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Abstract

Highly effective optimization frameworks have been de-

veloped for traditional multiview stereo relying on Lamber-

tian photoconsistency. However, they do not account for

complex material properties. On the other hand, recent

works have explored PDE invariants for shape recovery

with complex BRDFs, but they have not been incorporated

into robust numerical optimization frameworks. We present

a variational energy minimization framework for robust re-

covery of shape in multiview stereo with complex, unknown

BRDFs. While our formulation is general, we demonstrate

its efficacy on shape recovery using a single light field im-

age, where the microlens array may be considered as a real-

ization of a purely translational multiview stereo setup. Our

formulation automatically balances contributions from tex-

ture gradients, traditional Lambertian photoconsistency, an

appropriate BRDF-invariant PDE and a smoothness prior.

Unlike prior works, our energy function inherently han-

dles spatially-varying BRDFs and albedos. Extensive ex-

periments with synthetic and real data show that our opti-

mization framework consistently achieves errors lower than

Lambertian baselines and further, is more robust than prior

BRDF-invariant reconstruction methods.

1. Introduction

Motion of the camera with respect to the scene is an im-

portant cue for shape recovery from images. It forms the ba-

sis for multiview stereo, which has seen great success in re-

cent years [7, 8, 9, 10]. Traditional approaches to multiview

stereo rely on the notion of Lambertian photoconsistency,

which assumes the image intensities for the projection of

the same 3D point across various views remains unchanged.

However, image formation depends on a bidirectional re-

flectance distribution function (BRDF) that encodes the ra-

tio of exitant to incident light energies and thereby, depends

on the viewing direction. For instance, consider the motion

of a glossy highlight on the surface of a shiny object, as the

observer moves relative to it. Lambertian photoconsistency

amounts to assuming a Lambertian BRDF, which is a con-

(a) Input Image (b) Our Method (c) Only Gradient

(d) Wang et al. [22] (e) Tao et al. [18] (f) Tao et al. [19]

Figure 1. We present a robust energy minimization framework

for shape recovery from light fields in the presence of unknown

spatially varying BRDF. Given an input image (a), our method

produces an accurate depth map (b) by a judicious combination of

energies from texture gradients, Lambertian photoconsistency and

a physically-based BRDF-invariant. Ignoring the BRDF-invariant

leads to incorrect reconstruction in the specular regions (c). The

key advantage of our framework is robust optimization compared

to prior methods for BRDF-invariant reconstruction (d,e). A Lam-

bertian method is shown for reference (f), which is clearly unsuit-

able for such glossy surfaces.

stant function with respect to camera motion.

In recent years, theories on differential stereo have been

proposed that show information about the surface may be

recovered even with complex, unknown BRDF by exploit-

ing cues from the motion of the object [5] or camera [3, 4].

These theories rely on the linearity of differentiation to iso-

late the effects of geometry and reflectance, which necessi-

tate robust measurement devices and computational frame-

works for applicability in the presence of noise and large

motions. The availability of consumer light field cameras

provides a practical realization for differential motion of

the camera, since the microlens array may be interpreted

as a camera undergoing small planar translations. This ob-

servation has been used by Wang et al. [22] to propose a
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method for surface reconstruction by assuming a piecewise

quadratic patch model, which is a strong prior that must be

carefully balanced against the BRDF-invariance of differen-

tial stereo.

This paper presents an energy minimization framework

for multiview stereo that ensures unknown BRDFs can be

handled while inheriting the robust computational benefits

of traditional variants (Figure ??). In Section 3.1, we adopt

the variational multiview stereo paradigm of Semerjian [15],

which had been originally designed for texture gradients

and has been recently extended to Lambertian photoconsis-

tency [13]. We enhance its energy function in Section 3.2

to incorporate a BRDF-invariant relation that depends on

surface depth and gradient [3, 4, 22]. Rather than assume

parametric surface priors as in [22], we impose a smooth-

ness term based on normal divergence. Further, Section 3.3

proposes mechanisms that weigh the relative contributions

of the Lambertian photoconsistency and BRDF-invariant

terms, based on a measure of non-Lambertian behavior re-

flected by the spatial and temporal image derivatives.

Our framework has significant advantages, since prior

works either do not handle unknown BRDFs, or cannot use

BRDF-invariance in robust computational frameworks. In

contrast, our method can handle spatially varying unknown

BRDFs as well as albedos, in a physically correct energy

formulation. In Section 4, we demonstrate that our ap-

proach overcomes the limitations of prior works, which is

reflected in reconstructions that are accurate even in non-

Lambertian regions and an optimization procedure that does

not require sensitive tuning of parameters. To summarize,

our key contributions are:

• A unified framework for multiview stereo that handles

complex, unknown BRDFs.

• A robust energy minimization formulation that handles

non-Lambertian effects, noise and non-differential mo-

tions without restrictive priors.

• Empirical demonstration of accuracy and robustness rel-

ative to prior works in recovering shape from light fields.

2. Related Works

Dense multiview reconstruction A vast body of litera-

ture in computer vision has explored multiview stereo algo-

rithms that rely on texture gradients or Lambertian photo-

consistency to recover dense surface depth. We refer the

reader to [14] for a survey of classical techniques. Algo-

rithms that rely on patch-based methods [8] or discrete op-

timization approaches [10] have been proposed in recent

years to achieve a high degree of accuracy. With the pro-

liferation of community photo collections, these methods

have also been successfully extended to massive Internet-

scale datasets [7, 9]. Another class of methods explicitly

accounts for the image formation equation in a multiview

stereo reconstruction. Simakov et al. propose a dense cor-

respondence method for Lambertian surfaces that accounts

for environment illumination through its first order spheri-

cal harmonics approximation [16]. Wu et al. also develop

high-quality multiview stereo reconstructions under general

unknown illumination [26]. Dense reconstruction meth-

ods based on RGB-D inputs have also been augmented

with Lambertian shading cues [27, 28, 29]. Our method is

closely related to that of Langguth et al. [13], who augment

the intensity gradient term in the bicubic patch-based frame-

work of Semerjian [15] with a shading term. However, their

approach is based on assuming a Lambertian BRDF. In con-

trast, our energy function can handle unknown, spatially-

varying BRDFs and albedos, allowing for an automatic

switching between regions where texture gradients, Lamber-

tian photoconsistency or complex BRDF terms must domi-

nate. We assume a known directional light source for our

method, while a few of the above works also estimate the

lighting based on coarse geometry. Our method may also

be extended to allow lighting estimation, but the focus of

this paper is on demonstrating BRDF-invariance.

BRDF-invariant reconstruction To handle general non-

Lambertian material behavior, representations consisting of

exemplar BRDF bases have been popularly used for mul-

tiview stereo [21] and also photometric extensions [30].

Shape recovery for specular or mirror surfaces has been con-

sidered in several early works [1, 2, 12, 31]. More recently,

theories have also been proposed to delineate the extent of

shape recovery under differential motion of the object [5] or

camera [3, 4]. However, they are not accompanied by com-

putational methods that are robust to noise or large motions

where the differential assumption is not satisfied. Our work

uses the differential invariant inspired by [3, 4], but casts it

in a robust optimization framework.

Shape from light fields Several methods have been pro-

posed in recent years for depth estimation in light field im-

ages. However, most are based on a Lambertian assumption

[6, 11, 17, 19, 23, 24, 25]. Other methods use a dichro-

matic reflectance model [18] or a binary classification of

pixels as diffuse or specular [20]. Our BRDF-invariant term

is inspired by [22] and we use the same interpretation of

the light field camera as a practical realization of differen-

tial (or narrow baseline) motion in a plane. However, [22]

uses a restrictive quadratic patch model and an optimization

technique that is sensitive to noise and parameters for actual

shape recovery from the invariant. In contrast, we propose

a robust energy minimization framework for surface recon-

struction that can handle unknown BRDF and uniformly

exploit cues from texture gradients, Lambertian photocon-

sistency and BRDF-invariant relations, as applicable. Our

experiments demonstrate the substantial benefits of our for-

mulation in terms of surface reconstruction accuracy. Thus,

our method is the first framework for BRDF-invariant mul-
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tiview stereo or light field reconstruction that achieves accu-

racy and robustness sufficient for practical utility.

3. Robust BRDF-Invariant Reconstruction

Two main approaches to surface reconstruction have

been used in computer vision. One is to estimate point

clouds by triangulating dense matches between image pairs

and then reconstructing the surface from the point cloud.

The other directly creates continuous surfaces from each

viewpoint and then fuses the surfaces to generate an accu-

rate reconstruction. Our methods adopts the second strategy

for its ability to uniformly handle image pairs with wide and

narrow baselines. We formulate the surface reconstruction

in an energy minimization framework. Our energy func-

tion consists of three parts: a point-wise texture gradient

term [13, 15], a BRDF-invariant term [22] and an edge-

preserving smoothness term based on normal divergence.

Let N be the set of views captured by light-field camera

and V be the set of pixels that can be seen in the central

view. We define z to be the depth of pixels. Then, our final

energy function for multiview reconstruction is given by:

E(z,n)=
∑

j,k∈N
k>j

∑

u∈V

(|Ejk
C (z,u)|+ ωu(I, z)EBRDF + ηES).

(1)

in which Ejk
C , EBRDF and ES represent the texture gradi-

ent term, BRDF-invariant term and smoothness term respec-

tively. Here ωu(I, z) and η are positive weights that bal-

ance the influence of different energy terms. Note that the

smoothness term and the BRDF-invariant term are also in-

cluded in the summation to make sure that their contribution

is consistent with the number of pairs of views. We propose

appropriate weighting functions that influence the BRDF-

invariant term to vary from Lambertian photoconsistency to

fully non-Lambertian.

3.1. Texture Gradient Term

An intensity gradient term is a valuable cue for surface

depth in textured regions. Let u ∈ V be a pixel in the central

view and z be its depth. We define u
j(z) as the projection

of pixel u in view j ∈ N . To simplify the notation, we will

simply use u
j instead in the sequel. Following [15], the

matching error based on the gradient consistency measure

between a pair of views j and k is defined as

Ejk
C (u, zu) = Jj(uj)▽Ij(u

j)− J k(uk)▽Ik(u
k), (2)

where J j(uj) is the Jacobian matrix of the spatial trans-

form that maps the gradient ▽Ij(u
j) from view j to the

cental view, which is given by

J j(uj) =




∂uj

∂u

∂vj

∂u
∂uj

∂v

∂vj

∂v


 (3)

Note that the Jocabian matrix for the center view will be an

identity matrix. To fully exploit the advantage of the multi-

ple views offered by a single light-field image, we compute

the matching error of every pair of sub-views by projecting

their gradient to the central view. Since we adopt a contin-

uous surface representation, the photo consistency Ejk
C can

uniformly handle pairs of images with wide-baseline and

narrow-baseline, which allows us to handle different ranges

of camera motion of the sub-views of a single light-field

image, within a unified framework.

3.2. BRDF­Invariant Term

We define f̄ = f/s where s is the size of pixels, f is

the focal length and we suppose that the pixel is square. Let

β = 1/f̄ . Then for a perspective camera, a 3D point x =
(x, y, z)⊤ is imaged at pixel u = (u, v)⊤ where

u =
x

βz
, v =

y

βz
(4)

Suppose that the camera undergoes a translation τ , which is

equivalent to moving the scene by −τ . Then, the displace-

ment of a point in image coordinates is given by

δu =
δx

βz
=

−τ

βz
. (5)

We now follow [4, 22] to assume that image intensity is

given by an unknown BRDF that consists of a half-angle

term ρs and a Lambertian term ρd, written as

I(u, t) = ρ(x,n, s,v) = (ρd(x,n, s)+ρs(x, n̂
⊤
ĥ))(n̂⊤

ŝ),
(6)

where n is the surface normal, s the light source, v the view-

ing direction and h the half-angle, while n̂ stands for the

unit vector along n. Then, the total derivative of the image

formation equation leads to a differential stereo relation:

∆I = (▽vρ)xτx + (▽vρ)yτy + Iu
τx
βz

+ Iv
τy
βz

. (7)

Note the slight difference in form with respect to [4, 22] due

to the different position of the origin. We then stack multi-

ple equations from different cameras into a single equation.




Iuτ
1

u + Ivτ
1

v τ1x τ1y
· · ·

Iuτ
m
u + Ivτ

m
v τmx τmy







1

βz
(∇vρ)x

(∇vρ)y


 =




∆I1

· · ·

∆Im




The system above is rank-deficient, with solutions given by




1

βz
(∇vρ)x

(∇vρ)y


 = γ + λ




1

−Iu

−Iv


 (8)
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which leads to

(∇vρ)y
(∇vρ)x

=
γ3 − ( 1

βz
− γ1)Iv

γ2 − ( 1

βz
− γ1)Iu

(9)

Meanwhile, following the half-angle BRDF assumption we

will have

∇vρ = ρ′s
n̂
⊤
H

∥ŝ+ v̂∥∥v̂∥
, (10)

where H = (I− ĥĥ
⊤)(I− v̂v̂

⊤). Combining (10) and (9)

we have

γ3 − ( 1

βz
− γ1)Iv

γ2 − ( 1

βz
− γ1)Iu

=
nxH12 + nyH22 + nzH32

nxH11 + nyH21 + nzH31

, (11)

which yields

(κ1 + κ2z)nx + (κ3 + κ4z)ny + (κ5 + κ6z)nz = 0, (12)

where the nx, ny and nz are the components of the unit nor-

mal and the forms of κ1, · · · , κ6 are in supplementary mate-

rial. This suggests that one might achieve BRDF-invariance

by minimizing an energy that encourages the above invari-

ant to attain small values. Thus, we propose:

EBRDF = |(κ1 + κ2z)nx + (κ3 + κ4z)ny + (κ5 + κ6z)nz|.
(13)

Note that this term provides a constraint on both the surface

depth and normals. Thus, it contains important first-order

information for reconstruction in non-Lambertian regions

of the image, where traditional Lambertian photoconsis-

tency would provide inaccurate results. Further, this BRDF-

invariant term is also important in textureless regions, where

the gradient term of (2) is not informative. We note that the

energy (13), which stems from a physically correct model-

ing of material behavior, holds for spatially varying BRDF.

This is in contrast to prior works such as [13], that assume a

Lambertian shading model and vanishing albedo gradients.

The above energy term has been derived for the case of

purely translational motion, which is applicable for light

field cameras. However, our framework is applicable for

general multiview stereo too, where narrow baseline mo-

tions are available. The BRDF-invariant term in that case

would be obtained through the theory in [4], in identical

fashion as presented here for light field images.

3.3. Combined Energy

We further encode the observation that even for non-

Lambertian surfaces, diffuse photoconsistency is a good ap-

proximation in regions away from the specular highlight.

Since we assume a BRDF model in (6) that combines dif-

fuse and half-angle terms, it is expected that except for the

regions of the surface close to the specular highlight, the

diffuse term will be the dominant factor that affects the

(a) original image (b) BRDF-invariant (c) ω
L
u
(z)

Figure 2. From the left to the right: the original image, the value

of the BRDF-invariant term computed from the ground truth shape

and normals, the ω
L

u
(z) computed from the ground truth shape.

It is observed that the BRDF-invariant term is nearly zero every-

where, while the value of ωL

u
(z) is high near specularities.

appearance of objects. Based on this observation, we pro-

pose a method to automatically balance the contributions of

BRDF-invariance and Lambertian photoconsistency as the

drivers of surface reconstruction. Basically, we multiply the

EBRDF with a weight function ωu(I, z), which is defined as

the combination of two factors

ωu(I, z) = ωL
u
(z)ωC

u
(I). (14)

where ωL
u
(z) is based on Lambertian BRDF assumption

while ωC
u
(I) is a simple color heuristic. We will discuss

the two factors repsectively in the following.

We note from the differential stereo relation in (7) that,

for the case of a Lambertian BRDF under translational mo-

tion of the camera, the total derivative of image intensity

must vanish, that is,

Iu
τ jx
βz

+ Iv
τ jy
βz

−∆Ij = 0. (15)

Let z be the depth of pixel u. Then, we define the follow-

ing term to govern the relative importance of Lambertian

photoconsistency and BRDF-invariance:

ωL
u
(z) = min(max(G(z)− θ, 0), λ) (16)

G(z) =
∑

j∈N

|Iu
τ jx
βz

+ Iv
τ jy
βz

−∆Ij | (17)

The intuition for (17) is as follows. When G(z) < θ, we

will have ωL
u

= 0, which suggests that the surface is quite

Lambertian, so we optimize only the Lambertian photocon-

sistency term. When G(z) > θ + λ, we will have ωL
u
= λ,

then we optimize the BRDF-invariant term together with

the photoconsistency term and ωL
u
(z) plays the role of a
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constant coefficient. Finally, when θ < G(z) < θ + λ, we

jointly optimize ωL
u

and EBRDF to minimize for both Lam-

bertian photoconsistency and BRDF-invariance.

To illustrate this, Figure 2 demonstrates the value of the

BRDF invariant term EBRDF and the weight ωL
u
(z) com-

puted using the ground truth depth and normal maps for

noiseless synthetic data. For a non-Lambertian surface, the

BRDF invariant term is seen here to be a relatively robust

measure of object shape, with a value close to zero almost

everywhere. The ωL
u
(z), on the other hand, is small for large

portions of the surface, but high near the specular regions.

The computation of ωL
u
(z) requires a coarse estimation

of the depth of surface. When the depth estimation is not

correct, ωL
u

may not be a robust indicator of specular re-

gions. In practice, the specular highlight is often clearly

visible in an image, since it usually constitutes the bright-

est region of the image with the color of the light source.

For the common choice of a white light source, as used in

our experiments, the value of ωC
u
(I) = min{IR

u
, IG

u
, IB

u
}

should be large near the specular regions. We find this sim-

ple heuristic to be quite effective in practice. We will dis-

cuss the effect of the ωu(I, z) in the experiments, showing

its influence in recovering fine details of object shape.

Finally, in order to recover a smooth surface and regular-

ize the reconstruction, we include a smoothness term based

on normal divergence, which can be written as

ES(u) = |∇n̂(u)|. (18)

3.4. Optimization Details

For optimization, we adopt a continuous surface repre-

sentation as a set of bicubic patches, following [15]. The

shape of patches is controlled by four nodes located on the

image grid. A node is represented by four values, its depth,

its first derivatives and its second derivatives. We optimize

the four values of each node to get the surface reconstruc-

tion results. To make the algorithm more robust, we use

a coarse to fine strategy by subdividing each patch when

moving to a finer scale. The Gauss-Newton method is used

for optimization. Please see the supplementary material for

detailed derivations on the optimization method.

3.5. Discussion

We briefly contrast to two important prior methods for

non-Lambertian surface reconstruction that take advantage

of the small motion of the subviews in a light field cam-

era. Tao et al. [20] propose a glossy surface reconstruction

methods using a light-field camera by attempting a binary

classification of pixels into either Lambertian or specular,

which is not robust for general glossy surface. Instead of bi-

nary classification of pixels into Lambertian and specular, a

simple but effective physically-based weight function is pro-

posed here to balance between the BRDF-invariant term and

(a) Original Image (b) Good Initialization (c) Noisy Initializa-

tion

Figure 3. Reconstruction results for a synthetic sphere with noisy

initialization in [22]. From left to the right, noiseless image of a

synthetic sphere, the reconstruction result using the ground truth

normal initialization, the result using noisy initialization that devi-

ates from the ground truth normal direction by 5 degrees.

the Lambertian photoconsistency term. There is a follow-up

work which adopts point and line consistency for Lamber-

tian and specular regions respectively [18]. However, the

BRDFs do not necessarily lie on a line for complex ma-

terials [22], and even when they lie on a line, it does not

necessarily mean that the depth is correctly estimated.

Recently, Wang et al. [22] extend the theory of [3, 4]

to propose a differential framework to recover the shape

of a surface with spatially varying BRDF using a single

light field image. However, their method requires solving a

complex differential equation with a strong prior on surface

shape. While the prior avoids ambiguities, it also removes

finer details. Further, careful initialization of the depth and

normal direction of the center pixel is still needed for sat-

isfactory reconstruction results. Figure 3 demonstrates the

surface reconstruction result of a synthetic sphere using dif-

ferent inaccurate normal initializations. Perturbing the an-

gle of normal at the center of sphere surface by 5 degrees

can result in artifacts in the final reconstruction result even

for a simple shape. In contrast, we propose a robust coarse-

to-fine framework for optimization. Our energy function

effectively balances between Lambertian photoconsistency

and BRDF invariance, to recover fine surface details in both

Lambertian and specular regions.

4. Experiments

We perform experiments on synthetic data as well as sev-

eral real examples. We compare our results with two other

methods that are also desgined for glossy surfaces, namely

the point-line consistency of [18] and the BRDF-invariant

theory of [22]. As discussed above and demonstrated in

our experiments, our main advantage over those methods is

robustness due to a principled and physically-based formu-

lation in an energy minimization framework. For reference,

we also compare against a method based on a purely Lam-

bertian assumption, namely SDC [19]. We use one single

known directional light source in all our experiments.
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Input Image Ground Truth Our Method Wang et al. [22] Tao et al. [18] Tao et al. [19]

Figure 4. Single view shape reconstruction results on synthetic data. From the left to the right are the original images, the ground-truth

depth map, the reconstruction results using our method, the BRDF-invariant method of [22], the point-line consistency method of [18] and

the Lambertian method of [19]. We observe that a robust optimization framework like ours that accounts for unknown BRDF is required

to produce good reconstructions without sensitive parameter tuning.

Figure 5. Performances of various methods on MERL dataset.

(Left) Average error for each material. (Right) Average error for

materials grouped by type. The error of [19] is larger than others

and not included in the right for easier visualization.

Model Ours-full Wang[22] Tao[18] Tao[19]

bunny 0.0011 0.0551 0.0640 0.2262

dragon 0.0025 0.0194 0.0247 0.0432

Table 1. Surface reconstruction error corresponding to Figure 4.

We use mean square error as the measurement.

4.1. Synthetic Data Experiments

We perform experiments on synthetic data using the

bunny model which has a relatively smooth surface and the

dragon model which has complex texture and heavy self-

occlusion. For the two synthetic datasets, we adopt a 7 × 7
camera array with 51mm focal length. All images are ren-

dered using the Mitsuba renderer with a BRDF that is a mix-

ture of a diffuse term and a specular term.

Figure 4 compares our method with other state-of-the-

art depth reconstruction methods using light-field camera.

From Figure 4, we can see our method outperforms previ-

ous methods in recovering fine details of the object shape

while at the same time it is robust to specular highlights.

Note that SVBRDF [22] shares the same BRDF invariant

term with us. However, it does not explicitly consider

the texture gradients or Lambertian photoconsistency term

where they might be beneficial. Further, prior methods such

as [18, 19] that consider only Lambertian reflectance, or do

not derive a physically-based BRDF-invariant lead to dis-

torted reconstructions. Table 1 demonstrates the reconstruc-

tion errors of the results shown in Figure 4. We observe

that the quantitative numbers reflect the above intuitions.

That is, methods based on Lambertian assumptions or non-

physical treatment of BRDF variations lead to higher errors.

While the method of [22] improves upon those, its errors are

still significant since it does not rely on robust optimization

methods. In contrast, our method achieves very low errors

because it correctly accounts for BRDF and albedo varia-

tions, while using a better-designed energy function and a

more robust optimization framework.

To further demonstrate the robustness of our method,

we render the bunny model using 78 BRDFs in the MERL

dataset. The remaining 22 BRDFs are discarded since their

diffuse term is too small, thus, objects appear black under

directional lighting. The results are summarized in Figure 5.

Our method outperforms prior works that either do not use

physically-based BRDF invariance, or rely on weaker opti-

mization methods. We also group the materials by type to

provide a summary.

4.2. Real Data Experiments

We now demonstrate the robustness of our method on

several real datasets, acquired using the Lytro Illum camera.

We first compare several variants of our method in an abla-

tion study, in order to understand its characteristics and the

relative tradeoffs of various terms.
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(a) Input Image (b) Our Method (c) Diffuse Shading (d) Only Gradient (e) Only BRDF term (f) No Weighting

Figure 6. Study of importance of various terms in our energy formulation. (a) Input image. (b) Our full method achieves an accurate recon-

struction. (c) Using only diffuse shading similar to [13] leads to larger errors. (d) Gradient energy is found to be reasonable in regions far

from the specular highlights. (e) Using only the BRDF-invariant term leads to over-smooth reconstructions. (f) The adaptively determined

relative weighting of our framework is important for accurate reconstruction over the entire surface. Please refer to the supplementary

material for quantitative comparison on synthetic data.

(a) Input Image (b) Our Method (c) No BRDF term

Figure 7. Comparison of reconstruction results with and without

the BRDF-invariant term from the side-view.

Importance of various energy terms Figure 6 gives a

qualitative comparison among surface reconstruction re-

sults. For the input image in the first column, the recon-

struction obtained using our proposed method is shown in

the second column, with the energy minimized being of the

form (1). It is observed that the shape of the object is re-

covered quite well in both the diffuse and specular regions.

Next, we replace the BRDF-invariant term with a Lamber-

tian shading term, to replicate the method of [13]. It is ob-

served in Figure 6(c) that the reconstruction is inaccurate,

since the surface is very glossy.

Next, we set the BRDF-invariant term to zero, thus, only

the gradient and smoothness terms drive the optimization,

akin to conventional multiview stereo. The obtained recon-

struction is shown in Figure 6(d) and is found to be reason-

able in some diffuse regions, but noisy in glossy regions due

to incorrect handling of specularities. We note that the re-

construction is qualitatively better than using an incorrect

Lambertian shading due to the presence of image gradients

that are invariant to reflectance effects. But the artifacts in

the glossy regions can be alleviated by jointly optimizing

with the BRDF-invariant term which adds a constraint be-

tween depth and normal, as shown in Figure 6(b).

Subsequently, we keep the BRDF-invariant and smooth-

ness terms, but set the gradient term to zero, whereby

we observe in Figure 6(e) that the reconstruction is over-

smoothed. This is expected, since the BRDF-invariant term

is expected to work well only for narrow baseline config-

urations. Next, we remove the adaptive weighting ωu(I, z)
between the gradient and BRDF-invariant terms. The recon-

struction is observed to deteriorate, which shows the impor-

tance of the balance between gradient energy, Lambertian

photoconsistency and BRDF-invariance built into our opti-

mization framework. For reference, profile views of surface

plots using our method and an implementation without the

BRDF-invariant term are shown in Figure 7. It is clearly ob-

served that lack of BRDF-invariance in the energy function

leads to a distorted reconstruction in the specular regions.

Comparisons to prior methods Figure 8 summarizes our

surface reconstruction results on real light-field images and

compares to several prior methods. In column 2, we show

surface reconstruction results of our method for several ob-

jects with different kinds of non-Lambertian material such

as plastic, ceramic and rubber. Note the spatially varying

albedo for each object. Surface reconstruction results with-

out using the BRDF-invariant term are shown in column

3, effectively obtaining the method of [15]. We can see

that even for non-Lambertian surfaces, the gradient error

term can help recover the majority of the surface. However,

there are distortions near the specular hightlight, which can

be removed if we incorporate our BRDF-invariant term into

the energy function. Next, in column 4, we compare to the

method of [19] which assumes a Lambertian BRDF. Clearly,

the reconstructed surface is inaccurate since complex mate-

rial behavior is not considered. Further, we compare to the

method of [18] in column 5. We observe that the recon-

struction is not as good as ours, since the line-consistency

assumption may not hold for complex materials. Finally,

column 6 shows the method of [22]. Although it also uses

the same BRDF-invariant, the optimization framework is

not robust and consequently, the reconstruction accuracy is

not as good as ours.

5. Conclusions

We have presented a novel energy minimization frame-

work for surface reconstruction that can handle unknown,
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Figure 8. Single view shape reconstruction results on real data. From the left to the right are the original images, the reconstruction results

using our method, the reconstruction results of our method without the BRDF invariant term, the Lambertian method of [19], the point-line

consistency method of [18] and the BRDF-invariant method of [22].

spatially varying BRDFs and albedos. It relies on a judi-

cious combination of BRDF-invariant theories [3, 4, 22]

and robust variational minimization methods [15, 13] pro-

posed in recent works, to overcome the limitations of each.

Compared to methods designed for Lambertian photocon-

sistency, we provide the significant capability of accurate

reconstructions even for complex material behavior. In

comparison to recent methods for BRDF-invariance in light

fields, we do not require careful initializations and provide

a robust solution frameworks that are not sensitive to pa-

rameter settings. Our method also automatically combines

the benefits of Lambertian photoconsistency and BRDF-

invariance, using a physically meaningful criterion. Our ex-

periments demonstrate the accuracy and robustness of the

proposed method. A limitation of our current approach is

the requirement of a known distant directional light source.

In future work, we propose to relax this assumption by per-

forming a lighting estimation using coarse geometry, with

a spherical harmonics assumption to represent general illu-

mination. Our future work will also consider extensions to

BRDF-invariance theories and surface reconstruction meth-

ods using multiple light field images.
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