Surveillance Video Parsing with Single Frame Supervision

Si Liu¹, Changhu Wang², Ruihe Qian¹, Han Yu¹, Renda Bao¹, Yao Sun¹*
¹State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
²Toutiao AI Lab
{lusi, qianruihe, yuhan, sunyao}@iie.ac.cn, wangchanghu@toutiao.com

Abstract

Surveillance video parsing, which segments the video frames into several labels, e.g., face, pants, leg, has wide applications [41, 8]. However, pixel-wisely annotating all frames is tedious and inefficient. In this paper, we develop a Single Frame Video Parsing (SVP) method which requires only one labeled frame per video in training stage. To parse one particular frame, the video segment preceding the frame is jointly considered. SVP (i) roughly parses the frames within the video segment, (ii) estimates the optical flow between frames and (iii) fuses the rough parsing results warped by optical flow to produce the refined parsing result. The three components of SVP, namely frame parsing, optical flow estimation and temporal fusion are integrated in an end-to-end manner. Experimental results on two surveillance video datasets show the superiority of SVP over state-of-the-arts. The collected video parsing datasets can be downloaded via http://liusi-group.com/projects/SVP for the further studies.

1. Introduction

In recent years, human parsing [16] is receiving increasing owning to its wide applications, such as person re-identification [41] and person attribute prediction [19, 38]. Most existing human parsing methods [15, 16, 37] target at segmenting the human-centric images in the fashion blogs. Different from fashion images, parsing surveillance videos is much more challenging due to the lack of labeled data. It is very tedious and time-consuming to annotate all the frames of a video, for a surveillance video usually contains tens of thousands of frames per second.

In this paper, we target at an important, practically applicable yet rarely studied problem: how to leverage the very limited labels to obtain a robust surveillance video parser? More specifically, we mainly consider an extreme situation, i.e., only one frame in each training video is annotated. Note that labeling is unnecessary in testing phase. As shown in Figure 1, the labeled frame per training video (red bounding box) is fed into the proposed Single frame supervised Video Parsing (SVP) network. Insufficient labeled data always lead to over-fitting, especially in the deep learning based method. The rich temporal context among video frames can partially solve this problem. By building the dense correspondences, i.e., optical flow, among video frames, the single labeled frame can be viewed as the seed to indirectly expand (propagate) to the whole video. Most state-of-the-art optical flow estimation methods, such as EpicFlow [29] etc, suffer from relatively slow speed. Because the video parsing task requires extensive online optical flow computation, a real-time, accurate optical flow estimation is essential. Thus, it is a challenging but essential problem to build an end-to-end, efficient video parsing framework by only utilizing the limited (e.g., only one) labeled images and large amount of unlabeled images with online estimated dense correspondences among them.

To tackle these challenges, we propose the SVP network. As shown in Figure 1, to parse a test frame I_t, a parsing

*corresponding author
window which contains I_t and several frames preceding it $\{I_{t-k}, k = 0, \ldots, l\}$, is slided along the video. Considering the computation burden and cross-frame redundancies, a triplet $\{I_{t-l}, I_{t-s}, I_t\}$ is selected to represent the sliding window. The long-range frame I_{t-l} lies l frames ahead of I_t, while the short-range frame I_{t-s} lies s frames ahead of I_t. Usually, $l > s$. They complement each other in that the short-range optical flows are more accurate, while the long-range frames bring more diversities. The triplet is fed into SVP to collaboratively produce the parsing result.

SVP contains three sub-networks. The image parsing sub-network parses the three frames respectively, while the optical flow estimation sub-network builds the cross-frame pixel-wise correspondences. In order to decrease the interference of imperfect optical flow, a pixel-wise confidence map is calculated based on the appearance differences between one image and its counterpart wrapped from the other image. Based on the mined correspondences and their confidences, the temporal fusion sub-network fuses the parsing results of the each frame, and then outputs the final parsing result. Extensive experiments in the newly collected indoor and outdoor datasets show the superior performance of SVP than the state-of-the-arts.

The contributions of this work are summarized as follows. (i) To the best of our knowledge, it is the first attempt to segment the human parts in the surveillance video by labeling single frame per training video. It has extensive application prospect. (ii) The proposed SVP framework is end-to-end and thus very applicable for real usage. Moreover, the feature learning, pixelwise classification, correspondence mining and the temporal fusion are updated in a unified optimization process and collaboratively contribute to the parsing results.

2. Related Work

For human parsing, Yamaguchi et al. [37] tackle the clothing parsing problem using a retrieval based approach. Luo et al. [23] propose a Deep Decompositional Network for parsing pedestrian images into semantic regions. Liang et al. [16] propose a Contextualized Convolutional Neural Network to tackle the problem and achieve very impressive results. Xia et al. [35] propose the “Auto-Zoom Net” for human paring. Some other works explore how to jointly object and part segmentation using deep learned potentials [32]. Although great success achieved, these methods can not be directly applied in our setting where only one labeled frame per training video is available.

Weakly/semi-supervised semantic segmentation: Chen et al. [26] develop Expectation-Maximization (EM) methods to solve the semantic image segmentation from either weakly annotated training data or a combination of few strongly labeled and many weakly labeled images. Dai et al. [6] propose a method called “Boxsup” which only requires easily obtained bounding box annotations. Xu et al. [36] propose a unified approach that incorporates image level tags, bounding boxes, and partial labels to produce a pixel-wise labeling. Liu et al. [17] address the problem of automatically parsing the fashion images with weak supervision from the user-generated color-category tags. Wei et al. extend the weakly supervised classification solution [34] and propose a simple to complex framework for weakly-supervised semantic segmentation [33]. These methods have achieved competitive accuracy in weakly/semi supervised semantic segmentation but are not designed for video parsing task.

Optical flow vs. semantic segmentation: Sevilla-Lara et al. [30] segment a scene into things, planes, and stuff and then pose the flow estimation problem using localized layers. Bai et al. [2] estimate the traffic participants using instance-level segmentation. The epipolar constraints is then used on each participant to govern each independent motion. In these methods, optical flow estimation benefits from semantic segmentation. However, SVP utilizes optical flow for better video parsing.

Pfister et al. [27] investigate a video pose estimation architecture that is able to benefit from temporal context by combining information across the multiple frames using optical flow. The key differences is that the optical flow is estimated offline using dense optical flow while SVP is an end-to-end framework.

3. Approach

3.1. Framework

Suppose that we have a video $V = \{I_1, \ldots, I_N\}$, where N is the number of frames. The single labeled frame is I_t, and its corresponding groundtruth is G_t. The pixel j of the labelmap P_t is denoted as P_t^j and takes the value within the range $[1, K]$, where K is the number of labels, such as “face”, “bag” and “background”.

The SVP network is shown in Figure 2. The input is a triplet $\{I_{t-l}, I_{t-s}, I_t\}$, among which only I_t is labeled. l and s are set empirically. The output is the parsing result P_t. SVP contains three sub-networks. As a preprocessing step, we use Faster R-CNN [28] to extract the human region. Then, the triplet are fed into Conv1~Conv5
for discriminative feature extraction. The frame parsing sub-network (Section 3.2) produces the rough labelmaps for the triplet, denoted as \(\{P_{l-1}, P_{l-s}, P_l\} \). The optical flow estimation sub-network aims to estimate the dense correspondence between adjacent frames (Section 3.3). The frame parsing classifies each pixel while optical flow estimates the flow estimation sub-network aims to estimate the dense correspondence between adjacent frames (Section 3.3). The flow estimation sub-network aims to estimate the dense correspondence between adjacent frames (Section 3.3). The flow estimation sub-network aims to estimate the dense correspondence between adjacent frames (Section 3.3). The flow estimation sub-network aims to estimate the dense correspondence between adjacent frames (Section 3.3).

The image parsing and optical flow estimation sub-networks share first several convolution layers because the two tasks are implicitly correlated. More specifically, only pixels with the same labels can be matched by optical flow. Besides, both sub-networks make per pixel predictions. Frame parsing classifies each pixel while optical flow is the offset/shift of each pixel. Therefore, the optimal receptive fields of the two tasks are similar, which provides a prerequisite for feature sharing. The other benefit is to save a lot of computation.

3.2. Frame Parsing Sub-network

As shown in Figure 2, the frame parsing sub-network has three duplications with shared weights to deal with \(I_{l-1}, I_{l-s} \) and \(I_l \) respectively. The input is the 3-channel RGB image, and the output is the \(K \) channel confidence maps of the same resolution. In our experiments, DeepLab [4] is used. Our SVP framework is quite generic and is not limited to any specific image parsing method, other semantic segmentation methods [7, 21, 21, 1, 22] can also be used.

3.3. Optical Flow Estimation Sub-network

We resort to optical flow \(F_{ab} : R^2 \rightarrow R^2 \) to build the pixel-wise correspondences between frames. The flow field \(F_{ab} = (q_x - p_x, q_y - p_y) \) computes the relative offsets from each point \(p \) in image \(I_a \) to a corresponding point \(q \) in image \(I_b \). The optical flow estimation sub-network estimates the flow \(F_{t,t-1} = o(I_t, I_{t-1}) \), where \(o(a, b) \) is the operation of predicting the optical flow from \(a \) to \(b \). \(F_{t,t-1} \) is estimated similarly. One feasible approach is to off-line calculate the optical flow via the state-of-the-art methods [3, 3] and load them into the network during optimization. It makes training and testing be a multi-stage pipeline, and thus very expensive in space and time. However, SVP computes the optical flow on the fly.

Network architecture: After the shared Conv1~Conv5 layers, a “correlation layer” [10, 24] (denoted as “Corr” in Figure 2) performs multiplicative patch comparisons between two feature maps. After that, several “upconvolutional” layers are introduced to obtain the optical flow with the same resolution as the input image pairs. Since our surveillance dataset has no groundtruth optical flow, we use flying chairs dataset for training.

3.4. Temporal Fusion Sub-network

Optical flow confidence estimation: The optical flow estimated via the above mentioned method is imperfect. To
supress noisy \hat{F}_{t-1}, we estimate the confidence of the estimated optical flow F_{t-1} of each pixel. The flow $F_{t,s-t}$ can be handled in similar manners.

The flow confidence is defined based on the appearance reconstruction criterion [3]. Mathematically, for each pixel i in the optical flow F_{t-1}, its confidence $C_{t-1,i}$ is:

$$C_{t-1,i} = \| I_i - \hat{I}_i \|_1 = \| I_i - w^t (I_{t-1}, F_{t-1}) \|_1,$$

(1)

$\| \cdot \|_1$ denoted the L_1 norm. \hat{I}_i is the wrapped counterpart of I_i. $w(a, b)$ is the operation of applying the estimated optical flow b to warp image a. The coordinates of pixel i in I_i is $a_i = (x^i, y^i)$, while the mapped coordinates in I_{t-1} is $b_i = (x^i, y^i) + F_{t-1,i}$. When (x^i, y^i) falls into the w-pixel coordinate, we rewrite the \hat{I}_i of Equation 1 via bilinear interpolation:

$$\hat{I}_i = \sum_{q \in \{\text{neighbors of} \ (x^i, y^i)\}} I_{t-1} \left(1 - \frac{|x^i - x^q|}{\sigma} \right) \left(1 - \frac{|y^i - y^q|}{\sigma} \right),$$

(2)

where q denotes the 4-pixel neighbors (top-left, top-right, bottom-left, bottom-right) of (x^i, y^i).

The confidence defined in Equation 1 is the distance between the original image and its warped counterpart. The similarity is calculated via:

$$C_{t-1,i} = e^{\sigma(-C_{t-1,i}/2\sigma^2)},$$

(3)

where σ is the mean value of $C_{t-1,i}$. Higher value indicates more confident optical flow estimation.

Temporal fusion: As shown in Figure 2, the estimated parsing results \hat{P}_{t-1} and \hat{P}_{t-s} are warped according to the optical flow F_{t-1} and F_{t-s} via:

$$\hat{P}_{t-1,t} = w(\hat{P}_{t-1}, F_{t-1}),$$

$$\hat{P}_{t-s,t} = w(\hat{P}_{t-s}, F_{t-s}).$$

(4)

They are further weighted by the confidence map of Equation 1 to reduce the influence of inaccurate optical flow by:

$$\hat{P}_{t-1,t} = \hat{C}_{t-1,t} \cdot \hat{P}_{t-1,t},$$

$$\hat{P}_{t-s,t} = \hat{C}_{t-s,t} \cdot \hat{P}_{t-s,t},$$

where \hat{C} denotes dot product. They are fused with P_t via a temporal fusion layer with several 1×1 filters to produce the final P_t. To enforce accurate model training, we add extra/deep [14] supervision to $P_{t-1,t}$, $P_{t-s,t}$ and P_t.

4.1. Training Strategy

Like the Faster R-CNN [28], we adopt a 4-step alternating training algorithm for optimization. (i) we train the optical flow sub-network via the strategies in Section 3.3 with flying chairs dataset [10]. (ii) we train the frame parsing sub-network and the temporal fusion sub-network together using the optical flow estimated in step (i). Both optical flow and frame parsing sub-networks are initialized with VGG model [31]. The temporal fusion sub-network is initialized via standard Gaussian distribution (with zero mean and unit variance). At this point the two networks do not share convolutional layers. (iii) We fix the Conv1~Conv5 layers of optical flow estimation sub-network by those of frames parsing sub-network, and only fine-tune the layers unique to optical flow. Now the two sub-networks share convolutional layers. (iv) keeping Conv1~Conv5 layers fixed, we fine-tune the unique layers of frame parsing and temporal fusion sub-networks. As such, all sub-networks form a unified network.

The major reason of training the optical flow sub-network at the beginning is that, the temporal fusion sub-network depends on the optical flow results. Then, we replace the conv. layers of the optical flow sub-network by that of the parsing sub-network for three reasons. First, the two tasks are essentially correlated: parsing results are pixel-wise labels while optical flow is pixel-wise offset. Thus, the optimized conv. layers trained from the parsing network is expected to perform equally well for the optical flow network. Second, the optical flow sub-network is trained by an auxiliary flying chairs dataset, instead of the surveillance videos. Therefore, the conv. layers of the optical flow sub-network is less discriminative on our surveillance datasets. Third, the convolution layers need to be shared. Actually, we have attempted to train the whole network in a single phase, but found it hard to converge. We leave it as an important future work.

3.6. Inference

During inference, we slide a parsing window along the video to specifically consider the temporal context. The parsing results of I_t is jointly determined by the short video segment preceding it. For calculation simplicity, a triplet of frames, including long-range frame I_{t-1}, short-range frame I_{t-s} as well as I_t collaboratively contribute to the final parsing results P_t.

4. Experiments

Dataset & Evaluation Metrics: Since there is no publicly available surveillance video parsing dataset, we manually build two datasets, one for indoor, the other for outdoor. The indoor dataset contains 700 videos, among which 400 videos and 300 videos are used as training set and test set, respectively. The outdoor dataset contains 198 training videos, and 109 testing videos. For both datasets, we randomly select and pixel-wisely label 1 frame from each training video. For each testing video, we randomly label 5
4.2. Comparison with state-of-the-art

We compare our results with five state-of-the-art methods. The 1st is PaperDoll [37]. It is the best traditional method. The 2nd is ATR [15] formulating the human parsing task as an active template regression problem. The 3rd baseline method is M-CNN [18], which is a multi-Parametric human parsing method. The 4th is a Contextualized Convolutional Neural Network to tackle the problem. The 5th is FCN-8s [22], which achieves competitive results in several semantic segmentation benchmark datasets. The 6th baseline is DeepLab [4]. The above mentioned three methods are supervised algorithms. Therefore, we only use the labeled set for training. The 7th baseline method is EM-Adapt [26] which can use both image-level and bounding-box annotation as weak- and semi-Supervised supervision. We also try another baseline DecoupledNet [12]. However, the results of DecoupledNet in both datasets are much lower than SVP and other baselines. The reason is that DecoupledNet first obtains the saliency map of each classified label. Deconvolution is then operated upon the map to generate the final parsing results. However, many labels, e.g., face, appear in almost every training image, which causes the classification network less sensitive to the position of these labels.

Table 3 shows the comparisons between SVP and 7 state-

of-the-art methods in the Indoor dataset. Different variants of SVP are generated by gradually adding more components, which will be discussed in the next subsection. It can be seen that our best SVP, namely “SVP l+s+c” reaches the average F-1 score of 0.6920, which is superior than all baselines. The 1st to the 6th baselines all use labeled images. Therefore, the improvements show the advantage of utilizing the unlabeled dataset. EM-Adapt also uses unlabeled images, and thus reaches a higher F1-score of 0.5640, which is better than the six supervised baselines. However, EM-Adapt is still worse than all the variants of SVP. It shows that label propagation via optical flow is helpful in the surveillance video parsing task. The F1-scores of each category are shown in Table 1. We can observe that “SVP l+s+c” beats all baselines in all 13 categories, which again shows the big improvements brought by the proposed SVP.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Accu</th>
<th>Accu Ave</th>
<th>Accu Ave</th>
<th>Accu Ave</th>
<th>Accu Ave</th>
<th>Accu Ave</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaperDoll [37]</td>
<td>46.71</td>
<td>78.69</td>
<td>33.55</td>
<td>45.68</td>
<td>36.41</td>
<td></td>
</tr>
<tr>
<td>ATR [15]</td>
<td>85.69</td>
<td>71.24</td>
<td>47.39</td>
<td>53.21</td>
<td>49.14</td>
<td></td>
</tr>
<tr>
<td>M-CNN [18]</td>
<td>85.19</td>
<td>71.31</td>
<td>42.90</td>
<td>50.11</td>
<td>45.68</td>
<td></td>
</tr>
<tr>
<td>Co-CNN [16]</td>
<td>87.58</td>
<td>72.58</td>
<td>53.54</td>
<td>51.87</td>
<td>51.38</td>
<td></td>
</tr>
<tr>
<td>FCN-8s [22]</td>
<td>88.33</td>
<td>71.56</td>
<td>55.05</td>
<td>52.15</td>
<td>53.12</td>
<td></td>
</tr>
<tr>
<td>DeepLab [4]</td>
<td>86.88</td>
<td>77.45</td>
<td>49.88</td>
<td>64.30</td>
<td>54.89</td>
<td></td>
</tr>
<tr>
<td>EM-Adapt [26]</td>
<td>86.63</td>
<td>80.88</td>
<td>53.01</td>
<td>63.64</td>
<td>56.40</td>
<td></td>
</tr>
<tr>
<td>SVP l</td>
<td>88.81</td>
<td>74.42</td>
<td>56.28</td>
<td>59.81</td>
<td>57.74</td>
<td></td>
</tr>
<tr>
<td>SVP l+c</td>
<td>88.75</td>
<td>77.28</td>
<td>56.07</td>
<td>61.94</td>
<td>58.43</td>
<td></td>
</tr>
<tr>
<td>SVP l+s</td>
<td>89.07</td>
<td>77.06</td>
<td>56.86</td>
<td>61.98</td>
<td>58.73</td>
<td></td>
</tr>
<tr>
<td>SVP l+s+c</td>
<td>88.85</td>
<td>78.68</td>
<td>56.77</td>
<td>62.73</td>
<td>59.21</td>
<td></td>
</tr>
<tr>
<td>SVP l+s+c</td>
<td>89.88</td>
<td>76.48</td>
<td>61.52</td>
<td>59.38</td>
<td>60.20</td>
<td></td>
</tr>
</tbody>
</table>

Among all the baselines, we find that FCN-8s, DeepLab and EM-Adapt show superior performances Therefore, we only compare with the 3 baselines in the Outdoor dataset. Table 4 shows the results. It can be seen that our method reaches the average F-1 score of 0.5294 while FCS-8s, DeepLab and EM-Adapt only reach 0.4433, 0.4775 and 0.4907. The improves are 0.0861, 0.0519 and 0.0387 respectively. Comparing Table 4 and Table 3, we find that the performances of all algorithms generally drop. The reason is that the outdoor dataset contains 198 training videos, while the number is doubled in the indoor dataset, reaching 400. The F1-scores of each category are shown in Table 2. We can observe that “SVP l+s+c” beats FCN and DeepLab in all 13 categories and is better than EM-Adapt in most categories, which again shows the effectiveness.

4.3. Component Analysis

Temporal fusion weights: We visualize the learned weights for the temporal fusion layers for R-arm and L-shoe in Figure 3 in the Indoor dataset. The horizontal axis has

![Figure 3. The temporal pooling weight for R-arm and L-shoe.](image308x323 to 535x599)

$3 \times K$ ticks, corresponding to the K labels for I_{t-l} (shown in black), I_{t-s} (shown in green) and I_t (shown in blue) sequentially. The vertical axis illustrates the fusion weights.

By analyzing the sub-figure for R-arm, we have several observations. First, the shapes of the weights for I_{t-1}, I_{t-s} and I_t are similar. Second, all maximum values for the triplet (denoted as red dots) are positive, which demonstrates that all frames contribute to the final result. Third, for all the frames, the labels reaching maximum values are all R-arm. Fourth, the maximum value of I_{t-s} is higher than that of I_{t-1}, because it contains less errors in optical flow. The maximum value of I_t is the highest, because it is the frame under consideration. Similar phenomenon can be found in the L-shoe case.

Long/Short range context: We test the effectiveness of long and short range frame. “SVP l” means SVP with long-
range context only. To implement this SVP variant, an image pair, namely I_l as well as I_{l-s} are fed into SVP during both training and testing phases. Similarly, “SVP s” is SVP containing only short-range frame. “SVP l+s” is the combination of them, meaning both long-range and short-range frames are considered. Table 3 shows the results in indoor dataset while the last two rows demonstrate those in outdoor dataset. In each group, the test image, the warped parsing result and the groundtruth parsing result.

Optical flow confidence: The flow confidence is designed for filtering/suppressing the noisy optical flow. To this end, we implement two SVP variants called “SVP l+c” and “SVP s+c” indicating either long or short-range optical flow is weighed by its confidence first and then contribute to the final parsing result. The results in indoor dataset is shown in Table 3. We find that “SVP l+c” improves “SVP l” and “SVP s+c” performs better than “SVP s”. This demonstrates the effectiveness of optical flow confidence. The same conclusion can be drawn by comparing the F-1 score of “SVP l+s+c” and “SVP l+s”. We also validate the effectiveness of optical flow confidence in outdoor dataset. As shown in Table 4, the F-1 score of “SVP l+s+c” is 0.5294, which is higher than “SVP l+s” 0.5117.

4.4. Qualitative Results

Figure 4 shows the stepwise results of SVP in indoor dataset. In the first row, the left shoe of the women is predicted as leg in \hat{P}_t. The warped label from the I_{l-s}, denoted as $\hat{P}_{l-s,t}$, does not find left shoe. Thanks to the fusion from $\hat{P}_{l-s,t}$, the women’s left shoe is labelled correctly in the final prediction P_t. Again in the first row, comparing with I_{l-s}, the women is far from the camera in I_l, and thus is relatively small. The foreground region shrinks from \hat{P}_{l-s} to $\hat{P}_{l-s,t}$, which shows that the estimated optical flow is very accurate. Inaccurate optical flow may result in the bad propagated parsing result, e.g., the shape of the hair in $\hat{P}_{l-s,t}$ is too large in the first row. However, the inaccurate hair region has a low confidence in $C_{l-s,t}$. Therefore, the fused result P_t has precise hair shape. In the second row, the strap of the bag is almost ignored in \hat{P}_l. However, both \hat{P}_{l-s} and $\hat{P}_{l-s,t}$ find the strap, and help to distinguish the strap from the upper-clothes successfully in P_t. In the third row, the P_t correctly removes the wrongly predicted arm in \hat{P}_l. The I_{l-s} is not warped very good, and there is a ghost behind this man in the labelmap $\hat{P}_{l-s,t}$. But fortunately it does not affect the fused prediction P_t, because the confidence of this ghost is very low in $C_{l-s,t}$ and hence it is filtered out during the fusion.

Several qualitative results of both datasets are shown in Figure 5. The first three rows show paring results of the indoor dataset while the last two rows demonstrate those of outdoor dataset. In each group, the test image, the groundtruth, the parsing results of EM-Adapt and SVP are
shown. It can be seen that SVP is generally better than EM-Adapt from two aspects. First, SVP correctly estimates the existence of a label. For example, for the image in the second row second column, the region wrongly predicted as upper clothes by EM-Adapt is correctly predicted as dress by SVP. Another example is second row first column. EM-Adapt misses the left shoe. SVP correctly predicts the left shoe’s existence and location. Second, SVP can better estimate the shape of the labels. For example, in the first image in top row, the shape of the bag strap is slender, which is correctly estimated by SVP. Moreover, the shapes of shoes estimated by SVP are more accurate than EM-Adapt. For another example, SVP better identifies the shapes of pants and left/right arms in the third image of the third row.

4.5. Time Complexity

Note that in the inference stage, much computation can be saved. For example, when parsing frame \(I_t \), the long-range frame \(I_{t-1} \) and short-range frame \(I_{t-s} \) do not need go through the frame parsing sub-network because their rough parsing results \(P_{t-1} \) and \(P_{t-s} \) have already been calculated. For another example, the extra computation brought by the optical flow estimation sub-network is small because the Conv1~Conv5 features are shared. Moreover, the fusion layer contains several \(1 \times 1 \) convolutions and thus is not quite time-consuming.

5. Conclusion & Future Works

In this work, we present an end-to-end single frame supervised video parsing network. To parse a testing frame, SVP processes a video segment preceding it. The rough frame parsing results and the on-line computed optical flows among frames are fused to produce refined parsing results. We demonstrate the effectiveness of SVP on two newly collected surveillance video parsing datasets.

In future, we will build an online demo to parse any surveillance video uploaded by users in real time. Moreover, we plan to apply SVP to parse other kinds of videos, such as urban scene videos [5].

Acknowledgment

This work was supported by National Natural Science Foundation of China (No.U1536203, Grant 61572493, 11301523), the Open Project Program of the National Laboratory of Pattern Recognition (NLPR) 201600035. We also would like to thank NVIDIA for GPU donation.
References

