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Abstract

The “CNN-RNN” design pattern is increasingly widely

applied in a variety of image annotation tasks including

multi-label classification and captioning. Existing models

use the weakly semantic CNN hidden layer or its transform

as the image embedding that provides the interface between

the CNN and RNN. This leaves the RNN overstretched with

two jobs: predicting the visual concepts and modelling their

correlations for generating structured annotation output.

Importantly this makes the end-to-end training of the CNN

and RNN slow and ineffective due to the difficulty of back

propagating gradients through the RNN to train the CNN.

We propose a simple modification to the design pattern that

makes learning more effective and efficient. Specifically, we

propose to use a semantically regularised embedding layer

as the interface between the CNN and RNN. Regularising

the interface can partially or completely decouple the learn-

ing problems, allowing each to be more effectively trained

and jointly training much more efficient. Extensive experi-

ments show that state-of-the art performance is achieved on

multi-label classification as well as image captioning.

1. Introduction

The classic task of image recognition is beginning to ap-

proach a solved problem with the latest Inception-ResNet

[26] achieving a top 5 error rate of 3.08% on the ILSVRC15

[24] dataset, surpassing humans. Interest is therefore grow-

ing in generating richer descriptions of image properties

rather than simple categorisations, including multi-label

classification/tagging [13, 15, 14, 31] and image captioning

[30, 9, 16, 33, 35, 32].

In multi-label classification the aim is to describe rather

than merely recognise an image by annotating all visual

concepts that appear in the image. The label space is thus

richer than in the single-label recognition case – labels can

refer to scene properties, objects, attributes, actions, aes-

thetics etc. Such labels have richer relationships, e.g., a po-

liceman is a person; car and sky co-exist more often than car

and sea. Image captioning has a related aim, with the dif-

ference of producing a complete natural language sentence

description conditioned on the image content, rather than a

simple unordered set of labels. For both problems an ef-

fective model needs to fulfil two closely-related tasks well:

predicting a set of visual concept labels and modelling inter-

label correlations. For label-correlation modelling, struc-

tured learning strategies are typically employed, which in

the case of multi-label classification helps to better distin-

guish visually ambiguous concepts as well as suppress false

predictions (e.g., modelling the car-sky-sea correlation can

rectify false prediction of sea in place of sky when a car is

present). For image captioning, structured learning is even

more critical to generate an ordered list of words that en-

code a valid as well as relevant sentence.

Recently, the convolutional neural network – recurrent

neural network (CNN-RNN) encoder-decoder design pat-

tern has become popular to address the structured label pre-

diction task in both multi-label classification [14, 31] and

image captioning [29, 30, 33, 35]. A CNN is used to en-

code the image into a fixed length vector, which is then

fed into an RNN that either decodes it into a list of tags

(multi-label) or sequence of words composing a sentence

(captioning). With this encoder-decoder architecture, the

CNN and RNN can be trained end-to-end, inputting an im-

age and outputting an ordered list of labels. Existing work

differs slightly in how the CNN and RNN models are inter-

faced (see Figs. 1(a)-(c)). However, they share a key charac-

teristic: the image embedding that provides the CNN-RNN

interface is the final feature layer of the CNN [14, 22, 31]

(e.g. the FC7 layer of Alexnet [18] or the final pooling layer

of GoogLeNet [27]) or its linear transform [29, 30].

Using such layers as the input to the RNN has a number

of adverse effects on learning an end-to-end recurrent im-

age annotation model. First, since the CNN output feature

is not explicitly semantically meaningful, both the label pre-

diction and label correlation/grammar modelling tasks now

need to be shouldered by the RNN model alone. This exac-

erbates the already challenging task of RNN training, since

the number of visual concepts/words is often vast (there are

more than 12,000 words in the MS COCO training cap-

12872



CNNI F

LSTM

(c)

w

CNNI F …

(b) t=1 t=2

L
S
T
M

w

L
S
T
M

w

CNNI F …

(d) t=1 t=2

L
S
T
M

w

L
S
T
M

w

CNNI F

L
S
T
M

L
S
T
M

…

t=0 t=1(a)

w

w word	embedding image/joint	 embeddingrecurrent	unitsoutput	 layer semantic	 embeddingCNN	layers

sŝ
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Figure 1. CNN-RNN architectures for image annotation (multi-label classification and captioning). In all models, LSTM is used as the

RNN model. (a) CNN encodes an image (I) to a feature representation (F). The image embedding Ie and word representation go through

the same word embedding layer before being fed into the LSTM [29]. (b) The image CNN output features F set the LSTM hidden states

[14]. (c) The image CNN output feature layer is integrated with the LSTM output via late fusion [22, 31]. (d) The proposed semantically

regularised model. The CNN model is regularised by the ground truth semantic concepts s, which serve as strong deep supervision to

guide the learning of the CNN layers. The CNN prediction layer ŝ is used as image embedding which is used to set the LSTM initial states.

Best viewed in colour.

tions) and their correlation is rich. Second, a connected

CNN-RNN model is effectively rather deep considering the

RNN unrolling; existing CNN-RNN models apply supervi-

sion only at the final RNN output and propagate the supervi-

sion back to the earlier (CNN) layers. This leads to training

difficulties in the form of “vanishing” gradients [19]. In ad-

dition, joint training of CNN and RNN has to be carried out

very carefully to prevent noisy gradients back propagated

from the RNN from corrupting the CNN model. As a re-

sult, model convergence is often extremely slow [30].

In this paper we propose to change the image embed-

ding layer and introduce semantic regularisation to a CNN-

RNN model in order to produce significantly more accu-

rate results and make model training more stable and faster.

Specifically, we perform multi-task learning where the aux-

iliary task (besides tagging/sentence generation) is to reg-

ularise the image embedding/interface layer to encode se-

mantically meaningful visual concepts which are directly

related to the label prediction task (Fig. 1(d)). This can

be understood from several perspectives: (i) As splitting

up the system into a model for generating unary potentials

(the CNN) by predicting the label individually, and mod-

elling their relations (RNN) for structured prediction. With

the unary CNN taking the responsibility of concept predic-

tion, the relational RNN model is better able to focus on

learning concept correlations/sentence generation. In the

multi-label classification case, where the label space of the

semantic regularisation and the RNN output space are the

same, this can be seen as analogous to CRF decoding of

a joint distribution [36]. (ii) As a deeply supervised net-

work [19], providing auxiliary supervision to the middle of

what is effectively a very deep network. Such deep super-

vision improves accuracy and convergence speed [19, 27].

In our case specifically, it largely eliminates the problem of

noisy RNN gradients back-propagating to corrupt the CNN

encoder [30]. It thus allows for better and more efficient

fine-tuning of the CNN module, as well as fast convergence

in end-to-end training of the full CNN-RNN model. (iii)

As pursuing an encoder-decoder model with prior bias of

preferring semantically meaningful codes [34].

The contributions of this paper are as follows: (1) We

propose a novel CNN-RNN image annotation model which

differs from the existing models in the selection of the im-

age embedding layer and in the introduction of deeply-

supervised semantic regularisation to the embedding layer.

(2) Our proposed semantic regularisation enables reliable

fine-tuning of the CNN image encoder as well as the fast

convergence of end-to-end CNN-RNN training. (3) We

demonstrate through extensive experiments that on both

multi-label classification and image captioning, we achieve

the state-of-the-art performance.

2. Related work

Deep multi-label classification Many earlier studies

[15] treat the multi-label classification problem as multi-

ple single label classification problems and ignore the rich

correlations in the label space. In order to model label

correlation, a structured output model is required. Deng

et al. [6] propose a hierarchy and exclusion graph (HEX)

to model the structure of labels; however, they only fo-
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cus on single label classification. Deep structured learning

is widely employed in object segmentation. For instance,

Zheng et al. [36] present an end-to-end structured model

that combines the CNN model with a CRF. It allows for

fast inference and learning of a deep model with Gaussian

edge potentials. This was extended by Chen et al. [2] to

a deep model which combines MRFs and CNN to model

output correlations, and is applied to multi-label classifica-

tion. Multi-label structure was also effectively modelled by

Conditional Graph Lasso [20], but for shallow models.

These CNN-CRF/MRF models work well for image seg-

mentation. However, for multi-label classification, the large

label space, seriously imbalanced label distribution, and the

need for variable length prediction challenge the application

of these models [31]. Recently, the CNN-RNN [14, 31] pat-

tern has been applied to multi-label classification to capture

label correlations, as well as address label imbalance and

variable length prediction. Since RNN requires sequential

input, before training the unordered label set is converted

to an ordered list, e.g., frequent first [31] or rare first [14].

Small classes can be promoted by using the rare first order.

For structured prediction, it is more computationally effi-

cient than CNN-CRF, as it only iterates until the required

number of labels are output. Furthermore, it is an end-to-

end predictive model as it outputs labels directly, rather than

prediction scores, thus eliminating tricky prediction score

thresholding heuristics. Our model is related to [14, 31]

in that it follows the CNN-RNN design pattern; however,

it uses a semantically regularised image embedding layer as

the interface layer rather than an unregularised CNN feature

layer.

Another line of work is to incorporate side information

in multi-label classification, since side information could

be complementary to the image data. The side information

could be user tags or groups from image metadata [13, 15].

Johnson et al. [15] uses a non-parametric approach to find

image neighbours according to the metadata, and then ag-

gregates visual information of the image and its neighbours

with a deep network to improve classification. In [13] tags,

groups, and labels are modelled by different concept layers,

which corresponds to different level of abstractions. Mes-

sages can be passed top-down and bottom-up by leverag-

ing a bidirectional structured network. Side information can

also be exploited in our model, but we show that even using

less side information, e.g., tags only, our model can outper-

form those in [13, 15] significantly.

Neural network based image captioning A number of

recent captioning studies take a bottom-up approach, where

words or phrases are first detected and then composed to

sentence with a language model. Fang et al. [9] propose a

caption model that first detects keywords using a multiple

instance learning, and then uses the keywords to generate

sentences. A similar model is proposed in [32] with the

main difference being that LSTM is used as the language

model. Compared with these model, our model is an end-

to-end CNN-RNN model which jointly learns the image en-

coding and language decoding modules.

CNN-RNN based image captioning models have become

popular. Vinyals et al. [29, 30] follow an encoder-decoder

scheme, and feed image features as the initial input to the

RNN decoder, so that sentences are generated according to

the image. A similar approach is employed in [16]. Our

work is related to [29], but we use semantic concepts to

regularise the representation of the CNN-RNN interface

layer, which leads to significantly improved performance

and much easier model training. Recently, visual attention

has been incorporated to improve captioning accuracy. Xu

et al. [33] propose a model capable of sequentially attend-

ing to discriminative regions to improve the caption gener-

ation. You et al. [35] propose to combine visual attributes

and image features. An attention mechanism is introduced

to reweight attribute predictions and merged with both the

input and output of the RNN. Image features are fed at the

first step as an external guide. Such attention models could

easily be integrated into our model to further improve per-

formance.

Semantic regularisation in deep encoder-decoders

The idea of introducing semantic regularisation to an

encoder-decoder model has been exploited in the context

of image synthesis. Yan et al. [34] extend the variational

autoencoder [17] by introducing attribute induced seman-

tic regularisation to the middle embedding layer. A similar

model based on generative adversarial networks is also pro-

posed [23]. Despite the similar strategy to ours, the objec-

tive is very different: we use the encoder-decoder architec-

ture to align the text and image modalities and middle-layer

supervision is employed to achieve more effective and effi-

cient training of both the encoder and decoder.

3. Methodology

We first give an overview of existing CNN-RNN mod-

els before introducing our semantically regularised CNN-

RNN. Its application to multi-label classification and image

captioning are detailed in Sec. 4 and Sec. 5 respectively.

3.1. CNN­RNN

A CNN-RNN model is composed of two parts: a visual

encoder perceives the visual content of an image and en-

codes it to an image embedding; and a decoder takes the em-

bedding as input and generates sequences of labels (words).

Given an image I , a visual encoder will encode it to a

fixed length vector Ie ∈ R
d×1 called image embedding:

Ie = fenc(I), (1)

where fenc is the encoder, which could be a pretrained CNN

optionally with some additional transformation layers. So
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Figure 2. The full pipeline of the proposed semantically regularised annotation model. The ground truth semantic concepts serve as strong

supervision in the middle to regularise the training of the unary model (a). Due to the use of semantic concepts as the interface between

CNN and RNN, the unary model and relational models can be pretrained in parallel, as shown in (b), (c).

Ie could either be a feature layer [14, 22, 31], e.g., FC7

layer of VGG16 [25], or its linear transform [29, 30]. In

this paper, we enforce it to be a semantic representation to

better interact with the RNN.

The RNN decoder will then take Ie as a condition, and

generate a predictive path π = (a1, a2, ..., ans
), where for

multi-label classification, ai is semantic label, and ns is the

number of labels predicted for image I; while for image

captioning ai is the word token, and ns is the length of the

sentence. The path is an ordered sequence, so in multi-label

classification, a priority of the labels has to be defined to

convert labels to a sequence. We take a rare first order so as

to give rare classes more importance during the prediction,

therefore countering the label imbalance problem.

Many different CNNs have been considered for the en-

coder, but for the RNN decoder, the long short-term mem-

ory (LSTM) model [12] has been chosen by almost all exist-

ing models. This is because it controls message passing be-

tween times steps with gates in order to alleviate the vanish-

ing/exploding gradient problem which plagued the training

of prior RNN models. The model has two types of states:

cell state c and hidden state h. Following [11], a forward

pass at time t with input xt is computed as follows.

it = σ(Wi,h · ht−1 +Wi,c · ct−1 +Wi,x · xt + bi)

ft = σ(Wf,h · ht−1 +Wf,c · ct−1 +Wf,x · xt + bf )

ot = σ(Wo,h · ht−1 +Wo,c · ct−1 +Wo,x · xt + bo)

gt = δ(Wg,h · ht−1 +Wg,c · ct−1 +Wg,x · xt + bg)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ δ(ct)

(2)

where ct and ht are the model’s cell and hidden states,

it, ft, ot are the activation of input gate, forget gate,

and output gate respectively; W·,h, W·,c are the recurrent

weights, and W·,x is the input weight, and b· are the biases.

σ(·) is the sigmoid function, and δ is the output activation

function.

At time step t, the model uses its last prediction at−1 as

input, and computes a distribution over possible outputs:

xt = E · at−1,

ht = LSTM(xt,ht−1, ct−1),

yt = softmax(W · ht + b),

(3)

where E is the word embedding matrix, ht−1 is the hidden

state of the recurrent units at t−1, W , b are the weight and

bias of the output layer, at−1 is the one-hot coding of last

prediction at−1, and LSTM(·) is a forward step of the unit.

The output yt defines a distribution over possible actions,

from which the next action at+1 is sampled.

To generate image-conditioned sequences, the decoder

has to take advantage of the image embedding Ie, and exist-

ing models achieve this in multiple ways. Vinyals et al. [29]

(Fig. 1(a)) propose to feed Ie as step zero input to the LSTM

model, that is, (h0, c0) = LSTM(Ie,0,0), where 0 is

a zero vector. In this case the weights of the word embed-

ding are shared with image embedding, which is a question-

able assumption, as the two embeddings have very different

meanings and their dimensions have not been aligned. In-

stead of treating Ie as an LSTM input, Wang et al. [31] and

Mao et al. [22] combine word embedding and image fea-

tures via output fusion (Fig. 1(c)). In contrast, Jin et al. [14]

use the image embedding to initialise the LSTM (Fig. 1(b))

by setting hidden state h0 = Wi · Ie + bi, where Wi, bi
are image input weights and biases.

Despite these differences, existing CNN-RNN models

have a key common characteristic: The image embedding
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Ie that acts as the interface between the CNN and RNN

models is taken to be a layer of weak and implicit seman-

tics, e.g., CNN feature layer, or its transform. This means

that the RNN has to simultaneously learn to predict seman-

tic concepts from the provided features, as well as model

the correlation of those concepts. Learning to predict the

concepts is harder for the RNN because gradients are back

propagated from relatively ‘far’ supervision away (the RNN

outputs at future time steps). Moreover fine-tuning the CNN

becomes tricky because noisy gradients propagated from

the RNN can easily degrade rather than improve perfor-

mance [30].

3.2. Semantically regularised CNN­RNN

To reduce the burden on the RNN, we propose a divide-

and-conquer strategy to separate two tasks: semantic con-

cept learning and relational modelling. Specifically, seman-

tic concept learning is now performed by the unary CNN

model which takes as input images (and associated side in-

formation if any), and produces a probabilistic estimate of

the semantic concepts. Relational modelling is handled by

the RNN model which takes in the concept probability esti-

mates and models their correlations to generate label/word

sequences. Concretely, instead of using a CNN feature layer

as embedding Ie, we use the CNN label prediction layer,

e.g., concept prediction layer of an Inception net [28]. Since

the chosen embedding is trained under direct supervision

of ground-truth labels/visual concepts, it has clear semantic

meaning: Each unit corresponds to a semantic concept.

As shown in Fig. 2, in our Semantically regularised

CNN-RNN (S-CNN-RNN), the CNN part takes an image

I as input, and predicts the likelihood of the semantic con-

cepts ŝ ∈ R
k×1 where k is the number of semantic con-

cepts1. The RNN model takes ŝ as input, and generates

sequences π. The key implication is that supervision can

now be added at both the RNN output layer and the em-

bedding layer ŝ. This results in two losses: a loss for con-

cept prediction Lu(s, ŝ) and a loss for relational modelling

Lr(π, π
∗|ŝ). Formally, we have

Lu(s, ŝ) =
∑

i

ℓu(si, ŝi)

Lr(π, π
∗|ŝ) =

∑

i

ℓr(πi, π
∗

i |ŝi)

L = Lu(s, ŝ) + Lr(π, π
∗|ŝ), (4)

where si is the ground truth concept labels for the i-th train-

ing image and ŝi is the corresponding prediction; For the

RNN loss Lr(π, π
∗|s̃), π∗

i is the ground truth path; πi is the

predicted path, which is a sequence of word tokens or list of

tags. The specific form of the losses will be discussed next.

1k is the size of label space in multi-label classification. For image

captioning, k is the number of visual concepts, which is typically smaller

than the vocabulary size as not all words are visual.

3.3. Training and inference

The introduction of semantic regularisation in the mid-

dle of CNN-RNN allows for more effective and efficient

model training. It facilitates a two-staged training strategy

illustrated in Fig. 2. In the first stage, we pretrain the CNN

model and RNN model in parallel and in the second stage,

they are fine-tuned together.

CNN For pretraining of the CNN model (Fig. 2(b)), the

ground truth semantic concepts si are used as the learning

target in a standard cross entropy loss for k visual concepts:

ℓu(si, ŝi) =

k∑

j

sij · log(ŝij)+(1−sij) · log(1− ŝij), (5)

LSTM For the LSTM pretraining (Fig. 2(c)), the concept

input ŝi is first connected to a fully connected (FC) layer be-

fore being used to set the initial hidden state of the LSTM2.

The LSTM model learns to maximise the likelihood of gen-

erating the target sequences conditioned on the semantic in-

put, and the loss Lr(π, π
∗|ŝ) is simply the sum of the nega-

tive log likelihood over all time steps. By feeding s , rather

than ŝ the LSTM can be pre-trained independently of the

CNN.

Joint CNN-LSTM After the CNN and RNN models are

pretrained, the whole model can be jointly trained by simul-

taneously optimising the deeply supervised joint loss L. For

inference, we condition on the image by setting the initial

state, then feed a start signal and recurrently sample model

predictions of the previous step as input until an end signal

is generated. For multi-label classification, we just greedily

take the maximum model output, whilst beam search with a

width of three is employed for image captioning [30].

4. Application to Multi-label Classification

4.1. Formulation

To apply our S-CNN-RNN to multi-label classification,

we first rank the training labels according to their frequency

in the training set and generate a ordered label list with the

rare labels first. We also explore the use of side information

[15, 13]: exploiting the noisy user-provided tags available

with each image. In this case the model in Fig. 2 is slightly

modified. Specifically, we pretrain a multiple layer percep-

tion (MLP) (single 256 neuron hidden layer and ReLU ac-

tivation) to predict the true tags given the noisy metadata.

Then we combine the image model with the pretrained tag

model by summing their predictions as the final embedding

ŝ), and train them together with a cross entropy loss [37].

2This is to allow for the flexibility of using arbitrary LSTM unit size.
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4.2. Datasets and settings

Datasets Two widely used large-scale benchmark

datasets are selected to evaluate our model. NUS-WIDE [5]

dataset contains 269,648 images. Originally coming from

Flickr, there are 5,018 unique user tags released along with

the images. Of them, 81 tags are manually selected and

refined as the ground truth [5], covering different aspects

including object classes, scenes, and attributes. The ground

truth labels are highly imbalanced: the most frequent tag,

sky appears 74,190 times while the rarest one map appears

60 times. In addition, the user-provided tags are extremely

noisy and sparse – 8.73 noisy tags per image on average.

Following [15, 13], we consider two settings: multi-label

classification with only imagery data and with both images

and noisy tags as side information. The most popular 1,000

noisy user tags are kept and we remove the images without

any ground-truth tags. As in many Flicker based studies,

the numbers of images used by different works vary as they

download the images at different times. For fair compari-

son, we use the same train/test split ratio as [15, 13]; as a

result, 15,000 images are used for training and 59,347 for

testing. Microsoft COCO [21] is popular for tasks such as

object detection, segmentation and image captioning. Fol-

lowing [31], we also use it for multi-label classification by

treating the 80 object classes as labels. Since there are nor-

mally many types of objects in each image, it is naturally a

multi-label classification problem. Because the label space

contains objects only and some objects are rather small, it

is perhaps more suitable than NUS-WIDE for evaluating

a structured prediction model, as modelling label correla-

tion becomes more important to detect visually similar and

small objects. We also download the original user tags from

Flickr via the provided URLs, and the most frequent 1,000

tags are used as side information. We keep the original

train/validation split [21] for training and evaluation.

Implementation details For fair comparisons with pre-

vious work, in our S-CNN-RNN model, we use the caffe

reference net [8] as our unary CNN subnet on the NUS-

WIDE dataset [5], and VGG16 on MS COCO. Both mod-

els are pretrained on the ILSVRC12 dataset [24]. For pre-

training the CNN subnet, the learning rate is set to 1e-4 for

NUS-WIDE and 1e-3 for MS COCO. For the RNN subnet,

we use 512 LSTM cells and a 256 dimensional word em-

bedding. The output vocabulary size is set to 82 for NUS-

WIDE and 81 for MS COCO, including all labels and an

END token. We use the BasicLSTMCell in TensorFlow

as LSTM cells and employ ReLU as activation function.

The relational model is trained using a RMS Prop optimiser

with a learning rate of 1e-4.

Evaluation metrics As in [14, 31], both per-class and

per-image metrics including mean precision and mean re-

call are used. For each class/image, the precision is de-

fined as: p(ŷ, y) = |y ∩ ŷ|/|ŷ|; and recall is defined as:

r(ŷ, y) = |y ∩ ŷ|/|y|, where y and ŷ are the set of ground

truth labels and predicted labels, and | · | is the cardinality

of a set. The overall precision (O-P)/recall (O-R) is com-

puted by taking the average precision/recall over all sam-

ples, while the per class precision (C-P)/recall (C-R) is av-

eraged over all classes. F1 score is also computed by com-

puting the harmonic mean of precision and recall. As in

existing CNN-RNN models [14, 31], we let the model to

decide its own prediction length [14, 31], whilst for other

compared fixed-length predictive models [13, 15, 31], we

use the top 3 ranked predictions.

4.3. Experimental results

Competitors We compare with the following models. In

all compared models, the same CNN and RNN modules are

used. CNN+Logistic: This model treats each label inde-

pendently by fitting a logistic regression classifier for each

label. The results are reported in [13]. CNN+Softmax: A

CNN model that uses softmax as classifier, and the cross en-

tropy between prediction and ground truth is used as the loss

function. The results reported in [10] for NUS-WIDE and

[31] for MS COCO are used. CNN+WARP: Same CNN

model as above, but uses a weighted approximate ranking

loss function for training to promote the prec@K metric.

We use the results reported in [10] for NUS-WIDE and [31]

for MS COCO. CNN-RNN: A CNN-RNN model which

uses output fusion (Fig. 1(c)) to merge CNN output fea-

tures and RNN outputs [31]. RIA: In this CNN-RNN model

[14], the CNN output features are used to set the LSTM hid-

den state (Fig. 1(b)). Note that only smaller datasets were

used in [14] and no code is available; we thus use our own

carefully trained implementation in the experiments. Tag-

Neighbour: It uses a non-parametric approach to find im-

age neighbours according to metadata, and then aggregates

image features for classification. Tag neighbour with 5K

tags gives the best performance [15]. It uses more side in-

formation than ours and is also transductive requiring access

to the whole test set at once. SINN: It [13] uses different

concept layers of tags, groups, and labels to model the se-

mantic correlation between concepts of different abstraction

levels. A bidirectional RNN-like algorithm is adopted to in-

tegrate information for prediction. 1K noisy tags and 698

query words are used as side information, which is more

than what our model uses. Variants of our model: Our S-

CNN-RNN with and without the side information are called

Ours and Ours+Tag1K respectively. Since the results re-

ported by SINN [13] and TagNeighbour [15] were based

on ImageNet-pretrained CNN models, for direct compari-

son we train a variant of our model that fixes the weights of

the CNN subnet without finetuning (Ours+Tag1K Fix).

Results on NUS-WIDE We make the following observa-

tions from the results shown in Table 1. (1) The proposed S-

CNN-RNN performs consistently better than all alternatives
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Algorithms C-R C-P C-F1 O-R O-P O-F1

CNN+logistic [13] 45.03 45.60 45.31 70.77 51.32 59.50

CNN+Softmax [10] 31.22 31.68 31.45 59.52 47.82 53.03

CNN+WARP [10] 35.60 31.65 33.51 60.49 48.59 53.89

CNN-RNN [31] 30.40 40.50 34.70 61.70 49.90 55.20

RIA [14] 43.62 52.92 47.82 66.75 68.98 67.85

TagNeighboor† [15] 57.30 54.74 55.99 75.10 53.46 62.46

SINN† [13] 60.63 58.30 59.44 79.12 57.05 66.30

Ours 50.17 55.65 52.77 71.35 70.57 70.96

Ours+Tag1K Fix† 58.52 63.51 60.91 77.33 76.21 76.77

Ours+Tag1K† 61.73 71.73 66.36 76.88 77.41 77.15

Table 1. Multi-label classification results on NUS-WIDE. Results

that use side information are marked with superscript †.

in terms of the F1 score, both with (Ours+Tag1K) and with-

out side information (Ours). (2) Looking at the precision

and recall metrics, our model is more impressive on preci-

sion than recall. This is expected because compared to the

non-CNN-RNN based models that predict a fixed number

of 3 labels, a CNN-RNN model tends to makes less predic-

tions for this dataset with on average 2.4 ground truth tags

per image. (3) The gaps between Ours and CNN-RNN [31]

and RIA [14] show clearly the importance of adding seman-

tic regularisation to the CNN embedding layer. (4) Com-

paring Ours+Tag1K Fix with TagNeighboor [15] and SINN

[13], we can see that significant improvements are obtained

even with less side information. This is due to the ability of

the RNN decoder in our CNN-RNN model to model high-

order label correlations. (5) Our full model (Ours+Tag1K)

further improves over Ours+Tag1K Fix on both per class

and per image metric. This shows the importance of hav-

ing an end-to-end CNN-RNN that can be trained effectively

with the introduced deeply supervised semantic regularisa-

tion. Qualitative results can be found in the supplementary

material.

Results on MS COCO Similar conclusions can be drawn

from the results in Table 2. Comparing with the results on

NUS-WIDE, it is noted that the performance gain obtained

by using the 1K noisy tags as side information is smaller.

This is because that the number of user-provided tags on

COCO is smaller (2.93 vs. 6.10 per image with 1K unique

tags).

Algorithms C-R C-P C-F1 O-R O-P O-F1

CNN+logistic [31] 58.60 59.30 58.90 65.00 61.70 63.30

CNN+Softmax [31] 59.00 57.00 58.00 60.20 62.10 61.10

CNN+WARP [31] 59.30 52.50 55.70 59.80 61.40 60.70

CNN-RNN [31] 55.60 66.00 60.40 66.40 69.20 67.80

RIA [14] 54.07 64.32 58.75 64.57 74.20 69.05

Ours 59.83 67.40 63.39 68.73 76.63 72.47

Ours+Tag1K† 63.13 71.38 67.00 73.05 77.41 75.16

Table 2. Multi-label classification results on Microsoft COCO.

5. Application to Image Captioning

5.1. Datasets and settings

Datasets and metrics We use the popular Microsoft

COCO dataset [21] for evaluation. The dataset contains

82,783 training images and 40,504 validation images. Each

image is manually annotated with 5 captions. The compari-

son against the state-of-the-art is conducted using the actual

MS COCO test set comprising 40,775 images. Note that

the annotation of the test set is not publicly available, so

the results are obtained from the COCO evaluation server.

For an ablation study, we also follow the setting of [29, 30]

by a held-out set of 4,051 images from the validation set as

the test set. The widely used BLEU, CIDEr, METEOR, and

ROUGE scores are employed to measure the quality of gen-

erated captions. For the ablation study, they are computed

using the coco-evaluation code [3].

Implementation details For our S-CNN-RNN, we use

Inception v3 [28] as the CNN subnet, and an LSTM network

is used as RNN subnet. The number of LSTM cells is 512,

equalling to the dimension of the word embedding. The

output vocabulary size for sentence generation is 12,000.

Note that all these are exactly the same as the NIC v2 [30]

model ensuring a fair comparison. For semantic regulari-

sation by deep supervision of image embedding layer, we

need to extract a set of semantic concepts/training labels

from the vocubulary. To this end, we follow [9] and simply

use the 1,000 most frequent words in the captions, which

cover 92% of word occurrences. The ground truth labels for

a training image is defined as the words that appear at least

once in the 5 captions. For the CNN pretraining, we initially

just learn the prediction layer, and then tune all the parame-

ters for 30,000 iterations with a batch size of 32 and learn-

ing rate of 1e-4. In parallel, the RNN model is pretrained

for 1,000,000 iterations with the ground truth semantic la-

bels as image embedding. After both models are pretrained,

the full model is fine-tuned for 500,000 iterations.

5.2. Experimental results

Competitors Five state-of-the-art models are selected for

comparison: MSRCap: The Microsoft Captivator [7] com-

bines the bottom-up based word generation model [9] with a

gated recurrent neural network [4] (GRNN) for image cap-

tioning. mRNN: The multimodal recurrent neural network

[22] uses a multimodal layer to combine the CNN and RNN.

NICv2: The NICv2 [30] is an improved version of the Neu-

ral Image Caption generator [29]. It uses a better image

encoder Inception V3. In addition, scheduled sampling [1]

and an ensemble of 15 models are used; both improved the

accuracy of captioning. Neither is used in our model. V2L:

The V2L model [32] use a CNN based attribute detector to

firstly generate 256 attributes, and then feed as initial in-

put to a LSTM model to generate captions. ATT: The se-
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Metric
B-1 B-2 B-3 B-4 METEOR ROUGE CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

MSRCap [7] 0.71520 0.9078 0.54319 0.8199 0.40719 0.71010 0.30816 0.60110 0.24816 0.33911 0.52619 0.68014 0.93115 0.93716
mRNN [22] 0.71618 0.89020 0.54518 0.79820 0.40420 0.68720 0.29921 0.57520 0.24226 0.32525 0.52123 0.66624 0.91718 0.93517
V2L [32] 0.72510 0.89218 0.55611 0.80317 0.41414 0.69417 0.30618 0.58218 0.24619 0.32921 0.52816 0.67218 0.91120 0.92420
NICv2 [30] 0.71321 0.89517 0.54221 0.80218 0.40718 0.69418 0.30915 0.58716 0.2548 0.3466 0.53015 0.68211 0.94312 0.94614
ATT [35] 0.7319 0.90014 0.5659 0.81511 0.4248 0.70911 0.3169 0.59911 0.25013 0.33517 0.5358 0.68212 0.94311 0.95811

Ours 0.7435 0.9174 0.5785 0.8404 0.4346 0.7355 0.3236 0.6215 0.2557 0.3437 0.5406 0.6915 0.9866 1.0025

Table 3. Results from the official MS-COCO testing server (https://www.codalab.org/competitions/3221#results).

The subscript indicates the ranking by the submission date (15th/Nov/2016) w.r.t. each metric.

mantic attention model [35] uses both image features and

visual attributes, and introduces an attention mechanism to

reweight the attribute context to improve captioning accu-

racy. All five models use a CNN and a RNN, but only

NICv2 does end-to-end training. In contrast, ATT does at-

tention model and RNN joint training, and uses a 5-model

ensemble. There is no joint training for the other three.

Results We submit our results to the official evaluation

server to compare with the five baselines which also appear

in the official ranking. The evaluation is done with both 5

and 40 reference captions (C5 and C40). It can be seen from

Table 3 that our model beats all five competitors on all 14

metrics, often by a significant margin. Among the 39 sub-

mitted models, our model is ranked the 5th and we could

not find references for the four higher ranked models. Note

that our performance across all metrics is very consistent.

In contrast, the 5 competitors often do well on some met-

rics but very badly on others. It is worth pointing out that

our result is obtained without a model ensemble, a practice

commonly used in this type of benchmarking exercise (e.g.,

both NICv2 and ATT use ensembles). In addition, no aux-

iliary captioning data is used for training. This result thus

represents the state-of-the-art. For qualitative results please

see the supplementary material.

Ablation study We compare our full model with two

stripped-down versions. NIC-F: removing the semantic

regularisation and use the CNN output feature layer as the

inference Ie to RNN. This gives us the standard NIC model

[29] with the same Inception v3 as CNN subnet. The model

is finetuned end-to-end on COCO. NIC-deeply: this model

is closer to ours – it uses the same deeply supervised se-

mantic regularisation as our model, but the penultimate fea-

ture layer is taken as the embedding, rather than the predic-

tion layer ŝ. As a result, the CNN feature representation

benefits from the deep supervision (rather than distal super-

vision via the RNN), but the specific embedding used as

the RNN interface is not directly semantically meaningful.

The results on the validation set split are shown in Table 4.

It can be seen that: (1) Semantic regularisation is critical,

e.g., it brings about 7% on CIDEr comparing NIC-F and

our full model. (2) The deep supervision is the most crucial

contributor to the good performance of our model. Even

when the embedding layer is not semantically explicit as in

NIC-deeply, the benefit is evident. The smaller gap between

NIC-deeply and Ours is due to the use of the semantically

explicit prediction layer as the embedding at the CNN-RNN

interface.

Metric CIDEr METEOR ROUGE B-4

NIC-F 0.932 0.247 0.524 0.297

NIC-deeply 1.006 0.258 0.543 0.323

Ours 1.054 0.260 0.550 0.340

Table 4. Ablation study results on the COCO validation set split.

Computational cost Thanks to the semantic regularisa-

tion, the proposed model can be trained very efficiently. The

total training takes two days on a single Nvidia Titan X

GPU. In contrast training one of NIC’s 15-model ensem-

ble members takes more than 20 days on the same GPU.

In particular, the deep supervision allows the model to con-

verge very fast. For example, pretraining our Inception v3

[28] CNN only needs 30,000 iterations with a batch size of

32. The pretraining of the RNN model is also fast since its

inputs are ground truth labels. After the pretraining, the full

model fine-tuning converges much faster than NICv2.

6. Conclusion

We proposed a semantically regularised CNN-RNN

model for image annotation. The semantic regularisation

makes the CNN-RNN interface semantically meaningful,

distributes the label prediction and correlation tasks be-

tween the CNN and RNN models, and importantly the deep

supervision makes training the full model more stable and

efficient. Extensive evaluations on NUS-WIDE and MS-

COCO demonstrate the efficacy of the proposed model on

both multi-label classification and image captioning.
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