comparisons. As the evaluated masks O1-

O6 are not in the image center, we use the inpaintRandom

version of their code and mask 25% pixels masked in each

image. Finally we also replace the non-mask region of the

output with original pixels. The comparison between our

model (M4) and CE in 5th and 6th column show that our

(a) O1 (b) O2 (c) O3 (d) O4 (e) O5 (f) O6

Figure 8. Simulate face occlusions happened in real scenario with

different masks O1-O6. From left to right: left half, right half, two

eyes, left eye, right eye, and lower half.

model performs generally better than the CE model, espe-

cially on large masks (e.g., O1-O3, O6). In the last column,

we show that the poisson blending [18] can further improve

the performance.

Note that we obtain relatively higher PSNR and SSIM

values when using the reconstruction loss (M1) only but it

does not imply better qualitative results, as shown in Fig-

ure 3(c). These two metrics simply favor smooth and blurry

results. We note that the model M1 performs poorly as

it hardly recovers anything and is unlikely to preserve the

identity well, as shown in Table 3.

Although the mask size is fixed as 64 × 64 during the

training, we test different sizes, ranging from 16 to 80 with a

step of 8, to evaluate the generalization ability of our model.

Figure 9 shows quantitative results. The performance of the

proposed model gradually drops with the increasing mask

size, which is expected as the larger mask size indicates

more uncertainties in pixel values. But generally our model

performs well for smaller mask sizes (smaller than 64). We

observe a local minimum around the medium size (e.g., 32).

It is because that the medium size mask is mostly likely to

occlude only part of the component (e.g., half eye). It is

found in experiments that generating a part of the compo-

nent is more difficult than synthesizing new pixels for the
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Table 1. Quantitative evaluations in terms of SSIM at six different

masks O1-O6. Higher values are better.

M1 M2 M3 M4 CE M5

O1 0.798 0.753 0.782 0.804 0.772 0.824

O2 0.805 0.763 0.787 0.808 0.774 0.826

O3 0.723 0.675 0.708 0.731 0.719 0.759

O4 0.747 0.701 0.741 0.759 0.754 0.789

O5 0.751 0.706 0.732 0.755 0.757 0.784

O6 0.807 0.764 0.808 0.824 0.818 0.841

Table 2. Quantitative evaluations in terms of PSNR at six different

masks O1-O6. Higher values are better.

M1 M2 M3 M4 CE M5

O1 18.9 17.8 18.9 19.4 18.6 20.0

O2 18.7 17.9 18.7 19.3 18.4 19.8

O3 17.9 17.2 17.7 18.3 17.9 18.8

O4 18.6 17.7 18.5 19.1 19.0 19.7

O5 18.7 17.6 18.4 18.9 19.1 19.5

O6 18.8 17.3 19.0 19.7 19.3 20.2

Table 3. Quantitative evaluations in terms of identity distance at

six different masks O1-O6. Lower values are better.
M1 M2 M3 M4 CE M5

O1 0.763 0.775 0.694 0.602 0.701 0.534

O2 1.05 1.02 0.894 0.838 0.908 0.752

O3 0.781 0.693 0.674 0.571 0.561 0.549

O4 0.310 0.307 0.265 0.238 0.236 0.212

O5 0.344 0.321 0.297 0.256 0.251 0.231

O6 0.732 0.714 0.593 0.576 0.585 0.541

whole component. Qualitative results of different size of

masking are presented in Figure 6.

Traversing in latent space. The missing region, although

semantically constrained by the remaining pixels in an

image, accommodates different plausible appearances as

shown in Figure 10. We observe that when the mask is filled

with different noise, all the generated contents are seman-

tically realistic and consistent, but their appearances varies.

This is different from the context encoder [17], where the

mask is filled with zero values and thus the model only ren-

ders single completion result.

It should be noted that under different input noise, the

variations of our generated contents are unlikely to be as

large as those in the original GAN [8, 19] model which is

able to generate completely different faces. This is mainly

due to the constraints from the contexts (i.e., non-mask re-

gions). For example, in the second row of Figure 10 with

only one eyebrow masked, the generated eyebrow is re-

stricted to have the similar shape and size and reasonable

position with the other eyebrow. Therefore the variations

on the appearance of the generated eyebrow are mainly re-

flected at some details, such as the shade of the eyebrow.

Figure 9. Evaluations on different square mask sizes of our fi-

nal completion model (M5). The curve shows the average perfor-

mance over all face images in the CelebA test dataset.

Figure 10. Completion results under different noisy inputs. The

generated contents are all semantically plausible but with different

appearances. Check the shape of the eye (top) and the right side of

the eyebrow (bottom). Moreover, the difference is also reflected

by shades and tints. Note that as constrained by the contexts, the

variations on appearance is unlikely to be too diverse.

4.4. Face recognition

The identity distance in Table 3 partly reveals the net-

work ability of preserving the identity information. In or-

der to test to what extent the face identity can be preserved

across its different examples, we evaluate our completion

results in the task of face recognition. Note that this task

simulates occluded face recognition, which is still an open

problem in computer vision. Given a probe face example,

the goal of recognition is to find an example from the gallery

set that belongs to the same identity. We randomly split the

CelebA [15] test dataset into the gallery and probe set, to

make sure that each identity has roughly the same amount

of images in each set. Finally, we obtain the gallery and

probe set with roughly 10,000 images respectively, cover-

ing about 1,000 identities.

We apply six masking types (O1-O6) for each probe im-

age, as shown in Figure 8. The probe images are new faces

restored by the generator. These six masking types, to some

extent, simulate the occlusions that possibly occurs in real

scenarios. For example, masking two eyes mainly refers
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(a) Top1 (b) Top3 (c) Top5

Figure 11. Recognition accuracy comparisons on masked (or occluded) faces. Given a masked probe face, we first complete it and then

use it to search examples of the same identity in the gallery. We report the Top1, Top3, and Top5 recognition accuracy of three different

completion methods. The accuracy by using the original unmasked probe face (blue) is treated as the standard to compare.

to the occlusion by glasses and masking lower half face

matches the case of wearing the scarf. Each completed

probe image is matched against those in the gallery, and

top ranked matches can be analyzed to measure recognition

performance. We use the OpenFace [1] toolbox to find top

K nearest matches based on the identity distance and re-

port the average top K recognition accuracy over all probe

images in Figure 11.

We carry out experiments with four variations of the

probe image: the original one, the completed one by sim-

ply filling random noise, by our reconstruction based model

M1 and by our final model M5. The recognition perfor-

mance using original probe faces is regarded as the upper

bound. Figure 11 shows that using the completed probe

by our model M5 (green) achieves the closest performance

to the upper bound (blue). Although there is still a large

gap between the performance of our M5 based recognition

and the upper bound, especially when the mask is large

(e.g., O1, O2), the proposed algorithm makes significant

improvement with the completion results compared with

that by either noise filling or the reconstruction loss (Lr).

We consider the identity-preserving completion to be an in-

teresting direction to pursue.

4.5. Limitations

Although our model is able to generate semantically

plausible and visually pleasing contents, it has some limita-

tions. The faces in the CelebA dataset are roughly cropped

and aligned [15]. We implement various data augmentation

to improve the robustness of learning, but find our model

still cannot handle some unaligned faces well. We show

one failure case in the first row of Figure 12. The unpleas-

ant synthesized contents indicate that the network does not

recognize the position/orientation of the face and its corre-

sponding components. This issue can be alleviated with 3D

data augmentation.

In addition, our model does not fully exploit the spatial

correlations between adjacent pixels as shown in the second

Figure 12. Model limitations. Top: our model fails to generate the

eye for an unaligned face. Bottom: it is still hard to generate the

semantic part with right attributes (e.g., red lipsticks).

row of Figure 12. The proposed model fails to recover the

correct color of the lip, which is originally painted with red

lipsticks. In our future work, we plan to investigate the us-

age of pixel-level recurrent neural network (PixelRNN [23])

to address this issue.

5. Conclusion

In this work we propose a deep generative network for

face completion. The network is based on a GAN, with an

autoencoder as the generator, two adversarial loss functions

(local and global) and a semantic regularization as the dis-

criminators. The proposed model can successfully synthe-

size semantically valid and visually plausible contents for

the missing facial key parts from random noise. Both qual-

itative and quantitative experiments show that our model

generates the completion results of high perceptual qual-

ity and is quite flexible to handle a variety of maskings or

occlusions (e.g., different positions, sizes, shapes).
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