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Abstract

We consider generation and comprehension of natural

language referring expression for objects in an image. Un-

like generic “image captioning” which lacks natural stan-

dard evaluation criteria, quality of a referring expression

may be measured by the receiver’s ability to correctly infer

which object is being described. Following this intuition, we

propose two approaches to utilize models trained for com-

prehension task to generate better expressions. First, we

use a comprehension module trained on human-generated

expressions, as a “critic” of referring expression generator.

The comprehension module serves as a differentiable proxy

of human evaluation, providing training signal to the gen-

eration module. Second, we use the comprehension module

in a generate-and-rerank pipeline, which chooses from can-

didate expressions generated by a model according to their

performance on the comprehension task. We show that both

approaches lead to improved referring expression genera-

tion on multiple benchmark datasets.

1. Introduction

Image captioning, defined broadly as automatic gener-

ation of text describing images, has seen much recent at-

tention. Deep learning, and in particular recurrent neural

networks (RNNs), have led to a significant improvement in

state of the art. However, the metrics currently used to eval-

uate image captioning are mostly borrowed from machine

translation. This misses the naturally multi-modal distribu-

tion of appropriate captions for many scenes.

Referring expressions are a special case of image cap-

tions. Such expressions describe an object or region in the

image, with the goal of identifying it uniquely to a listener.

Thus, in contrast to generic captioning, referring expression

generation has a natural evaluation metric: a human should

easily comprehend the description and identify the object(s)

being described.

In this paper, we consider two related tasks. One is the

generation task: generating a discriminative referring ex-

pression for an object in an image. The other is the com-

Max likelihood: bowl of food on 

left

MMI: bowl of food on left

Proxy: bowl of food on left 

bottom left

Rerank: bottom left bowl

Max likelihood: bird with green

MMI: bird with green leaves

Proxy: blurry bird

Rerank: blurry bird

Figure 1: For each image, the top two expressions are gen-

erated by baseline models proposed in [23]; the bottom two

expressions are generated by our methods.

prehension task (called natural language object retrieval in

[15]): localizing an object in an image given a referring ex-

pression. Most prior work addressed both tasks by building

a sequence generation model. Such a model can be used

discriminatively for the comprehension task, by inferring

the region which maximizes the expression posterior.

In contrast, we draw inspiration from the generator-

discriminator structure in Generative Adversarial

Networks[10, 26]. In GANs, the generator module

tries to generate a signal (e.g., natural image), and the

discriminator module tries to tell real images apart from

the generated ones. For our task, the generator produces

referring expressions. We would like these expressions

to be both intelligible/fluent and unambiguous to human.

Fluency can be encouraged by using the standard cross

entropy loss with respect to human-generated expressions).

On the other hand, we adopt a comprehension model as

the “discriminator” which tells if the expression can be

correctly dereferenced. Note that we can also regard the

comprehension model as a “critic” of the “action” made by

the generator where the “action” is each generated word.

Instead of an adversarial relationship between the two

modules in GANs, our architecture is collaborative – the
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comprehension module “tells” the generator how to im-

prove the expressions it produces. Our methods are much

simpler than GANs as it avoids the alternating optimization

strategy – the comprehension model is separately trained

on ground truth data and then fixed. We adapt the compre-

hension model so it becomes differentiable with respect to

its expression input. Thus we turn it into a proxy for human

understanding providind an additional training signal for the

generator. This (first, to our knowledge) attempt to integrate

automatic referring expression generation with a discrimi-

native comprehension model in a collaborative framework

is our main controbution.

Specifically there are two ways that we utilize the com-

prehension model. The generate-and-rerank method uses

comprehension on the fly, similarly to [1], where they tried

to produce unambiguous captions for clip-art images. The

generation model generates some candidate expressions and

passes them through the comprehension model. The fi-

nal output expression is the one with highest generation-

comprehension score which we will describe later.

The training by proxy method is closer in spirit to

GANs. The generation and comprehension model are con-

nected and the generation model is optimized to lower dis-

criminative comprehension loss (in addition to the cross-

entropy loss). We investigate several training strategies

for this method and a trick to make proxy model trainable

by standard back-propagation. Compared to generate-and-

rerank method, the training by proxy method doesn’t re-

quire additional region proposals during test time.

2. Related work

The main approach in modern image captioning litera-

ture [32, 17, 22] is to encode an image using a convolutional

neural network (CNN), and feed this as input to an RNN,

able to generate a arbitrary-length sequence of words.

While captioning typically aims to describe an entire im-

age, some work takes regions into consideration, by incor-

porating them in an attention mechanism [35, 21], align-

ment of words/phrases within sentences to regions [17], or

by defining “dense” captioning on a per-region basis [16].

The latter includes a dataset of captions collected without

requirement to be unambiguous, so they cannot be regarded

as referring expression.

Text-based image retrieval has been considered as a task

relying on image captioning [32, 17, 22, 35]. However,

it can also be regarded as a multi-modal embedding task.

In previous works [7, 33, 34] such embeddings have been

trained separately for visual and textual input, with the ob-

jective to minimize matching loss, e.g., hinge loss on co-

sine distance, or to enforce partial order on captions and

images [31]. [28] tried different text embedding networks

for fine-grained image retrieval.

Closer to the focus of this paper, referring expressions
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Figure 2: Illustration of how the generation model describes

region inside the blue bounding box. <bos> and <eos>
stand for beginning and end of sentence.
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Figure 3: Illustration of comprehension model using soft-

max loss. The blue bounding box is the target region, and

the red ones are incorrect regions. The CNNs share the

weights.

have attracted interest after the release of the standard

datasets [18, 36, 23]. In [15] a caption generation model is

appropriated for a generation task, by evaluating the proba-

bility of a sentence given an image P (S|I) as the matching

score. Concurrently, [23] at the same time proposed a joint

model, in which comprehension and generation aspects are

trained using max-margin Maximum Mutual Information

(MMI) training. Both papers used whole image, region and

location/size features. Based on the model in [23], both [25]

and [37] try to model context regions in their frameworks.

Our method is trying to combine simple models and re-

place the max margin loss, which is orthogonal to modeling

context, with a surrogate closer to the eventual goal – hu-

man comprehension. This requires a comprehension model,

which, given a referring expression, infers the appropriate

region in the image.

Among comprehension models proposed in litera-

ture, [29] uses multi-modal embedding and sets up the com-

prehension task as a multi-class classification. Later, [8]

achieves a slight improvement by replacing the concatena-

tion layer with a compact bilinear pooling layer. The com-

prehension model used in this paper belongs to this multi-

modal embedding category.

The “speaker-listener” model in [1] attempts to produce

discriminative captions that can tell images apart. The

speaker is trained to generate captions, and a listener to pre-
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fer the correct image over a wrong one, given the caption.

At test time, the listener reranks the captions sampled from

the speaker. Our generate-and-rerank method is based on

translating this idea to referring expression generation.

3. Generation and comprehension models

We start by defining the two modules used in the collabo-

rative architecture we propose. Each of these can be trained

as a standalone machine for the task it solves, given a data

set with ground truth regions/referring expressions.

3.1. Expression generation model

We use a simple expression generation model introduced

in [36, 23]. The generation task takes inputs of an image

I and an internal region r, and outputs an expression w,

G : I × r → w. We consider a model PG(w|I, r), under

which

G(I, r) = argmax
w

PG(w|I, r) (1)

Given a set of (image, region, expression) tuples,

{(Ii, wi, ri)}, we train PG model by maximizing the likeli-

hood

P ∗
G = argmax

PG

∑

i

logPG(wi|Ii, ri) (2)

Specifically, the generation model is an encoder-decoder

network. First we need to encode the visual information

from ri and Ii. As in [15, 36, 25], we use encoding that

includes: target object representation oi, global context fea-

ture gi and location/size feature li. In our experiments, oi
is the activation on the cropped region ri of the last fully

connected layer fc7 of VGG-16 [30]; gi is the fc7 acti-

vation on the whole image Ii; li is a 5D vector encoding

the opposite corners of the bounding box of ri, as well as

the bounding box size relative to the image size. The final

visual feature vector vi of the region is an linear transforma-

tion (plus bias terms) of the concatenation of three features

[oi, gi, li].
Figure 2 shows the structure of the generation model.

To generate a sequence we use a uni-directional LSTM

decoder[14]. Inputs of LSTM at each time step include the

visual features and the previous word embedding. The out-

put of the LSTM at a time step is the distribution of pre-

dicted next word. The model is trained to minimize cross

entropy loss, equivalent to maximizing the likelihood,

Lgen =
∑

i

Ti∑

t=1

logPG(wi,t|wi,<t, Ii, ri), (3)

P ∗
G = argmin

PG

Lgen, (4)

where , wi,t is the t-th word of ground truth expression wi,

and Ti is the length of wi. In practice, instead of precisely

inferring the argmaxw PG(w|I, r), one uses beam search,

greedy search or sampling to get the output.

3.2. Comprehension

The comprehension task is to select a region (bounding

box) r̂ from a set of regions R = {ri} given a query ex-

pression q and the image I .

C : I × q ×R → r, r ∈ R (5)

We also define the comprehension model as a posterior dis-

tribution PC(r|I, q,R). The estimated region given a com-

prehension model is: r̂ = argmaxr PC(r|I, q,R).
In general, our comprehension model is very similar

to [29]. To build the model, we first define a similarity func-

tion fsim. We use the same visual feature encoder structure

as in generation model. For the query expression, we use a

one-layer bi-directional LSTM [12] to encode it. We take

the averaging over the hidden vectors of each timestep so

that we can get a fixed-length representation for an arbitrary

length of query.

h = fLSTM (EQ), (6)

where E is the word embedding matrix initialized from pre-

trained word2vec[24] and Q is a one-hot representation of

the query expression, i.e. Qi,j = 1(qi = j).
Unlike [29], which uses concatenation + MLP to calcu-

late the similarity, we use a simple dot product as in [4].

fsim(I, ri, q) = vTi h. (7)

We consider two formulations of the comprehension task

as classification. The per-region logistic loss

PC(ri|I, q) = σ(fsim(I, ri, q)), (8)

Lbin = − logPC(ri∗ |I, q)−
∑

i 6=i∗

log(1− PC(ri|I, q)),

(9)

where ri∗ is ground truth region, corresponds to a per-

region classification: is this region the right match for the

expression or not. The softmax loss

PC(ri|I, q,R) =
esi∑
i e

si
, (10)

Lmulti = − logPC(ri∗ |I, q,R), (11)

where si = fsim(I, ri, q), frames the task as a multi-class

classification: which region in the set should be matched to

the expression.

The model is trained to minimize the comprehension

loss. P ∗
C = argminPC

Lcom, where Lcom is either Lbin

or Lmulti.

Figure 3 shows the structure of our generation model un-

der multi-class classification formulation.
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Figure 4: Top: Training by proxy. The comprehension

model must correctly identify the target (blue) region based

on a RE; identification loss (dashed) is propagated to the

generator. Bottom: Generate and rerank. Generator pro-

duces multiple REs; comprehension model evaluates them

based on its ability to identify the true (blue) region from

them, and selects (dashed) the best RE.

4. Comprehension-guided generation

Once we have trained the comprehension model, we can

start using it as a proxy for human comprehension, to guide

expression generator.

4.1. Training by proxy

Consider a referring expression generated by G for a

given training example of an image/region pair (I, r). The

generation loss Lgen will inform the generator how to mod-

ify its model to maximize the probability of the ground truth

expression w. The comprehension model C can provide

an alternative, complementary signal: how to modify G to

maximize the discriminativity of the generated expression,

so that C selects the correct region r among the proposal set

R. Intuitively, this signal should push down on probability

of a word if it’s unhelpful for comprehension, and pull that

probability up if it is helpful.

Ideally, we hope to minimize the comprehension loss of

the output of the generation model Lcom(r|I,R, Q̃), where

Q̃ is the 1-hot encoding of q̃ = G(I, r), with K rows (vo-

cabulary size) and T columns (sequence length).

We hope to update the generation model according to the

gradient of loss with respect to the model parameter θG. By

chain rule,

∂Lcom

∂θG
=

∂Lcom

∂Q̃

∂Q̃

∂θG
(12)

However, Q̃ is inferred by some algorithm which is not dif-

ferentiable. To address this issue, [27, 2, 37] applied rein-

forcement learning methods. However, here we use an ap-

proximate method borrowing from the idea of soft attention

mechanism [35, 5].

We define a matrix P which has the same size as Q̃. The

i-th column of P is – instead of the one-hot vector of the

generated word i – the distribution of the i-th word produced

by PG, i.e.

Pi,j = PG(wi = j). (13)

P has several good properties. First, P has the same size

as Q̃, so that the we can still compute the query feature by

replacing the Q̃ by P, i.e. h = fLSTM (EP). Secondly,

the sum of each column in P is 1, just like Q̃. Thirdly, P is

differentiable with respect to generator’s parameters.

Now, the gradient of θG is calculated by:

∂Lcom

∂θG
=

∂Lcom

∂P

∂P

∂θG
(14)

We will use this approximate gradient in the following

three methods.

4.1.1 Compound loss

Here we introduce how we integrate the comprehension

model to guide the training of the generation model.

The cross-entropy loss (3) encourages fluency of the gen-

erated expression, but disregards its discriminativity. We

address this by using the comprehension model as a source

of an additional loss signal. Technically, we define a com-

pound loss

L = Lgen + λLcom (15)

where the comprehension loss Lcom is either the logistic (8)

or the softmax (10) loss; the balance term λ determines the

relative importance of fluency vs. discriminativity in L.

Both Lgen and Lcom take as input G’s distribution over

the i-th word PG(wi|I, r, w<i), where the preceding words

w<i are from the ground truth expression.

Replacing Q̃ with P (Sec. 4.1) allows us to train the

model by back-propogation from the compound loss (15).
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4.1.2 Modified Scheduled sampling training

Our final goal is to generate comprehensible expression dur-

ing test time. However, in compound loss, the loss is cal-

culated given the ground truth input while during test time

each token is generated by the model, thus yielding a dis-

crepancy between how the model is used during training

and at test time. Inspired by similar motivation, [3] pro-

posed scheduled sampling which allows the model to be

trained with a mixture of ground truth data and predicted

data. Here, we propose this modified schedule sampling

training to train our model.

During training, at each iteration i, we draw a random

variable α from a Bernoulli distribution with probability

ǫi. If α = 1, we feed the ground truth expression to

LSTM frames, and minimize cross entropy loss. If α = 0,

we sample the whole sequence step by step according to

the posterior, and the input of comprehension model is

PG(wi|I, r, ŵ<i), where ŵ<i are the sampled words. We

update the model by minimizing the comprehension loss.

Therefore, α serves as a dispatch mechanism, randomly al-

ternating between the sources of data for the LSTMs and

the components of the compound loss.

We start the modified scheduled sampling training from

a pretrained generation model trained on cross entropy loss

using the ground truth sequences. As the training pro-

gresses, we linearly decay ǫi until a preset minimum value ǫ.
The minimum probability prevents the model from degen-

eration. If we don’t set the minimum, when ǫi goes to 0, the

model will lose all the ground truth information, and will

be purely guided by the comprehension model. This would

lead the generation model to discover those pathological op-

timas that exist in neural classification models[11]. In this

case, the generated expressions would do “well” on com-

prehension model, but no longer be intelligible to human.

See Algorithm 1 for the pseudo-code.

Algorithm 1 Modified scheduled sampling training

1: Train the generation model G.

2: Set the offset k (0 ≤ k ≤ 1), the slope of decay c,
minimum probability ǫ, number of iterations N .

3: for i = 1, N do

4: ǫi ← max(ǫ, k − ci)
5: Get a sample from training data, (I, r, w)
6: Sample the α from Bernoulli distribution, where

P (α = 1) = ǫi
7: if α = 1 then

8: Minimize Lgen with the ground truth input.

9: else

10: Sample a sequence ŵ from PG(w|I, r)
11: Minimize Lcom with the input

PG(wj |I, r, ŵ<j), j ∈ [1, T ]

4.1.3 Stochastic mixed sampling

Since modified scheduled sampling training samples a

whole sentence at a time, it would be hard to get useful

signal if there is an error at the beginning of the inference.

We hope to find a method that can slowly deviate from the

original model and explore.

Here we borrow the idea from mixed incremental cross-

entropy reinforce(MIXER)[27]. Again, we start the model

from a pretrained generator. Then we introduce model pre-

dictions during training with an annealing schedule so as

to gradually teach the model to produce stable sequences.

For each iteration i, We feed the input for the first si steps,

and sample the rest T − si words, where 0 ≤ si ≤ T ,

and T is the maximum length of expressions. We define

si = s+∆s, where s is a base step size which gradually de-

creases during training, and ∆s is a random variable which

follows geometric distribution: P (∆s = k) = (1−p)k+1p.

This ∆s is the difference between our method and MIXER.

We call this method: Stochastic mixed incremental cross-

entropy comprehension(SMIXEC).

By introducing this term ∆s, we can control how much

supervision we want to get from ground truth by tuning the

value p. This is also for preventing the model from produc-

ing pathological optimas. Note that, when p is 0, ∆s will

always be large enough so that it’s just cross entropy loss

training. When p is 1, ∆s will always equal to 0, which is

equivalent to MIXER annealing schedule. See Algorithm 2

for the pseudo-code.

Algorithm 2 Stochastic mixed incremental cross-entropy

comprehension (SMIXEC)

1: Train the generation model G.

2: Set the geometric distribution parameter p, maximum

sequence length T , period of decay d, number of itera-

tions N .

3: for i = 1, N do

4: s← max(0, T − ⌈i/d⌉)
5: Sample ∆s from geometric distribution with suc-

cess probability p
6: si ← min(T, s+∆s)
7: Get a sample from training data, (I, r, w)
8: Run the G with ground truth input in the first si

steps, and sampled input in the remaining T − si
9: Get Lgen on first si steps, and

Lcom on whole sentence but with input

{w1...si , PG(wsi+1...T |I, r, w1···si , ŵsi+1...T )}
10: Minimize Lcom + λLgen. (Not backprop through

w1...si )
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4.2. Generate­and­rerank

Here we propose a different strategy to generate better

expressions. Instead of using comprehension model for

training a generation model, we compose the comprehen-

sion model during test time. The pipeline is similar to [1].

Unlike in Sec. 3.1, we not only need image I and re-

gion r as input, but also a region set R. Suppose we have

a generation model and a comprehension model which are

trained pretrained. The steps are as follows:

1. Generate candidate expressions {c1, . . . , cn} accord-

ing to PG(·|I, r).

2. Select ck with k = argmaxi score(ci).

Here, we don’t use beam search because we want the candi-

date set to be more diverse. And we define the score func-

tion as a weighted combination of the log perplexity and

comprehension loss (we assume to use softmax loss here).

score(c) =
1

T

T∑

k=1

log pG(ck|r, c1..k−1)

+γ log pC(r|I,R, c), (16)

where ck is the k-th token of c, T is the length of c.
This can be viewed as a weighted joint log probability

that an expression to be both nature and unambiguous. The

log perplexity term ensures the fluency, and the comprehen-

sion loss ensures the chosen expression to be discriminative.

5. Experiments

We base our experiments on the following data sets.

RefClef(ReferIt)[18] contains 20,000 images from

IAPR TC-12 dataset[13], together with segmented image

regions from SAIAPR-12 dataset[6]. The dataset is split

into 10,000 for training/validation and 10,000 for test.

There are 59,976 (image, bounding box, description) tuples

in the trainval set and 60,105 in the test set.

RefCOCO(UNC RefExp)[36] consists of 142,209 re-

ferring expressions for 50,000 objects in 19,994 images

from COCO[20], collected using the ReferitGame [18]

RefCOCO+[36] has 141,564 expressions for 49,856 ob-

jects in 19,992 images from COCO. “Location words” are

disallowed, focusing the data set more on appearance based

description.

RefCOCOg(Google RefExp)[23] consists of 85,474 re-

ferring expressions for 54,822 objects in 26,711 images

from COCO; it contains longer and more flowery expres-

sions than RefCOCO and RefCOCO+.

5.1. Comprehension

We first evaluate our comprehension model on human-

made expressions, to assess its ability to provide useful

signal. We consider two comprehension settings as in

[23, 36, 25]. First, the input region set R contains only

ground truth bounding boxes for objects, and a hit is defined

by the model choosing the correct region the expression

refers to. In the second setting,R contains proposal regions

generated by FastRCNN detector[9], or by other proposal

generation methods[38]. Here a hit occurs when the model

chooses a proposal with intersection over union(IoU) with

the ground truth of 0.5 or higher. We used precomputed

proposals from [36, 23, 15] for all four datasets.

In RefCOCO and RefCOCO+, we have two test sets:

testA contains people and testB contains all other objects.

For RefCOCOg, we evaluate on the validation set. For Re-

fClef, we evaluate on the test set.

We train the model using Adam optimizer [19]. The

word embedding size is 300, and the hidden size of bi-

LSTM is 512. The length of visual feature is 1024. For Re-

fCOCO, RefCOCO+ and RefCOCOg, we train the model

using softmax loss, with ground truth regions as training

data. For RefClef dataset, we use the logistic loss. The

training regions are composed of ground truth regions and

all the proposals from Edge Box [38]. The binary classifi-

cation is to tell if the proposal is a hit or not.

Table 1 shows our results on RefCOCO, RefCOCO+ and

RefCOCOg compared to recent algorithms. Among these,

MMI represents Maximum Mutual Information which uses

max-margin loss to help the generation model better com-

prehend. With the same visual feature encoder, our model

can get a better result compared to MMI in [36]. Our model

is also competitive with recent, more complex state-of-the-

art models [36, 25]. Table 2 shows our results on RefClef

where we only test in the second setting to compare to ex-

isting results; our model, which is a modest modification

of [29], obtains state of the art accuracy in this experiment.

5.2. Generation

Table 3, 4 shows our evaluation of different methods

based on automatic caption generation metrics. We also add

an ‘Acc’ column, which is the “comprehension accuracy” of

the generated expressions according to our comprehension

model: how well our comprehension model can compre-

hend the generated expressions.

The two baseline models are max likelihood(MLE)

and maximum mutual information(MMI) from [36]. Our

methods include compound loss(CL), modified sched-

uled sampling(MSS), stochastic mixed incremental cross-

entropy comprehension(SMIXEC) and also generate-and-

rerank(Rerank). And the MLE+sample is designed for bet-

ter analyzing rerank model.

For the two baseline models and our three strategies for

training by proxy method, we use greedy search to gener-

ate an expression. The MLE+sample and Rerank methods

generate an expression by choosing a best one from 100
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RefCOCO RefCOCO+ RefCOCOg

Test A Test B Test A Test B Val

GT DET GT DET GT DET GT DET GT DET

MLE[36] 63.15% 58.32% 64.21% 48.48% 48.73% 46.86% 42.13% 34.04% 55.16% 40.75%

MMI[36] 71.72% 64.90% 71.09% 54.51% 52.44% 54.03% 47.51% 42.81% 62.14% 45.85%

visdif+MMI[36] 73.98% 67.64% 76.59% 55.16% 59.17% 55.81% 55.62% 43.43% 64.02% 46.86%

Neg Bag[25] 75.6% 58.6% 78.0% 56.4% - - - - 68.4% 39.5%

Ours 74.14% 68.11% 71.46% 54.65% 59.87% 56.61% 54.35% 43.74% 63.39% 47.60%

Ours(w2v) 74.04% 67.94% 73.43% 55.18% 60.26% 57.05% 55.03% 43.33% 65.36% 49.07%

Table 1: Comprehensions results on RefCOCO, RefCOCO+, RefCOCOg datasets. GT: the region set contains ground truth

bounding boxes; DET: region set contains proposals generated from detectors. w2v means initializing the embedding layer

using pretrained word2vec.

MLE: person	in	blue

MMI: person	in	black

CL: left	person

MSS: left	person

SMIXEC: second	from	left

Rerank: second	guy	from	left

MLE: left	most	sandwich

MMI: left	most	piece	of	sandwich

CL: left	most	sandwich

MSS: left	most	sandwich

SMIXEC: left	bottom	sandwich

Rerank: bottom	left	sandwich

MLE: hand	holding	the

MMI: hand

CL: hand	closest	to	us

MSS: hand	closest	to	us

SMIXEC: hand	closest	to	us

Rerank: hand	closest	to	us

MLE: giraffe	with	head	down

MMI: tallest	giraffe

CL: big	giraffe

MSS: big	giraffe

SMIXEC: giraffe	with	head	up

Rerank: giraffe	closest	to	us

Figure 5: Generation results on (L to R)RefCOCO testA, RefCOCO testB, RefCOCO+ testA and RefCOCO+ testB.

RefCLEF Test

SCRC[15] 17.93%

GroundR[29] 26.93%

MCB[8] 28.91%

Ours 31.25%

Ours(w2v) 31.85%

Table 2: Comprehension on RefClef (EdgeBox proposals)

sampled expressions.

Our generate-and-rerank (Rerank in Table 3, 4) model

gets consistently better results on automatic comprehension

accuracy and on fluency-based metrics like BLEU. To see

if the improvement is from sampling or reranking, we also

sampled 100 expressions on MLE model and choose the one

with the lowest perplexity (MLE+sample in Table 3, 4). The

generate-and-rerank method still has better results, showing

benefit from comprehension-guided reranking.

We can see that training by proxy can get higher accu-

racy under the comprehension model (Acc).

Among the three training schedules of training by proxy,

there is no clear winner. In RefCOCO, our SMIXEC

method outperforms basic MMI method with higher com-

prehension accuracy and higher caption generation metrics.

The compound loss and modified scheduled sampling seem

to suffer from optimizing over the accuracy. However, in

RefCOCO+ and RefCOCOg, our three models seem to per-

form very differently. The compound loss works better on

RefCOCO+ TestB and RefCOCOg; the SMIXEC works

best on RefCOCO+ TestA. The source of this disparity is

unclear to us.

Human evaluations We also evaluated human compre-

hension of the generated expressions, since this is known to

not be perfectly correlated with automatic metrics [36]. For

100 images randomly chosen from each split of RefCOCO

and RefCOCO+, subjects had to click on the object which

they thought was the best match for a generated expression.

Each image/expression example was presented to two sub-

jects, with a hit recorded only when both subjects clicked

inside the correct region.

The results from human evaluations with MMI,
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RefCOCO

Test A Test B

Acc BLEU 1 BLEU 2 ROUGE METEOR Acc BLEU 1 BLEU 2 ROUGE METEOR

MLE[36] 74.80% 0.477 0.290 0.413 0.173 72.81% 0.553 0.343 0.499 0.228

MMI[36] 78.78% 0.478 0.295 0.418 0.175 74.01% 0.547 0.341 0.497 0.228

CL 80.14% 0.4586 0.2552 0.4096 0.178 75.44% 0.5434 0.3266 0.5056 0.2326

MSS 79.94% 0.4574 0.2532 0.4126 0.1759 75.93% 0.5403 0.3232 0.5010 0.2297

SMIXEC 79.99% 0.4855 0.2800 0.4212 0.1848 75.60% 0.5536 0.3426 0.5012 0.2320

MLE+sample 78.38% 0.5201 0.3391 0.4484 0.1974 73.08% 0.5842 0.3686 0.5161 0.2425

Rerank 97.23% 0.5209 0.3391 0.4582 0.2049 94.96% 0.5935 0.3763 0.5259 0.2505

RefCOCO+

Test A Test B

Acc BLEU 1 BLEU 2 ROUGE METEOR Acc BLEU 1 BLEU 2 ROUGE METEOR

MLE[36] 62.10% 0.391 0.218 0.356 0.140 46.21% 0.331 0.174 0.322 0.135

MMI[36] 67.79% 0.370 0.203 0.346 0.136 55.21% 0.324 0.167 0.320 0.133

CL 68.54% 0.3683 0.2041 0.3386 0.1375 55.87% 0.3409 0.1829 0.3432 0.1455

MSS 69.41% 0.3763 0.2126 0.3425 0.1401 55.59% 0.3386 0.1823 0.3365 0.1424

SMIXEC 69.05% 0.3847 0.2125 0.3507 0.1436 54.71% 0.3275 0.1716 0.3194 0.1354

MLE+sample 62.45% 0.3925 0.2256 0.3581 0.1456 47.86% 0.3354 0.1819 0.3370 0.1470

Rerank 77.32% 0.3956 0.2284 0.3636 0.1484 67.65% 0.3368 0.1843 0.3441 0.1509

Table 3: Expression generation evaluated by automated metrics. Acc: accuracy of the trained comprehension model on

generated expressions. We separately mark in bold the best results for single-output methods (top) and sample-based methods

(bottom) that generate multiple expressions and select one.

RefCOCOg (val)

Acc(%) Bleu 1 Bleu 2 Rouge Meteor

Max Lik. 61.96% 0.437 0.273 0.363 0.149

MMI 70.38% 0.428 0.263 0.354 0.144

CL 70.74% 0.4439 0.2751 0.3695 0.1552

MSS 70.80% 0.4377 0.2697 0.3633 0.1524

SMIXEC 70.02% 0.4338 0.2683 0.3650 0.1575

sample 66.72% 0.4406 0.2755 0.3748 0.1526

Rerank 76.65% 0.4410 0.2772 0.3782 0.1536

Table 4: Expression generation result on RefCOCOg val.

Table 5: Human evaluation results

RefCOCO RefCOCO+

Test A Test B TestA TestB

MMI[36] 53% 61% 39% 35%

SMIXEC 62% 68% 46% 25%

Rerank 66% 75% 43% 47%

SMIXEC and our generate-and-rerank method are in Ta-

ble 5. On RefCOCO, both of our comprehension-guided

methods appear to generate better (more informative) re-

ferring expressions. On RefCOCO+, the result are similar

to those on RefCOCO on TestA, but our training by proxy

methods performs less well on TestB. Fig 5 shows some ex-

ample generation results on test images.

6. Conclusion

In this paper, we propose to use learned comprehension

models to guide generating better referring expressions.

Comprehension guidance can be incorporated at training

time, with a training by proxy method, where the discrim-

inative comprehension loss (region retrieval based on gen-

erated referring expressions) is included in training the ex-

pression generator. Alternatively comprehension guidance

can be used at test time, with a generate-and-rerank method

which uses model comprehension score to select among

multiple proposed expressions. Empirical evaluation shows

both to be promising, with the generate-and-rerank method

obtaining particularly good results across data sets.

Among directions for future work we are interested to

explore alternative training regimes, in particular an adapta-

tion of the GAN protocol to referring expression generation.

We will try to incorporate context objects (other regions in

the image) into representation for a reference region. Fi-

nally, while at the moment the generation and comprehen-

sion models are completely separate, it is interesting to con-

sider weight sharing.
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