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Abstract

In this paper, we establish a theoretical connection be-

tween the classical Lucas & Kanade (LK) algorithm and

the emerging topic of Spatial Transformer Networks (STNs).

STNs are of interest to the vision and learning communi-

ties due to their natural ability to combine alignment and

classification within the same theoretical framework. In-

spired by the Inverse Compositional (IC) variant of the LK

algorithm, we present Inverse Compositional Spatial Trans-

former Networks (IC-STNs). We demonstrate that IC-STNs

can achieve better performance than conventional STNs

with less model capacity; in particular, we show superior

performance in pure image alignment tasks as well as joint

alignment/classification problems on real-world problems.

1. Introduction

Recent rapid advances in deep learning are allowing

for the learning of complex functions through convolu-

tional neural networks (CNNs), which have achieved state-

of-the-art performances in a plethora of computer vision

tasks [9, 17, 4]. Most networks learn to tolerate spatial vari-

ations through: (a) spatial pooling layers and/or (b) data

augmentation techniques [16]; however, these approaches

come with several drawbacks. Data augmentation (i.e. the

synthetic generation of new training samples through ge-

ometric distortion according to a known noise model) is

probably the oldest and best known strategy for increasing

spatial tolerance within a visual learning system. This is

problematic as it can often require an exponential increase

in the number of training samples and thus the capacity of

the model to be learned. Spatial pooling operations can par-

tially alleviate this problem as they naturally encode spatial

invariance within the network architecture and uses sub-

sampling to reduce the capacity of the model. However,

they have an intrinsic limited range of tolerance to geo-

metric variation they can provide; furthermore, such pool-

ing operations destroy spatial details within the images that

could be crucial to the performance of subsequent tasks.

Instead of designing a network to solely give tolerance to

spatial variation, another option is to have the network solve

for some of the geometric misalignment in the input im-

ages [12, 6]. Such a strategy only makes sense, however, if

it has lower capacity and computational cost as well as bet-

ter performance than traditional spatially invariant CNNs.

Spatial Transformer Networks (STNs) [7] are one of the

first notable attempts to integrate low capacity and compu-

tationally efficient strategies for resolving - instead of tol-

erating - misalignment with classical CNNs. Jaderberg et

al. presented a novel strategy for integrating image warping

within a neural network and showed that such operations are

(sub-)differentiable, allowing for the application of canoni-

cal backpropagation to an image warping framework.

The problem of learning a low-capacity relationship be-

tween image appearance and geometric distortion is not new

in computer vision. Over three and a half decades ago, Lu-

cas & Kanade (LK) [14] proposed the seminal algorithm for

gradient descent image alignment. The LK algorithm can be

interpreted as a feed forward network of multiple alignment

modules; specifically, each alignment module contains a

low-capacity predictor (typically linear) for predicting geo-

metric distortion from relative image appearance, followed

by an image resampling/warp operation. The LK algorithm

differs fundamentally, however, to STNs in their applica-

tion: image/object alignment instead of classification.

Putting applications to one side, the LK and STN frame-

works share quite similar characteristics however with a

criticial exception. In an STN with multiple feed-forward

alignment modules, the output image of the previous align-

ment module is directly fed into the next. As we will

demonstate in this paper, this is problematic as it can cre-

ate unwanted boundary effects as the number of geomet-

ric prediction layers increase. The LK algorithm does not

suffer from such problems; instead, it feeds the warp pa-

rameters through the network (instead of the warped im-

age) such that each subsequent alignment module in the

network resamples the original input source image. Fur-

thermore, the Inverse Compositional (IC) variant of the LK

algorithm [2] has demonstrated to achieve equivalently ef-
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fective alignment by reusing the same geometric predictor

in a compositional update form.

Inspired by the IC-LK algorithm, we advocate an im-

proved extension to the STN framework that (a) propagates

warp parameters, rather than image intensities, through the

network, and (b) employs the same geometric predictor that

could be reapplied for all alignment modules. We propose

Inverse Compositional Spatial Transformer Networks (IC-

STNs) and show its superior performance over the original

STNs across a myriad of tasks, including pure image align-

ment and joint alignment/classification problems.

We organize the paper as follows: we give a general re-

view of efficient image/object alignment in Sec. 2 and an

overview of Spatial Transformer Networks in Sec. 3. We

describe our proposed IC-STNs in detail in Sec. 4 and show

experimental results for different applications in Sec. 5. Fi-

nally, we draw to our conclusion in Sec. 6.

2. Efficient Image & Object Alignment

In this section, we give a review of nominal approaches

to efficient and low-capacity image/object alignment.

2.1. The Lucas & Kanade Algorithm

The Lucas & Kanade (LK) algorithm [14] has been a

popular approach for tackling dense alignment problems for

images and objects. For a given geometric warp function

parameterized by the warp parameters p, one can express

the LK algorithm as minimizing the sum of squared differ-

ences (SSD) objective in the image space,

min
∆p
‖I(p+∆p)− T (0)‖

2
2 , (1)

where I is the source image, T is the template image to

align against, and ∆p is the warp update being estimated.

Here, we denote I(p) as the image I warped with the

parameters p. The LK algorithm assumes a approximate

linear relationship between appearance and geometric dis-

placements; specifically, it linearizes (1) by taking the first-

order Taylor approximation as

min
∆p

∥

∥

∥

∥

I(p) +
∂I(p)

∂p
∆p− T (0)

∥

∥

∥

∥

2

2

. (2)

The warp parameters are thus additively updated through

p ← p + ∆p, which can be regarded as a quasi-Newton

update. The term
∂I(p)
∂p

, known as the steepest descent im-

age, is the composition of image gradients and the prede-

fined warp Jacobian, where the image gradients are typi-

cally estimated through finite differences. As the true rela-

tionship between appearance and geometry is seldom linear,

the warp update ∆p must be iteratively estimated and ap-

plied until convergence is reached.

A fundamental problem with the canonical LK formula-

tion, which employs addtive updates of the warp parame-

ters, is that
∂I(p)
∂p

must be recomputed on the rewarped im-

ages for each iteration, greatly impacting computational ef-

ficiency. Baker and Matthews [2] devised a computationally

efficient variant of the LK algorithm, which they referred to

as the Inverse Compositional (IC) algorithm. The IC-LK

algorithm reformulates (1) to predict the warp update to the

template image instead, written as

min
∆p
‖I(p)− T (∆p)‖

2
2 , (3)

and the linearized least-squares objective is thus formed as

min
∆p

∥

∥

∥

∥

I(p)− T (0)−
∂T (0)

∂p
∆p

∥

∥

∥

∥

2

2

. (4)

The least-squares solution is given by

∆p =

(

∂T (0)

∂p

)†

(I(p)− T (0)) , (5)

where the superscript † denotes the Moore-Penrose pseudo-

inverse operator. This is followed by the inverse composi-

tional update p ← p ◦ (∆p)−1, where we abbreviate the

notation ◦ to be the composition of warp functions param-

eterized by p, and (∆p)−1 is the parameters of the inverse

warp function parameterized by ∆p.

The solutions of (2) and (4) are in the form of linear re-

gression, which can be more generically expressed as

∆p = R · I(p) + b, (6)

where R is a linear regressor establishing the linear rela-

tionship between appearance and geometry, and b is the

bias term. Therefore, LK and IC-LK can be interpreted as

belonging to the category of cascaded linear regression ap-

proaches for image alignment.

It has been shown [2] that the IC form of LK is effec-

tively equivalent to the original form; the advantage of the

IC form lies in its efficiency of computing the fixed steepest

descent image
∂T (0)
∂p

in the least-squares objective. Specif-

ically, it is evaluated on the static template image T at the

identity warp p = 0 and remains constant across iterations,

and thus so is the resulting linear regressor R. This gives

an important theoretical proof of concept that a fixed pre-

dictor of geometric updates can be successfully employed

within an iterative image/object alignment strategy, further

reducing unnecessary model capacities.

2.2. Learning Alignment from Data

More generally, cascaded regression approaches for

alignment can be learned from data given that the distri-

bution of warp displacements is known a priori. A notable
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example of this kind of approach is the Supervised Descent

Method (SDM) [19], which aims to learn the series of linear

geometric predictors {R,b} from data. The formulation of

SDM’s learning objective is

min
R,b

N
∑

n=1

M
∑

j=1

‖δpn,j −R · In(pn ◦ δpn,j)− b‖
2
2 , (7)

where δp is the geometric displacement drawn from a

known generating distribution using Monte Carlo sampling,

and M is the number of synthetically created examples for

each image. Here, the image appearance I is often replaced

with a predefined feature extraction function (e.g. SIFT [13]

or HOG [3]) of the image. This least-squares objective is

typically solved with added regularization (e.g. ridge regres-

sion) to ensure good matrix condition.

SDM is learned in a sequential manner, i.e. the train-

ing data for learning the next linear model is drawn from

the same generating distribution and applied through the

previously learned regressors. This has been a popular

approach for its simplicity and effectiveness across vari-

ous alignment tasks, leading to a large number of vari-

ants [15, 1, 11] of similar frameworks. Like the LK and

IC-LK algorithms, SDM is another example of employing

multiple low-capacity models to establish the nonlinear re-

lationship between appearance and geometry. We draw the

readers’ attention to [11] for a more formally established

link between LK and SDM.

It is a widely agreed that computer vision problems can

be solved much more efficiently if misalignment among

data is eliminated. Although SDM learns alignment from

data and guarantees optimal solutions after each applied lin-

ear model, it is not clear whether such alignment learned

in a greedy fashion is optimal for the subsequent tasks at

hand, e.g. classification. In order to optimize in terms of the

final objective, it would be more favorable to paramterize

the model as a deep neural network and optimize the entire

model using backpropagation.

3. Spatial Transformer Networks

In the rapidly emerging field of deep learning among

with the explosion of available collected data, deep neural

networks have enjoyed huge success in various vision prob-

lems. Nevertheless, there had not been a principled way

of resolving geometric variations in the given data. The re-

cently proposed Spatial Transformer Networks [7] performs

spatial transformations on images or feature maps with a

(sub-)differentiable module. It has the effects of reducing

geometric variations inside the data and has brought great

attention to the deep learning community.

In the feed-forward sense, a Spatial Transformer warps

an image conditioned on the input. This can be mathemati-

Figure 1: Network module of Spatial Transformers [7].

The blue arrows indicate information passing of appear-

ance, and the purple one indicate that of geometry. The

yellow 3D trapezoid denotes the geometric predictor, which

contains the learnable parameters.

cally written as

Iout(0) = Iin(p), where p = f(Iin(0)). (8)

Here, the nonlinear function f is parametrized as a learn-

able geometric predictor (termed the localization network

in the original paper), which predicts the warp parameters

from the input image. We note that the “grid generator” and

the “sampler” from the original paper can be combined to

be a single warp function. We can see that for the special

case where the geometric predictor consists of a single lin-

ear layer, f would consists of a linear regressor R as well as

a bias term b, resulting the geometric predictor in an equiv-

alent form of (6). This insight elegantly links the STN and

LK/SDM frameworks together.

Fig. 1 shows the basic architecture of STNs. STNs are

of great interest in that transformation predictions can be

learned while also showing that grid sampling functions

can be (sub-)differentiable, allowing for backpropagation

within an end-to-end learning framework.

Despite the similarities STNs have with classic align-

ment algorithms, there exist some fundamental drawbacks

in comparison to LK/SDM. For one, it attempts to directly

predict the optimal geometric transformation with a sin-

gle geometric predictor and does not take advantage of the

employment of multiple lower-capacity models to achieve

more efficient alignment before classification. Although

it has been demonstrated that multiple Spatial Transform-

ers can be inserted between feature maps, the effectiveness

of such employment has on improving performance is not

well-understood. In addition, we can observe from (8) that

no information of the geometric warp p is preserved after

the output image; this leads to a boundary effect when re-

sampling outside the input source image. A detailed treat-

ment on this part is provided in Sec. 4.1.

In this work, we aim to improve upon STNs by theo-

retically connecting it to the LK algorithm. We show that

employing multiple low-capacity models as in LK/SDM for

learning spatial transformation within a deep network yields
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Figure 2: Boundary effect of Spatial Transformers on real

images. (a) Original image, where the green box indicates

the cropped region. (b) Cropped image as the input of the

Spatial Transformer. (c) Zoom-in transformation: sampling

occurs within the range of the input image. (d)(e) Zoom-out

transformation: discarding the information outside the input

image introduces a boundary effect (STNs), while it is not

the case with geometry preservation (c-STNs). The white

dotted box indicates the warp from the original image.

substantial improvement on the subsequent task at hand. We

further demonstrate the effectiveness of learning a single

geometric predictor for recurrent transformation and pro-

pose the Inverse Compositional Spatial Transformer Net-

works (IC-STNs), which exhibit significant improvements

over the original STN on various problems.

4. Inverse Compositional STNs

4.1. Geometry Preservation

One of the major drawbacks of the original Spatial

Transformer architecture (Fig. 1) is that the output image

samples only from the cropped input image; pixel informa-

tion outside the cropped region is discarded, introducing a

boundary effect. Fig. 2 illustrates the phenomenon.

We can see from Fig. 2(d) that such effect is visible for

STNs in zoom-out transformations where pixel information

outside the bounding box is required. This is due to the fact

that geometric information is not preserved after the spa-

tial transformations. In the scenario of iterative alignment,

boundary effects are accumulated for each zoom-out trans-

formations. Although this is less of an issue with images

with clean background, this is problematic with real images.

A series of spatial transformations, however, can be com-

posed and described with exact expressions. Fig. 3 illus-

trates an improved alignment module, which we refer to as

compositional STNs (c-STNs). Here, the geometric trans-

formation is also predicted from a geometric predictor, but

the warp parameters p are kept track of, composed, and

passed through the network instead of the warped images. It

is important to note that if one were to incorporate a cascade

of multiple Spatial Transformers, the geometric transforma-

Figure 3: A learnable warping module with geometry pre-

served, termed as c-STNs. The warp parameters are passed

through the network instead of the warped images.

tions are implicitly composed through multiple resampling

of the images. We advocate that these transformations are

able to be and should be explicitly defined and composed.

Unlike the Spatial Transformer module in Fig. 1, the ge-

ometry is preserved in p instead of being absorbed into the

output image. Furthermore, c-STNs allows repeated con-

catenation, illustrated in Fig. 4, where updates to the warp

can be iteratively predicted. This eliminates the boundary

effect because pixel information outside the cropped image

is also preserved until the final transformation.

The derivative of warp compositions can also be math-

ematically expressed in closed forms. Consider the input

and output warp parameters pin and pout in Fig. 3. Tak-

ing the case of affine warps for example, the parameters

p = [p1 p2 p3 p4 p5 p6]
⊤ are relatable to transforma-

tion matrices in the homogeneous coordinates as

M(p) =





1 + p1 p2 p3
p4 1 + p5 p6
0 0 1



 . (9)

From the definition of warp composition, the warp parame-

ters are related to the transformation matrices through

M(pout) = M(∆p) ·M(pin). (10)

We can thus derive the derivative to be

∂pout

∂pin

= I+

















∆p1 0 0 ∆p2 0 0
0 ∆p1 0 0 ∆p2 0
0 0 ∆p1 0 0 ∆p2

∆p4 0 0 ∆p5 0 0
0 ∆p4 0 0 ∆p5 0
0 0 ∆p4 0 0 ∆p5

















∂pout

∂∆p
= I+

















pin,1 pin,4 0 0 0 0
pin,2 pin,5 0 0 0 0
pin,3 pin,6 0 0 0 0
0 0 0 pin,1 pin,4 0
0 0 0 pin,2 pin,5 0
0 0 0 pin,3 pin,6 0

















, (11)
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Figure 4: Multiple concatenation of c-STNs for an iterative alignment framework.

where I is the identity matrix. This allows the gradients to

backpropagate into the geometric predictor.

It is interesting to note that the expression of ∂pout

∂pin
in (11)

has a very similar expression as in Residual Networks [4, 5],

where the gradients contains the identity matrix I and

“residual components”. This suggests that the warp pa-

rameters from c-STNs are generally insensitive to the van-

ishing gradient phenomenon given the predicted warp pa-

rameters ∆p is small, and that it is possible to repeat the

warp/composition operation by a large number of times.

We also note that c-STNs are highly analogous to clas-

sic alignment algorithms. If each geometric predictor con-

sists of a single linear layer, i.e. the appearance-geometry

relationship is assumed to be linearly approximated, then it

performs equivalent operations as the compositional LK al-

gorithm. It is also related to SDM, where heuristic features

such as SIFT are extracted before each regression layer.

Therefore, c-STNs can be regarded as a generalization of

LK and SDM, differing that the features for predicting the

warp updates can be learned from data and incorporated into

an end-to-end learning framework.

4.2. Recurrent Spatial Transformations

Of all variants of the LK algorithm, the IC form [2]

has a very special property in that the linear regressor re-

mains constant across iterations. The steepest descent im-

age
∂T (0)
∂p

in (5) is independent of the input image and the

current estimate of p; therefore, it is only needed to be

computed once. In terms of model capacity, IC-LK fur-

ther reduces the necessary learnable parameters compared

to canonical LK, for the same regressor can be applied re-

peatedly and converges provided a good initialization. The

main difference from canonical LK and IC-LK lies in that

the warp update ∆p should be compositionally applied in

the inverse form. We redirect the readers to [2] for a full

treatment of IC-LK, which is out of scope of this paper.

This inspires us to propose the Inverse Compositional

Spatial Transformer Network (IC-STN). Fig. 5 illustrates

the recurrent module of IC-STN: the warp parameters p is

iteratively updated by ∆p, which is predicted from the cur-

rent warped image with the same geometric predictors. This

Figure 5: Illustration of the proposed Inverse Composi-

tional Spatial Transformer Network (IC-STN). The same

geometric predictor is learned to predict recurrent spatial

transformations that are composed together to warp the in-

put image.

allows one to recurrently predict spatial transformations on

the input image. It is possible due to the close spatial prox-

imity of pixel intensities within natural images: there exists

high correlation between pixels in close distances.

In the IC-LK algorithm, the predicted warp parameters

are inversely composed. Since the IC-STN geometric pre-

dictor is optimized in an end-to-end learning framework,

we can absorb the inversion operation into the geometric

predictor without explicitly defining it; in other words, IC-

STNs are able to directly predict the inverse parameters. In

our experiments, we find that there is negligible difference

to explicitly perform an additional inverse operation on the

predicted forward parameters, and that implicitly predicting

the inverse parameters fits more elegantly in an end-to-end

learning framework using backpropagation. We name our

proposed method Inverse Compositional nevertheless as IC-

LK is where our inspirations are drawn from.

In practice, IC-STNs can be trained by unfolding the ar-

chitecture in Fig. 5 multiple times into the form of c-STNs

(Fig. 4), sharing the learnable parameters across all geo-

metric predictors, and backpropagating the gradients as de-

scribed in Sec. 4.1. This results in a single effective geo-

metric predictor that can be applied multiple times before

performing the final warp operation that suits subsequent

tasks such as classification.
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Figure 6: Visualization of the image and perturbed train-

ing samples for the planar image alignment experiment. (a)

Original image, where the red box indicates the ground-

truth warp and the yellow boxes indicate example generated

warps. (b) Examples of the perturbed images (affine warps

with σ = 7.5 in this case).

Model σ = 2.5 σ = 5 σ = 7.5 σ = 10
c-STN-1 2.699 5.576 9.491 9.218

IC-STN-2 0.615 2.268 5.283 5.502

IC-STN-3 0.434 1.092 2.877 3.020

IC-STN-4 0.292 0.481 1.476 2.287

IC-STN-6 0.027 0.125 0.245 1.305

Table 1: Test error for the planar image alignment exper-

iment under different extents of initial perturbations. The

number following the model names indicate the number of

warp operations unfolded from IC-STN during training.

5. Experiments

5.1. Planar Image Alignment

To start with, we explore the efficacy of IC-STN for

planar alignment of a single image. We took an example

image from the Caffe library [8] and generated perturbed

images with affine warps around the hand-labeled ground

truth, shown in Fig. 6. We used image samples of size 50×
50 pixels. The perturbed boxes are generated by adding

i.i.d. Gaussian noise of standard deviation σ (in pixels) to

the four corners of the ground-truth box plus an additional

translational noise from the same Gaussian distribution, and

finally fitting the box to the initial warp parameters p.

To demonstrate the effectiveness of iterative alignment

under different amount of noise, we consider IC-STNs that

consist of a single learnable linear layer with different num-

bers of learned recurrent transformations. We optimize all

networks in terms of L2 error between warp parameters

with stochastic gradient descent and a batch size of 100 per-

turbed training samples generated on the fly.

The test error is illustrated in Table 1. We see from

c-STN-1 (which is equivalent to IC-STN-1 with only one

warp operation unfolded) that a single geometric warp pre-

Figure 7: Evaluation on trained IC-STNs, where the dot

on each curve corresponds to the number of recurrent trans-

formations unfolded during training.

dictor has limited ability to directly predict the optimal ge-

ometric transformation. Reusing the geometric predictor to

incorporating multiple spatial transformations yields better

alignment performance given the same model capacity.

Fig. 7 shows the test error over the number of warp op-

erations applied to the learned alignment module. We can

see that even when the recurrent spatial transformation is

applied more times than trained with, the error continues to

decrease until some of point of saturation, which typically

does not hold true for classical recurrent neural networks.

This implies that IC-STN is able to capture the correlation

between appearance and geometry to perform gradient de-

scent on a learned cost surface for successful alignment.

5.2. MNIST Classification

In this section, we demonstrate how IC-STNs can be uti-

lized in joint alignment/classfication tasks. We choose the

MNIST handwritten digit dataset [10], and we use a homog-

raphy warp noise model to perturb the four corners of the

image and translate them with Gaussian noise, both with

a standard deviation of 3.5 pixels. We train all networks

for 200K iterations with a batch size of 100 perturbed sam-

ples generated on the fly. We choose a constant learning

rate of 10−2 for the classification networks and 10−4 for

the geometric predictors as we find the geometric predic-

tor sensitive to large changes. We evaluate the classification

accuracy on the test set using the same warp noise model.

We compare IC-STN to several network architectures,

including a baseline CNN with no spatial transformations,

the original STN from Jaderberg et al., and c-STNs. All net-

works with spatial transformations employ the same classi-

fication network. The results as well as the architectural de-

tails are listed in Table 2. We can see that classical CNNs do

not handle large spatial variations efficiently with data aug-

mentation. In the case where the digits may be occluded,
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Model Test error Capacity Architecture

CNN(a) 6.597 % 39079 conv(3×3, 3)-conv(3×3, 6)-P-conv(3×3, 9)-conv(3×3, 12)-FC(48)-FC(10)

STN(a) 4.944 % 39048 [ conv(7×7, 4)-conv(7×7, 8)-P-FC(48)-FC(8) ]×1→ conv(9×9, 3)-FC(10)

c-STN-1(a) 3.687 % 39048 [ conv(7×7, 4)-conv(7×7, 8)-P-FC(48)-FC(8) ]×1→ conv(9×9, 3)-FC(10)

c-STN-2(a) 2.060 % 38528 [ conv(9×9, 4)-FC(8) ]×2→ conv(9×9, 3)-FC(10)

c-STN-4(a) 1.476 % 37376 [ FC(8) ]×4→ conv(9×9, 3)-FC(10)

IC-STN-2(a) 1.905 % 39048 [ conv(7×7, 4)-conv(7×7, 8)-P-FC(48)-FC(8) ]×2→ conv(9×9, 3)-FC(10)

IC-STN-4(a) 1.230 % 39048 [ conv(7×7, 4)-conv(7×7, 8)-P-FC(48)-FC(8) ]×4→ conv(9×9, 3)-FC(10)

CNN(b) 19.065 % 19610 conv(9×9, 2)-conv(9×9, 4)-FC(32)-FC(10)

STN(b) 9.325 % 18536 [ FC(8) ]×1→ conv(9×9, 3)-FC(10)

c-STN-1(b) 8.545 % 18536 [ FC(8) ]×1→ conv(9×9, 3)-FC(10)

IC-STN-2(b) 3.717 % 18536 [ FC(8) ]×2→ conv(9×9, 3)-FC(10)

IC-STN-4(b) 1.703 % 18536 [ FC(8) ]×4→ conv(9×9, 3)-FC(10)

Table 2: Classification error on the perturbed MNIST test set. The non-recurrent networks have similar numbers of

layers and learnable parameters but different numbers of warp operations (bold-faced). The filter dimensions are shown in

parentheses, where those of the geometric predictor(s) are in green and those of the subsequent classification network are in

blue (P denotes a 2×2 max-pooling operation). Best viewed in color.

Figure 8: Sample alignment results of IC-STN-4(a) on the MNIST test set with homography warp perturbations. The first

row of each column shows the initial perturbation; the middle three rows illustrates the alignment process (iterations 1 to 3);

the second last row shows the final alignment before feeding into the classification network. The last row shows the alignment

from the original STN: the cropped digits are the results of the boundary effect.

however, trading off capacity for a single deep predictor of

geometric transformation also results in poor performance.

Incorporating multiple transformers lead to a significant im-

provement in classification accuracy; further comparing c-

STN-4(a) and IC-STN-4(b), we see that IC-STNs are able

to trade little accuracy off for a large reduction of capacity

compared to its non-recurrent counterpart.

Fig. 8 shows how IC-STNs learns alignment for classi-

fication. In many cases where the handwritten digits are

occluded, IC-STN is able to automatically warp the image

and reveal the occluded information from the original im-

age. There also exists smooth transitions during the align-

ment, which confirms with the recurrent spatial transforma-

tion concept IC-STN learns. Furthermore, we see that the

outcome of the original STN becomes cropped digits due to

the boundary effect described in Sec. 4.1.

We also visualize the overall final alignment perfor-

mance by taking the mean and variance on the test set

appearance before classification, shown in Fig. 9. The

mean/variance results of the original STN becomes a down-

scaled version of the original digits, reducing information

necessary for better classification. From c-STN-1, we see

that a single geometric predictor is poor in directly pre-

dicting geometric transformations. The variance among all

aligned samples is dramatically decreased when more warp

operations are introduced in IC-STN. These results support

the fact that elimination of spatial variations within data is

crucial to boosting the performance of subsequent tasks.

5.3. Traffic Sign Classification

Here, we show how IC-STNs can be applied to real-

world classification problems such as traffic sign recogni-

tion. We evaluate our proposed method with the German

Traffic Sign Recognition Benchmark [18], which consists

of 39,209 training and 12,630 test images from 43 classes

taken under various conditions. We consider this as a chal-

lenging task since many of the images are taken with mo-

tion blurs and/or of resolution as low as 15×15 pixels. We
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Model Test error Capacity Architecture

CNN 8.287 % 200207 conv(7×7, 6)-conv(7×7, 12)-P-conv(7×7, 24)-FC(200)-FC(43)

STN 6.495 % 197343 [ conv(7×7, 6)-conv(7×7, 24)-FC(8) ]×1→ conv(7×7, 6)-conv(7×7, 12)-P-FC(43)

c-STN-1 5.011 % 197343 [ conv(7×7, 6)-conv(7×7, 24)-FC(8) ]×1→ conv(7×7, 6)-conv(7×7, 12)-P-FC(43)

IC-STN-2 4.122 % 197343 [ conv(7×7, 6)-conv(7×7, 24)-FC(8) ]×2→ conv(7×7, 6)-conv(7×7, 12)-P-FC(43)

IC-STN-4 3.184 % 197343 [ conv(7×7, 6)-conv(7×7, 24)-FC(8) ]×4→ conv(7×7, 6)-conv(7×7, 12)-P-FC(43)

Table 3: Classification error on the perturbed GTSRB test set. The architectural descriptions follow that in Table 2.

Figure 9: Mean/variance of the aligned appearances

from the 10 classes of the test set (homography perturba-

tions).

Figure 10: Sample alignment results of IC-STN-4 on the

GTSRB test set in comparison to the original STN.

rescale all images and generate perturbed samples of size

36×36 pixels with the same homography warp noise model

described in Sec. 5.2. The learning rate is 10−3 for the clas-

sification networks and 10−5 for the geometric predictors.

We set the controlled model capacities to around 200K

learnable parameters and perform similar comparisons to

the MNIST experiment. Table 3 shows the classification

error on the perturbed GTSRB test set. Once again, we see

a considerable amount of classification improvement of IC-

STN from learning to reuse the same geometric predictor.

Figure 11: Mean aligned appearances for classification

from sampled classes of the GTSRB test set.

Fig. 10 compares the aligned images from IC-STN and

the original STN before the classification networks. Again,

IC-STNs are able to recover occluded appearances from the

input image. Although STN still attempts to center the per-

turbed images, the missing information from occlusion de-

grades its subsequent classification performance.

We also visualize the aligned mean appearances from

each network in Fig. 11, and it can be observed that the

mean appearance of IC-STN becomes sharper as the num-

ber of warp operations increase, once again indicating that

good alignment is crucial to the subsequent target tasks. It

is also interesting to note that not all traffic signs are aligned

to be fit exactly inside the bounding boxes, e.g. the networks

finds the optimal alignment for stop signs to be zoomed-in

images while excluding the background information outside

the octagonal shapes. This suggests that in certain cases,

only the pixel information inside the sign shapes are neces-

sary to achieve good alignment for classification.

6. Conclusion

In this paper, we theoretically connect the core idea of

the Lucas & Kanade algorithm with Spatial Transformer

Networks. We show that geometric variations within data

can be eliminated more efficiently through multiple spa-

tial transformations within an alignment framework. We

propose Inverse Compositional Spatial Transformer Net-

works for predicting recurrent spatial transformations and

demonstrate superior alignment and classification results

compared to baseline CNNs and the original STN.
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