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Abstract

Current CNN based object detectors need initialization

from pre-trained ImageNet classification models, which are

usually time-consuming. In this paper, we present a fully

convolutional feature mimic framework to train very effi-

cient CNN based detectors, which do not need ImageNet

pre-training and achieve competitive performance as the

large and slow models. We add supervision from high-level

features of the large networks in training to help the small

network better learn object representation. More specifi-

cally, we conduct a mimic method for the features sampled

from the entire feature map and use a transform layer to

map features from the small network onto the same dimen-

sion of the large network. In training the small network, we

optimize the similarity between features sampled from the

same region on the feature maps of both networks. Exten-

sive experiments are conducted on pedestrian and common

object detection tasks using VGG, Inception and ResNet.

On both Caltech and Pascal VOC, we show that the modi-

fied 2.5× accelerated Inception network achieves competi-

tive performance as the full Inception Network. Our faster

model runs at 80 FPS for a 1000×1500 large input with

only a minor degradation of performance on Caltech.

1. Introduction

Object detection is a fundamental problem in image un-

derstanding. It aims to determine where in the image the ob-

jects are and which category each object belongs to. Many

popular deep convolutional neural network based object de-

tection methods have been proposed, such as Faster R-CNN

[28], R-FCN [6] and SSD [25]. Compared with traditional

methods such as DPM [12], these CNN based frameworks

achieve good performance on challenging dataset.

Since the pioneering work R-CNN [14], CNN based

object detectors need a pre-trained ImageNet classifica-

tion model for initialization to get the desired performance.

According to the experiments in [22], the Fast R-CNN

[13] with AlexNet trained from scratch gets the 40.4%

AP on Pascal VOC 2007, while with ImageNet pre-trained

Method MR
−2 Parameters test time (ms)

Inception R-FCN 7.15 2.5M 53.5

1/2-Inception

Mimic R-FCN
7.31 625K 22.8

1/2-Inception finetuned

from ImageNet
8.88 625K 22.8

Table 1: The parameters and test time of large and small mod-

els. Tested on TITANX with 1000×1500 input. The 1/2-Inception

model trained by mimicking outperforms that fine-tuned from Im-

ageNet pre-trained model. Moreover, it obtains similar perfor-

mance as the large Inception model with only 1/4 parameters and

achieves a 2.5× speed-up.

AlexNet gets 56.8% AP. Due to this phenomenon, nearly

all the modern detection methods can only train networks

which have been trained on ImageNet before and cannot

train a network from scratch to achieve comparable results.

The result is that we can only use networks designed for

classification task such as AlexNet [23], ZFNet [35], VG-

GNet [30] and ResNet [17], which are not necessarily op-

timal for detection. Due to the limitation, if we want to

sweep different network configurations and find a more ef-

ficient network, we will need to pre-train these models on

ImageNet classification task and then fine-tune them on de-

tection task. The process is very expensive considering

that training a ImageNet classification model needs several

weeks even on multiple GPUs. Moreover, in experiments

we find that smaller networks always perform poor on Im-

ageNet classification so that fine-tuning them on detection

also leads to poor detection performance.

In this paper, we want to train more efficient detection

networks without ImageNet pre-training. More importantly,

we still need to achieve competitive performance as the

large ImageNet pre-trained models. The basic idea is that if

we already have a network that achieves satisfying perfor-

mance for detection, the network can be used to supervise

other network training for detection. The question then be-

comes how to use a detection network to supervise a more

efficient network and keeps its accuracy for detection.

Similar ideas have been used in standard classification
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task, such as [18, 2]. However, we find that they do not

work well for this more complex detection task. The main

problems are how and where to add the supervision from

detection ground-truth and the one from a different network.

Our solution for mimicking in object detection comes

from observation of modern CNN based detectors, includ-

ing Faster R-CNN [28], R-FCN [6], SSD [25] and YOLO

[27]. They all calculate a feature map and then use different

methods to decode detection results from the feature map.

In this way, detector can actually be divided into the jointly

trained feature extractor and the feature decoder. The dif-

ferences between the large network and the more efficient

network lie in the feature extractor. To this end, our phi-

losophy is that the mimicking supervision should be added

in the feature map generated by the feature extractor; the

ground-truth supervision should be added on the final fea-

ture decoder. For the mimicking supervision, we define a

transformation on top of the feature map generated by the

small network to a new feature. We want to minimize the

Euclidean distance between this new feature and the feature

generated by the large network.

For the ground-truth supervision, it is the same as the

origin detector, such as the joint classification and localiza-

tion loss in Fast R-CNN. In training, we first extract the

feature map of each training image generated by the large

network, and then use the feature maps and detection anno-

tations to jointly train the detector with the small network

initialized from scratch. One problem is that the feature

map is of very high dimension, and we find that directly

mimicking the feature map does not converge as expected.

Since the feature extractor is region or proposal based, we

sample features from regions to optimize, which leads to

satisfying results.

The feature map mimicking technique proposed in the

paper can naturally be extended. The first extension is that

we can mimic across scales. In CNN based detection, we

only need 1/4 computation if we can reduce the width and

height of the input image by half. However, it usually leads

to significantly performance drop. We show that we can de-

fine a simple transformation to up-sample the feature map

to a large scale and then mimic the transformed feature

map. Another extension is that we can extend the mimick-

ing technique to a two-stage procedure that further improves

the performance.

We conduct experiments on Caltech pedestrian detec-

tion and Pascal VOC object detection using R-FCN and

Faster R-CNN. On both Caltech and Pascal VOC, we

show that the mimicked models demonstrate superior per-

formance than the models fine-tuned from ImageNet pre-

trained model. As shown in Table 1, the model with 1/4
parameters achieves similar performance as the full Incep-

tion Network and the faster model achieves 4.5× accelera-

tion and 16× compression with only a minor degradation of

performance on Caltech detection tasks.

2. Related Work

The related work includes recent CNN based object de-

tections, network mimicking and network training, as well

as network acceleration.

A seminal CNN based object detection method is R-

CNN [14], which uses the fine-tuned CNN to extract fea-

tures from object proposals and SVM to classify them. The

spatial pyramid pooling [16] and Fast R-CNN [13] extract

features on top of a shared feature map to speed up the

R-CNN. Faster R-CNN [28] further improves by predict-

ing region proposals and classifying proposals in the shared

feature map. A very recent work R-FCN [6] proposes

the position-sensitive score map to share more computa-

tion. The R-CNN series takes object detection as a two-shot

problem, including region proposal generation and region

classification. Recently, one-shot methods have been pro-

posed, such as YOLO and SSD. All these methods need to

calculate the feature map which takes most of the computa-

tion. The mimicking technique we proposed is validated on

Faster R-CNN and R-FCN, but it can be naturally extended

to SSD, YOLO and other CNN feature map based methods.

Network mimicking or distilling are recently introduced

model acceleration and compression approaches by [18, 2]

aiming to train a more compact model that can learn

from the output of a large model. [29] further improves

this method by way of the implementation of deeper stu-

dent models and hints from the intermediate representation

learned by the teacher network. However, all these mimick-

ing works, to our best knowledge, have only been validated

on easy classification tasks [18, 2, 29, 33]. In this paper,

we show how to extend the mimicking techniques for more

challenging object detection tasks, and how to use it to train

more efficient object detector.

Some works have been proposed to give better initial-

ization or replace the ImageNet pre-train. [22] sets the

weights of a network such that all units in the network train

at roughly the same rate to avoid vanishing or exploding

gradients. [1] and [8] learn an unsupervised representation

from videos, and [8] uses spatial context as the source to

provide supervision signal for training. These methods per-

form much better than being trained randomly from scratch,

but they still have a large performance gap between the pre-

trained method from ImageNet. The recent work [19] ana-

lyzes the ImageNet features in detail.

Our work is also related to works of network accelera-

tion. [7, 20, 24] accelerate single layer of CNN through

linear decomposition , while [38] considers the nonlinear

approximation. [34] uses the quantization to accelerate the

convolution. [15] combines pruning, quantization and Huff-

man coding to compress parameters. [31, 10, 5, 26] propose

to approximate networks by binary weights. These methods
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accelerate or compress a given network, but does not change

the network structure itself. The mimicking techniques pro-

posed in our paper are orthogonal to these methods and can

be combined for further acceleration.

3. Mimicking for Object Detection

3.1. Logits Mimic Learning

The main idea of mimicking is to train a small neural

network from the soft targets or logits (predictions before

softmax) of a large model or an ensemble of large models.

The soft targets carrying helpful information learned by the

large complex model allow the small network to approxi-

mate the complex functions of the large network. As de-

scribed in [2], the objective loss function we want the small

network to optimize is logits regression with L2 loss given

training data {(x(1),z(1)),...,(x(T ),z(T ))}

L(W ) =
1

2T

∑

t

‖g(x(t);W )− z(t)‖22, (1)

where W is the weights of the neural network, g(x(t);W )

is the model prediction of the tth training data. By mimick-

ing logits of the large model, the knowledge learned by the

large complex model can be transferred to the small faster

model so that it could achieve as accurate results as the large

model.

To the best of our knowledge, mimic method, as a tech-

nique for model acceleration and compression, has only

been applied on classification tasks [2, 18]. We want to ex-

tend this idea to object detection tasks to train small and

faster object detector. Different from the single class score

prediction in classification task, the object detection net-

work usually predicts both the object scores and the ob-

ject locations for the entire image. An intuitive idea would

be to train the small network matching both outputs of the

large network. Our experiments show that it is difficult to

transfer the knowledge to the small model by this naive log-

its matching method in object detection frameworks. The

mimic model performs worse than the model fine-tuned

from ImageNet pre-trained models on the training data that

supervised by the ground-truths only.

3.2. Feature Map Mimic Learning

Recent state of the art object detection algorithms [28,

25, 27] are fully convolutional networks in which the entire

image is forwarded through the deep convolution networks

once, afterwards the features from candidate windows are

extracted on the feature maps. Feature matters in object

detection since both the objectness scores and locations are

predicted based on the feature map. Therefore, it is more

reasonable to mimic the output feature maps between the

two detection networks.

We present a feature map mimic method aiming to train

the small model to mimic the feature map activations of the

large model in a unified fully convolutional network object

detection pipeline. The features come from the last convolu-

tion layer of the neural network involve the information not

only of the strength of the responses but also of their spa-

tial positions [16]. But unlike logits before the softmax in

classification network whose dimensions are related to the

number of categories, the features of the fully convolutional

network dependent on input size and network architecture

are high-dimensional. For a typical 600x1000 Pascal VOC

image forwarded through the VGG16 model, the output of

the network is a feature with dimension of million magni-

tude. It is difficult to perform regression between the two

output feature maps of this high-dimension directly. Our

experiment results show that the model is hard to converge

during training time. Moreover, the feature map contains

response information across the entire image. In the case

of an image containing only few objects or in which the

scales of objects are all small, most of the regions on the

feature map will only have weak responses. The object cor-

respondence information might be ignored or degraded if

we perform global mimic learning on the whole feature map

directly. For a fully convolutional network object detector,

instead of the global context features, the features of local

regions where the objects locate contains more representa-

tive information for object detection.

Therefore, we propose a new fully convolutional net-

work feature mimic method by mimicking the features

sampled from regions of proposals to solve the high-

dimensional regression problem of fully convolutional fea-

ture map. The feature mimic method based on proposals

sampling could also make the small network focus more

on learning the region of interests features from the large

model rather than the global context features. Local region

features can be sampled by bounding boxes of different ra-

tios and sizes from the feature maps of both the small net-

work and the large network using spatial pyramid pooling

[16]. Then the sampled features from the feature map of

small network are regressed to the same dimension as the

large model by a following transformation layer [29]. The

loss function that small network intends to minimize is de-

fined as

L(W ) = λ1Lm(W ) + Lgt(W ), (2)

Lm(W ) =
1

2N

∑

i

‖u(i) − r(v(i))‖22, (3)

Lgt(W ) = Lcls(W ) + λ2Lreg(W ), (4)

in which Lm is the L2 loss of feature mimic, Lgt is the clas-

sification and regression loss function of region proposal

network described in [13], λ1 and λ2 are the loss weight

balance parameters. N is the total number of the proposals

we sampled, u(i) is the feature sampled by spatial pyramid
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pooling from the feature map of the large model based on

the ith proposal. v(i) is the sampled output feature of the

small network and r is the regression function to transform

v(i) to the same dimension as u(i). By optimizing this loss

function, the small network can be trained under both the

ground-truths and the additional supervision from the large

models.

A potential problem about the mimic loss is that its value

could be large during the training time so that the balancing

weight parameter has to be carefully set between the super-

vision of features and ground-truths to better optimize the

network. Besides, the spatial pyramid pooling might cause

information loss when performing the pooling process.

Thus we further improve the mimic objective loss func-

tion by implementing the L2 loss of the features extracted

from the region proposal and perform normalization when

calculate the loss. After that, the training process becomes

more stable and we can simply set the balance weight to 1.

The new mimic loss function is defined as below

Lm(W ) =
1

2N

∑

i

1

mi

‖u(i) − r(v(i))‖22, (5)

in which mi is the dimension of the features extracted by the

ith region proposal. Different from the features extracted

and pooled to same dimension in Equation (3), the features

here are extracted from the feature map directly and are dif-

ferent in dimension for every region proposal.

3.3. Network Architecture and Implementation De
tails

We integrate the feature map mimic on Faster-RCNN

[28] and R-FCN [6] that are state of the art object detec-

tion framework. The training process can be separated into

two stages. The first stage is to train a Region Proposal

Network[28] by feature mimic method. The RPN itself can

be viewed as an effective proposal generator as well as a

single category object detector. For general object detection

tasks we can simply train the RPN first and jointly fine-tune

a Faster-RCNN network or a R-FCN network on it at the

second stage.

The framework of mimic training is illustrated in Fig-

ure 1. A large Faster-RCNN or R-FCN network is trained

in usual way to optimize softmax loss and smooth L1 loss

by the supervision of the ground-truths on the training data.

The feature mimic architecture contains two networks. The

large network is initialized by the weights of the well-

trained detection network and the layers are fixed during

the training process. The small network is randomly initial-

ized. A Region Proposal Network is added at the end of

the small network to generate object proposals. Initially, an

entire image is forwarded through both of the networks to

produce two different feature maps. Given the proposal re-

gions generated by the RPN on small network, the sampler

L2 Loss

For each RoI

softmax
Small CNN

Large CNN Feature Map

3x3 conv

Region Proposal Network

bbox

Figure 1: Overall architecture of feature mimic by proposal sam-

pling. A Region Proposal Network generates candidate RoIs,

which then used to extract features from the feature maps.

will extract the features at the proposal regions on the fea-

ture map of both the large network and the small network.

The entire framework is trained end to end by the loss de-

fined in Equation (5). All loss weights (λ1 and λ2) are set

to 1 during our training.

In the second stage we fine-tune a Faster R-CNN or a R-

FCN detection network from the region proposal network

on the training dataset and we randomly initialize all the

new added layers. The inference process is the same as the

original Faster-RCNN or R-FCN without any increased pa-

rameters. Our implementation uses Caffe [21].

3.4. Twostage Mimic

Fine-tuned by the ground-truth supervision only in the

second stage might degrade the feature learned by mim-

icking at the first stage. The prediction of the detector in

Faster-RCNN or R-FCN detector can be regarded as a clas-

sification task. Therefore we could add logits matching su-

pervision to the second stage of detection pipeline to further

transfer the knowledge of the large detection models to the

small models. Moreover, by two-stage mimic, not only the

proposal related information but also the category classifi-

cation information learned by the large model can be passed

to the small network. Richer information from the large

model can further help the small network mimic the large

model. We can simply fine-tune the detection network from

the mimicked region proposal network and add a L2 regres-

sion loss of the predicted classification logits and bounding

box regression values. Experiments results show that two-

stage mimic further improves the performance of the small

network than fine-tuning the mimicked RPN model in stage

2.

3.5. Mimic over Scales

We further extend the feature map mimic to improve de-

tection performance when the input size is reduced. Be-

sides the network complexity, the input image scale is an-

other key factor to the speed of object detection framework.
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softmax

Region Proposal Network

bbox

L2 Loss

For each RoI
Original Image

Feature Map

Half-Resized Image

deconv+ 

3x3 conv

Figure 2: Overall architecture of feature mimic by proposal sam-

pling on different input scales. A Region Proposal Network gen-

erates candidate RoIs, which then used to extract features from the

up-sampled feature map and the feature map of the network with

large input.

Object detectors perform worse on objects of small scales

[9]. Experiments on Caltech demonstrate that the detec-

tor trained and tested on 480×640 pixels are much worse

than the one trained and tested on 1000×1500 pixels. Tech-

niques like multi-scale test [13], hierarchical feature fusion

[3] and hole algorithms [4] are presented to improve de-

tection performance for small objects but also bring large

increase of time cost during the inference time.

The main reason for the degraded performance of small

scales in detection is that the the features of small objects

are very small in the final feature map after the down-

sampling by the convolutional network. The feature mimic

is intrinsically designed to train by feature regression to

achieve kind of activation similarity between two feature

maps. We can simply add a deconvolution layer on top of

the final feature map to enlarge the feature map and then

mimic the feature map for the large input network to im-

prove the performance.

As illustrated in Figure 2, the image is forwarded

through a network with stride 16 and produces a feature

map; the same image half-resized is forwarded through the

network with stride 8 and produces a similar-sized feature

map. Then we perform feature map mimic method on the

two feature maps during training. Our experiments show

that given the input of small scales, the mimic method can

significantly increase the performance of the detector.

4. Experiments

We comprehensively evaluate our method on the Cal-

tech pedestrian detection benchmark [9] and PASCAL VOC

2007 object detection benchmark [11].

4.1. Experiments on Caltech

On Caltech, we train our models on the new annotated

10× training data provided by [37] and select only the im-

ages that contains ground-truth bounding boxes in the train-

ing dataset which has about 9k images in total. The stan-

dard test set consisting of 4024 frames are used for eval-

uation on the new annotations under reasonable evaluation

settings. Following [37], the evaluation metrics we use are

log average Miss Rate on False Positive Per Image (FPPI)

in [10−2, 100] (denoted as MR
−2) and log-average Miss

Rate on FPPI in [10−4, 100] (denoted as MR
−4).

The performance of the small network directly depends

on the large model in mimic learning pipeline. Therefore it

is important to train a large model with high performance in

the experiments. We implement Region Proposal Network

and R-FCN detection framework and achieve competitive

detection results on Caltech based on GoogLeNet Inception

Network Architecture[32].

Training the Region Proposal Network and R-FCN de-

tection network jointly on Caltech dataset with the original

image size 640×480 pixels is difficult to achieve a compa-

rable performance as the current state-of-the-art [36]. The

method has an MR
−2 of only 14.64%. Considering that

the height of most pedestrians in Caltech dataset is under

80 pixels which is quite challenging to the detector, we re-

scale the images such that their shorter side is 1000 pixels.

We train and test both RPN and R-FCN networks on im-

ages of single scale. For RPN anchors, we use 2 aspect

ratios of 2:1, 3:1 and 3 scales with box areas of 4
2, 8

2,

16
2. The RPN and R-FCN network are jointly trained on a

pre-trained model for ImageNet classification as in standard

practice. We fine-tune all layers of the Inception network

and all the new layers are randomly initialized as described

in [28]. We use a leaning rate of 0.001 for 30k mini-batches

and 0.0001 for the next 10k mini-batches. The momentum

is set to 0.9 and the weight decay is 0.0005. The final de-

tection result is MR
−2 = 7.15%, as shown in Table 2. The

Region Proposal Network can be regarded as a single cat-

egory detector, therefore we also reported the performance

of the RPN stand-alone in the experiments.

Method MR
−2 MR

−4

Inception RPN stand-alone 8.68 21.74

Inception RPN+ R-FCN 7.15 19.18

Table 2: Detection results of Inception RPN and R-FCN.

Considering that we are not to examine which kind of

network architectures perform better on object detection

task, instead we want to examine the feature mimicking

method can improve the performance of small networks.

We use simple design for small network structures. The

small networks we use in the experiments are modified In-

ception networks. 1/n-Inception network represents the net-

work that has the same depth as the Inception network but

each convolutional layer of it only contains 1/n of filters of

the Inception Network. The feature map we mimicked in

the experiments is the output of Inception-4d layer of the

network. The test time for different R-FCN networks are
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listed in Table 3.

First we evaluate the method of naive logits mimic and

the entire feature map regression mimic mentioned in Sec-

tion 3.1 and 3.2. The naive logits mimic on object detection

is to optimize L2 loss of the soft targets and the predicted

regression values between two Region Proposal Networks.

The entire feature map regression is to train the small net-

work as a regression problem of two high dimensional fea-

tures. Results of logits mimic and entire feature map re-

gression mimic are shown in Table 4. The mimicked mod-

els have a large decrease on performance compared with

the large model. The small network is difficult to mimic

the large model by simple logits matching or global feature

regression.

Method test time (ms)

Inception 53.45

VGG 232.57

1/2-Inception 22.76

1/4-Inception 12.39

1/8-Inception 9.48

Table 3: Test time of R-FCN for different networks. Tested for

input scale of 1000×1500 pixels on TITANX.

Method MR
−2 MR

−4

Inception RPN stand-alone 8.68 21.74

1/2-Inception logits mimic 68.75 81.32

1/2-Inception feature map regression 64.22 76.99

Table 4: Detection results of Naive Mimic and Entire Feature

Regression Mimic.

Next we follow the same architecture of feature map

mimic method based on proposal sampling as described in

Section 3.3 to train the 1/2-Inception Network on Caltech

end-to-end. In the first stage, we use the 1/2-Inception Net-

work to mimic the features extracted from the pre-trained

Inception RPN feature map by the region proposals the 1/2-
Inception Network generated during training. We use 128

RoIs to sample the features on the feature maps of both

networks and the ratio of positive and negative samples of

RoIs are 1:1. The comparison of the results for the Incep-

tion RPN and the mimicked 1/2-Inception RPN are shown

in Table 5. The mimicked model with only 1/4 parameters

achieves competitive performance as the large model but

2.5× faster.

In stage 2, we fine-tune the R-FCN network from the

Region Proposal Network trained in stage 1. Since the RPN

layers have been trained well enough in stage 1, the learning

rate for the RPN layers are set as 1/10 of the new added

layers. The RoI output size in R-FCN is set to 7 × 7. The

stage 2 fine-tune results can be found in Table 6. The mimic

Method MR
−2 MR

−4

Inception RPN 8.68 21.74

1/2-Inception mimic RPN 9.16 21.82

Table 5: Detection results of Incepion-RPN trained on training

data and 1/2-Inception RPN trained by mimic method.

Figure 3: Comparison of detection results evaluated on the new

annotations (MR
−2(MR

−4)).

+ finetune network achieve similar performance as the large

network for MR
−2 and even get a better performance on

MR
−4.

Method MR
−2 MR

−4

Inception RPN + R-FCN 7.15 19.18

1/2-Inception-from-scratch 24.63 40.83

1/2-Inception-finetune-ImageNet 8.88 19.81

1/2-Inception mimic + fine-tune R-FCN 7.55 17.59

Table 6: Detection results of 1/2-Inception R-FCN models trained

by ground truth supervision and by mimic method.

In order to compare feature mimic method with tradi-

tional method that training the model directly on the train-

ing dataset by ground-truth supervision, we train a 1/2-
Inception R-FCN from scratch. As described in [14], mod-

els that fine-tuned from a pre-trained model on ImageNet

classification tasks performs better than those trained from

scratch. Therefore we also pre-train a 1/2-Inception net-

work on ImageNet dataset and fine-tune the R-FCN detec-

tion network from the pre-trained model. The results are

compared in Table 6 and Figure 3. The results shows the

model trained by feature mimic learning demonstrate supe-

rior performance than both models trained from scratch and

fine-tuned from ImageNet pre-trained model on MR
−2 and

MR
−4.

We further conduct experiments on different smaller net-
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works. The experiment results on Table 7 provide evi-

dence that the mimic learning method can generally im-

prove performance on different small networks. There is

a large performance gap between mimicked model and the

model trained from scratch. The smaller networks like 1/4-
Inception and 1/8-Inception networks are difficult to train

on the ImageNet dataset. Training smaller network by fea-

ture mimic is more efficient for implementation. The 1/4-
Inception Network, which has about 1/16 parameters than

the Inception Network, still achieves comparable perfor-

mance as the large network. We also train another large

R-FCN detection based on VGG network and a Faster

R-CNN model based on ResNet network to evaluate the

generalization of the mimic learning method. The results

shown in Table 8 and Table 14 demonstrate that the fea-

ture mimic method can help train a small network to mimic

a large model with totally different network architectures.

The mimicked 1/2-Inception model achieves similar perfor-

mance as the large model but are 10× faster during infer-

ence. Also for the same small network, the performance

of the large model is important for the mimic learning.

The same model mimicked from Inception outperforms that

mimicked from VGG model as the Inception model outper-

forms VGG model.

Method MR
−2 MR

−4

1/4-Inception-from-scratch 30.36 45.73
1/4-Inception-mimic + finetune 10.02 21.84

1/8-Inception-from-scratch 42.64 58.21
1/8-Inception-mimic + finetune 16.86 32.46

Table 7: Detection results of mimic learning on different smaller

network structures.

Method MR
−2 MR

−4 test time (ms)

VGG RPN + R-FCN 7.68 18.59 232.57

1/2-Inception mimic

-from-VGG + finetune
8.47 18.57 22.76

Table 8: Detection results and test time of 1/2-Inception R-FCN

mimicked from VGG model.

Instead of fine-tuning the R-FCN from the mimicked

model we get at stage 1, we train the R-FCN of small net-

work under the supervision of ground-truths as well as the

logits of the large network at the same time during training.

Experiments demonsntrate that two-stage mimic further im-

proves the performance of small model in Table 9.

The size of input is essential to the performance of the

object detector. The MR
−2 of Inception R-FCN model on

Caltech is only 14.64% given input image with size 480×

640 as shown in Table 10. Simply adding a deconvolution

layer at top of the final feature map cannot bring any per-

formance improvement. We implement feature map mimic

Method MR
−2 MR

−4

1/2-Inception-mimic + finetune 7.55 17.59
1/2-Inception-two-stage-mimic 7.31 17.13

1/4-Inception-mimic + finetune 10.02 21.84
1/4-Inception-two-stage-mimic 9.75 20.23

1/8-Inception-mimic + finetune 16.86 32.46
1/8-Inception-two-stage-mimic 15.32 31.46

1/2-Inception-mimic-VGG + finetune 8.47 18.57
1/2-Inception-two-stage-mimic-VGG 8.33 18.46

Table 9: Detection results of R-FCN models fine-tuned in stage 2

and models trained by two-stage mimic.

method on the features of the network with large input and

the network with reduced input but added a deconvolutional

layer for upsampling on top of the feature map. Experi-

ments result shows a significant MR
−2 decrease with only

a little time cost increase (3.5 ms).

Method MR
−2 MR

−4 test time (ms)

Inception R-FCN 14.64 27.81 15.63

Inception-upsample R-FCN 15.28 29.06
19.18

Inceptipn mimic + fine-tune 11.14 23.35

Table 10: Detection results and test time with input of 480×640

pixels. The Inception-upsample is the modified network with

stride 8 trained on training dataset. Inception mimic is the same

network as Inception-upsample but trained by mimic learning.

4.2. Experiments on PASCAL VOC

To evaluate our feature mimic learning method on differ-

ent detection frameworks and more complicated common

object detection task, in this section we introduce our mimic

learning method based on the Faster R-CNN framework for

PASCAL VOC [11] common object detection benchmark.

The experiment results show that our feature mimic method

can be generalized well on different detection frameworks

and object detection tasks.

Following [28], for the PASCAL VOC 2007 test set, we

use the 5k trainval images in VOC 2007 and 16k train-

val images in VOC 2012 for training (07+12). The hyper-

parameters for training Faster-RCNN are the same as [28].

We train a Region Proposal Network and Fast R-CNN

model jointly on the training dataset as the large model we

want to mimic. Limited by the space, we only report mAP

of the experiments. Further detailed results can be found

in the Appendix. The large model we trained based on In-

ception network architecture achieves 75.7% mAP on VOC

2007 test set. During the mimic training, firstly we mimic a

small RPN from the large model in stage 1 and then finetune

the Faster R-CNN from this pre-trained model in stage 2 or

use two-stage mimic techniques to train models for com-

mon object detection.
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The mimic experiments on PASCAL VOC are similar as

Caltech except that the PASCAL VOC is a common object

detection task. The Region Proposal Network we mimic

in the first stage can only predict class-agnositic proposals,

we therefore evaluate the performance of the RPN trained

using mimic method by the recall given up to 300 proposals

per image. Aiming for a more complete evaluation, we also

report the recall when the IoU threshold is set to 0.7 for true

positives. We expect more strict evaluation can be used for

better performance comparison between different proposal

models. And mAP is used to evaluate the object detector

for the stage 2 training. The mimicked RPN model in the

first stage achieves similar recall as that of large model and

outperforms the model trained from scratch or fine-tuned

from ImageNet pre-trained model (Table 11).

Method Recall@.5 Recall@.7

Inception RPN 97.26% 85.36%
1/2-Inception-from-scratch 91.18% 70.66%
1/2-Inception-finetune-ImageNet 96.8% 83%
1/2-Inception-mimic 97.13% 85.58%

Table 11: RPN results on PASCAL VOC 2007 given up to 300

proposals per image. Recall@.7 means the IoU threshold to deter-

mine true positives is set to 0.7.

In stage 2 we fine-tune a Faster R-CNN based on the

RPN model trained in stage 1. The 1/2-Inception Faster-

RCNN achieves better performance than the models fine-

tuned from ImageNet pre-trained model and far better than

the model trained from scratch. Results are shown in Table

12.

Method mAP

Inception Faster R-CNN 75.70
1/2-Inception-from-scratch RPN 49.21
1/2-Inception-finetune-ImageNet RPN 72.37
1/2-Inception-mimic + finetune RPN 72.79

Table 12: Detection results PASCAL VOC Faster-RCNN Re-

sults.

We experiment further for smaller models. It is difficult

to train the small models on ImageNet classification tasks.

Therefore we compare our mimicked models with the mod-

els trained from scratch on the training dataset. The models

trained by mimic method outperform much more than the

models trained from scratch, which is shown in Table 13.

Also the experiments demonstrate that the two-stage mimic

can further improve the performance of the mimic method.

We also conduct experiments of mimic at different loca-

tions of extractor are shown in Table 15. The results indi-

cate that mimicking the last shared feature map is the best

choice.

Method mAP

1/4-Inception-from-scratch 42.08
1/4-Inception-mimic + finetune 65.76
1/4-Inception-two-stage-mimic 67.66

1/8-Inception-from-scratch 34.77
1/8-Inception-mimic + finetune 53.80
1/8-Inception-two-stage-mimic 56.14

Table 13: Comparison of detection results of Faster R-CNN mod-

els trained by mimic learning and trained by ground-truth supervi-

sion only.

Method 0.5 0.6 0.7 0.8 0.9 mAP

1/4-vgg16-scratch 89.0 82.5 63.9 27.4 2.9 43.5

1/4-vgg16-mimic 93.5 88.7 74.6 34.3 3.3 48.7

Table 14: 1/2-VGG16 mimic ResNet-50 results. RPN evaluation

by recall rate (with regard to different IoUs) and Faster-RCNN

detection mAP on VOC07 test set.

Mimic layer 0.5 0.6 0.7 0.8 0.9 mAP

No-mimic 87.4 80.8 64.7 28.4 2.8 42.08

Inception-3b 87.4 81.1 65.6 29.7 3.2 42.46

Inception-4b 92.9 88.4 75.0 36.5 3.9 58.57

Inception-4d 95.1 91.6 80.8 42.2 4.5 65.76

Table 15: 1/4-Inception RPN and Faster-RCNN mimic Inception

model at different layers. Evaluation by recall rate with regard to

different IoUs (300 proposals each image) and detection mAP on

VOC07 test set.

5. Conclusion

In this paper we propose a feature mimic method to fur-

ther extend the mimic approach to object detection tasks.

By supervision of the features from the large network, we

can train networks from scratch to achieve superior perfor-

mance than fine-tuning from ImageNet pre-trained models.

Moreover, our approach makes it possible to train faster and

compact detection models as accurate as the large models.

In our experiments on Caltech and PASCAL VOC, the 2.5×

faster models with 1/4 parameters trained by mimicking

achieves similar performance as the large Inception models.

The feature map based mimicking can possibly be extended

to other fully convolution network based tasks, such as se-

mantic segmentation, which will be taken as a future work.
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