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Figure 1: Spatial-semantic image search. (a) Searching with content-only queries such as text keywords, while effective in

retrieving relevant content, is unable to incorporate detailed spatial intents. (b) Spatial-semantic image search allows users to

interact with the 2-D canvas to express their search intent both spatially and semantically.

Abstract

The performance of image retrieval has been improved

tremendously in recent years through the use of deep fea-

ture representations. Most existing methods, however, aim

to retrieve images that are visually similar or semantically

relevant to the query, irrespective of spatial configuration.

In this paper, we develop a spatial-semantic image search

technology that enables users to search for images with

both semantic and spatial constraints by manipulating con-

cept text-boxes on a 2D query canvas. We train a convolu-

tional neural network to synthesize appropriate visual fea-

tures that captures the spatial-semantic constraints from the

user canvas query. We directly optimize the retrieval perfor-

mance of the visual features when training our deep neural

network. These visual features then are used to retrieve im-

ages that are both spatially and semantically relevant to the

user query. The experiments on large-scale datasets such

as MS-COCO and Visual Genome show that our method

outperforms other baseline and state-of-the-art methods in

spatial-semantic image search.

1. Introduction

Image retrieval is essential for various applications, such

as browsing photo collections [6, 52], exploring large visual

data archives [15, 16, 38, 43], and online shopping [26, 37].

It has long been an active research topic with a rich literature

in computer vision and multimedia [8, 30, 55, 56, 57]. In

recent years, advances in research on deep feature learning

have led to effective image and query representations that

are shown effective for retrieving images that are visually

similar or semantically relevant to the query [12, 14, 25, 53].

However, in many search scenarios, such as recalling a

specific scene from personal albums or finding appropri-

ate stock photos for design projects, users want to indicate

not only which visual concepts should appear in the image,

but also how these concepts should be spatially arranged

within the scene. This paper presents a spatial-semantic

image search method, which allows users to interact with

a 2D canvas to construct search queries. As shown in Fig-

ure 1 (b), by manipulating text boxes representing visual

concepts, users can naturally express their search intent

both spatially and semantically. In contrast, searching with
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content-only queries, such as text keywords, while effective

in retrieving images with relevant content, is unable to rep-

resent such detailed spatial queries (Figure 1 (a)).

The main challenge in developing such a spatial-

semantic image search technology is to design appropriate

image and query representations [8, 57]. Traditional search

paradigms often use text-based or image-based queries for

which effective feature representations have been well stud-

ied [18, 31, 41, 46]. However, the representation for the

query of spatial-semantic image search is not as well stud-

ied. Early research on spatial-semantic image search [4,

34, 59] mostly follows example-based approaches, extract-

ing low-level visual features from the separately retrieved

visual exemplars to represent the canvas queries. Despite

promising performance, these methods rely on carefully de-

signed algorithms for both feature extraction and feature

matching, which often cannot be generalized well.

In this paper, we present a learning-based approach to

visual feature synthesis to support spatial-semantic image

search. Instead of manually constructing features from sep-

arate visual exemplars, our method learns to synthesize vi-

sual features directly from the user query on the 2D canvas.

Specifically, we develop a convolutional neural network to

synthesize visual features that simultaneously capture the

spatial and semantic contraints from the user canvas query.

We train this neural network by explicitly optimizing the re-

trieval performance of its synthesized visual features. This

learning strategy allows our neural network to generate vi-

sual features that can be used to effectively search for spa-

tially and semantically relevant images in the database.

Our experiments on large-scale datasets like MS-COCO

and Visual Genome show that our method outperforms

other baseline and existing methods in spatial-semantic im-

age search. Our study demonstrates that our method can

support users to retrieve images that match their search in-

tent. Furthermore, our experiments indicate that our feature

synthesis method can capture relationships among different

visual concepts to predict useful visual information for con-

cepts that were not included in training. This demonstrates

its potential for generalization to novel concepts.

2. Related Work

Our work is related to multi-modal image retrieval re-

search in which the database and the queries belong to dif-

ferent modalities. Advances in feature learning have re-

cently provided effective feature representations for differ-

ent modalities such as text [14, 31, 41, 42], images [1, 2, 17,

18, 19, 45, 46], and hand-drawn sketches [47, 53, 58, 61],

which have been shown to greatly improve the retrieval

performance. Most existing works target traditional im-

age search paradigms which focus on retrieving images

with relevant semantic content or visual similarity. The

learned representations are thus designated to capture only

semantic information or visual information. The spatial-

semantic image search paradigm targeted in this paper, on

the other hand, requires a special type of query that con-

tains not only the semantic concepts but also their spatial

information. In this paper, we provide a feature synthesis

approach to learn effective visual representation for such

spatial-semantic canvas queries.

A common approach in representation learning with

multi-modal data is to learn a joint embedding to map all

modalities into a common latent space [3, 14, 31, 32, 50,

53]. In this paper, we follow a different approach which

fixes the image feature representation and learn to synthe-

size that visual feature from the user given queries. This

approach can take advantage of the well established image

features, such as the ones obtained by pre-trained deep neu-

ral networks, which faithfully preserve important visual and

semantic information from images [10]. Another advantage

is the flexibility provided by the fact that the image feature

is not affected by the query representation learning, which

helps avoids the cost of re-processing the database when the

feature synthesis model is changed [5].

In the context of incorporating spatial information into

image search systems, Zavesky et al. [62, 63] present vi-

sualization methods to display the search results by arrang-

ing the retrieved images onto the 2D layout of the search

page according to their content similarity. However, these

works focus on the problem of visualizing and browsing the

retrieved images which are obtained by text-based queries

without spatial information. Our work, on the other hand,

addresses a different problem and focuses on retrieving rel-

evant images with respect to the spatial and semantic con-

straints specified in the canvas queries.

Most relevant to our research are the existing works on

spatial-semantic image search [4, 34, 59]. These research

mostly follow exemplar-based approaches. A set of vi-

sual exemplars for each visual element in the query are

pre-determined. Low-level features such as SIFT [36] and

color histograms are then extracted from these exemplars to

form the visual representation for the queries. Our spatial-

semantic image search framework proposed in this paper

is different from these methods in two important aspects.

First, instead of relying on visual exemplars for feature ex-

traction, our method provides a model-based framework

which explicitly learns a synthesis model to synthesize the

visual features directly from user queries. Second, instead

of manually designing ad-hoc processes for feature com-

putation and matching, we provide a data-driven approach

which learns the feature synthesis model from training data

so as to explicitly optimize the retrieval performance.

In recent years, convolutional neural network models

have shown great successes in generating image data [9,

20, 48]. Recent research have been able to generate real-

istic images from different input information such as texts
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[39, 51], attributes [11, 60, 64], and images from different

views [13, 27, 44]. In a recent work, Reed et al. [49] present

a method to synthesize an image given a scene canvas which

is similar to our spatial-semantic query. Inspired by the

success of these research on image generation, this paper

leverages convolutional neural network models to synthe-

size a visual representation from input semantic informa-

tion. However, different from image generation research,

our goal is not to generate realistic image data. Instead,

we aim to synthesize useful features for image search. The

training framework for our model, as a result, needs to be

tailored to optimize the retrieval performance.

3. Visual Feature Synthesis

We implement our visual feature synthesis model using a

convolutional neural network architecture. Our framework

first represents the 2-D input canvas query as a three dimen-

sional grid Q whose depth dimension corresponds to the

semantic vector such as Word2Vec [41] for the concept ap-

pearing at each spatial position in the query. We note that

using semantic vector representation instead of the one-hot-

encoding alternative can help exploit the relationship in the

semantic space and generalize to larger classes of concepts.

The grid entries corresponding to unspecified regions in the

canvas are set as zeros. During synthesis, the query grid Q

is then passed through the feature synthesis model to syn-

thesize the visual feature fQ for the query.

Figure 2 illustrates our visual feature synthesis frame-

work. While the model is applicable to queries with any

number of concepts, we found it best to train the network

for only single-concept queries due to two important rea-

sons. First, multi-concept queries often contain concept

boxes overlapping one another, which causes ambiguity in

terms of semantic representation at the overlapped regions.

Moreover, as the number of concepts increases, the num-

ber of feasible images that match any specific spatial con-

figuration of those concepts is often limited, which limits

the amount of available data to train the synthesis model

directly for multi-concept queries. In general, when an in-

put query consists of multiple concepts, we first represent it

as multiple single-concept sub-queries. We then synthesize

visual features independently for each sub-query and com-

bine them together with the max operator in the end to form

the final feature for the whole query. We note that other

methods for combining the input Word2Vec descriptors or

the output features at the overlapping regions can also be

used [23].

3.1. Model training

Let Q denote a spatial-semantic canvas query and fQ de-

note the visual feature synthesized from Q using our feature

synthesis network, we define the per-query loss function as

L(fQ) = wSLS(fQ) + wDLD(fQ) + wRLR(fQ) (1)

where LS , LD, and LR are the three individual loss terms

(described below) modelling three objectives that guide the

network learning. The relative loss weights wS , wD, and

wR are heuristically determined as 0.6, 0.3, 0.1, respec-

tively to emphasize the importance of the feature similarity

loss LS as it is most related to the retrieval performance.

These hyper-parameters are fixed in all of our experiments.

During training, the model parameters are iteratively up-

dated to minimize the stochastic loss function accumulated

over the training data.

The ultimate goal of our feature synthesis model is to

synthesize useful features for retrieving relevant images

given canvas queries. We therefore explicitly design our

loss function to encourage good retrieval performance for

each training query.

3.1.1 Similarity Loss

For a given training query Q, let IQ denote a training image

that is relevant to Q (such a query-image pair can be readily

obtained from image datasets with available bounding box

annotations such as MS-COCO [33] and Visual Genome

[29]). We design the similarity loss term LS to encourage

the synthesized feature fQ to resemble the known visual

feature fIQ extracted from IQ. Formally, the similarity loss

LS is defined as

LS(fQ) = 1− cos(fQ, fIQ) (2)

Minimizing this loss function equivalently maximizes the

cosine similarity between the feature synthesized from each

query and those from its relevant images in the database.

These relevant images, as a result, are likely to be highly

ranked during retrieval.

Training the feature synthesis model using only the sim-

ilarity loss, however, is not sufficient. While similarity loss

training encourages the relevant features to be learned, it of-

ten cannot emphasize the discriminative features that helps

distinguish between concepts. As a result, images of irrel-

evant concepts sharing some visual similarity with the rele-

vant ones may also be ranked high, leading to noisy retrieval

results. We propose to address this limitation by incorpo-

rating two additional loss functions, namely discriminative

loss, and ranking loss.

3.1.2 Discriminative Loss

We incorporate the discriminative loss function to encour-

age the synthesized features not only to be relevant, but also

discriminative with respect to the concepts in the query. A

common approach to learn discriminative features is to train
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Figure 2: A canvas query is represented in a spatial-semantic representation consisting of a three-dimensional grid Q where

Q(i, j) contains the Word2Vec semantic vector of the concept appearing at the position (i, j). The grid-based representation

of the canvas is then passed through the convolutional feature synthesis network to synthesize the visual feature fQ for the

query. The feature synthesis network is trained to jointly minimize three dedicated loss functions to encourage good retrieval

performance at each training query.

a classification model FD on top of the learned features fQ.

Learning the classification model jointly with the feature

synthesis model, however, is problematic as this setup tends

to force the synthesized feature to retain mostly semantic

information while ignoring useful visual information.

Our idea is to train the classification model FD with the

actual image features fIQ instead of the synthesized fea-

tures fQ and then use it (with fixed weights) to compute

the classification loss on the synthesized features during the

synthesis model training. As FD is trained on the real im-

age features for classification, it can encode discriminative

visual features for each concept. Using it to guide the train-

ing of the feature synthesizer therefore encourages the syn-

thesized features to capture similar discriminative features.

The discriminative loss function for a query Q is defined as

LD(fQ) = CrossEntropy(FD(fQ), cQ) (3)

where FD(fQ) denotes the class prediction of the classifi-

cation sub-network F with the synthesized feature fQ as

input. cQ denotes the concept specified in the query Q.

The classification loss is realized by the standard cross-

entropy objective function widely used in classification net-

work training.

In our implementation, we implement the classification

sub-network FD as a fully connected layer with 4,096 neu-

rons, each followed by a ReLU activation unit.

3.1.3 Ranking Loss

To further encourage good retrieval performance, we define

a ranking loss function which encourages proper ranking

for the images given the synthesized features. Following

previous works on ranking-based feature learning [21, 53,

54], we define the ranking loss LR using the triplet loss

ranking formulation

LR(fQ) = max(0, α− cos(fQ, fIQ) + cos(fQ, fIQ̄)) (4)

where FIQ̄
denotes the feature extracted from an image IQ̄

which is irrelevant to the query q. α denotes the margin for

the ranking loss, which was empirically determined to be

0.35 in our framework. Minimizing this loss encourages the

proper ranking of the images given the synthesized features

of the queries.

3.2. Implementation Details

For all experiments reported here, we use the features ex-

tracted from the fourth inception module of the GoogLeNet

network as our target image visual features. In particular,

we use the pre-trained GoogLeNet model implemented in

Torch1. The network was pre-trained on the ImageNet clas-

sification task with 1,000 object classes. Our preliminary

study shows that this feature is particularly appropriate for

our task as it can effectively capture high-level semantic in-

formation from the images and at the same time naturally

retains most spatial information. We note that our frame-

work is general and can adopt any type of image features.

For networks with fully-connected layers (e.g. AlexNet or

VGG), we can also use the fully convolutional structure (i.e.

the convolutional and pooling layers below the fully con-

nected layers in the network) to retain the spatial informa-

tion.

We implement our feature synthesis model using a con-

volutional network architecture with three convolution lay-

ers with 3 × 3 filter size, interleaved by two stride-2 max-

pooling layers, each followed by a ReLU activation function

and batch normalization [22]. Our network takes as input

the canvas cube representation of size 31×31×300 and out-

put the feature of size 7×7×832 which is the size of the tar-

get GoogLeNet feature layer. The number of feature maps

in the two intermediate convolutional blocks are 256 and

512, respectively. The network is trained using the ADAM

algorithm [28] for 100,000 iterations with the mini-batch

1https://github.com/soumith/inception.torch

4721



size of 17 and initial learning rate of 0.01. To encourage the

network to capture the spatial information during training,

we mask out the regions in the predicted feature outside of

the object regions in the query canvas before computing the

loss. After training, our network takes one ms to synthesize

the feature for one query on an NVIDIA Geforce Titan X

GPU. Once the feature is generated, our system can search

over 5 millions images in less than a second.

4. Experiments

We evaluate our method on the combination two large-

scale datasets MS-COCO [33] and Visual Genome [29].

The MS-COCO dataset contains 123,287 images in its train-

ing and validation set with bounding boxes provided for 81

object categories2. The Visual Genome dataset contains

108,077 images with provide bounding box annotations

for a wide variety of visual concepts3. We combine MS-

COCO and Visual Genome to obtain a combined dataset

with 179,877 images consisting of the bounding box anno-

tation for most image regions, including not only objects but

also non-object and background concepts such as sky, grass,

beach, and water. The images in the dataset are randomly

partitioned into the database set with 105,000 images and

the training set with 74,877 images. During training, the

training single-concept queries Q are obtained by sampling

the bounding boxes in each training image. The image itself

serves as the corresponding relevant image IQ. The irrele-

vant image IQ̄ is randomly picked among the images not

containing the concept specified in Q. In principal, we can

apply this procedure to train our model with all available

concepts in the dataset. However, to ensure each concept

has enough data to train, we only sample training queries

for the concepts that is contained in at least 1,000 images.

As a result, we use the concept list with 269 concepts cov-

ering a variety of categories.

Testing queries: Our evaluation requires a large and di-

verse set of testing queries, which covers a wide variety of

concepts with different number of concepts per-query and

concepts appear in different sizes. To avoid relying on hu-

man efforts in query set creation, which is costly and diffi-

cult to control for such a diverse query set, we automatically

generate the testing queries from images with their anno-

tated bounding boxes. We randomly select 5,000 images in

the database set and create testing queries from them. For

each image, we randomly sample its bounding boxes to ob-

tain up to six queries, containing from one to six concept

instances. To avoid including many small objects that are

insignificant to the scene content, we sample the bounding

boxes with the probabilities proportional to their sizes. This

process gives us 28,699 testing queries in total.

2http://mscoco.org/
3https://visualgenome.org/api/v0/

Spatial-semantic relevance score: the relevance be-

tween an input query Q and a retrieved database image I

is defined as

R(Q, I) =
1

|BQ|

∑

bi∈BQ

max
bj∈BI

I(c(bi) = c(bj))
bi ∩ bj

bi ∪ bj
(5)

where BQ and BI denote the set of annotated bounding

boxes in the query Q and the image I , respectively. I rep-

resents the indicator function which takes the value 1 if its

argument is true and zero otherwise. c(bi) and c(bj) denote

the semantic class of the concept represented by the boxes bi
and bj , respectively. This relevance score evaluates how the

retrieved images are relevant to the input queries according

to both semantic content and spatial configuration.

4.1. Spatial­Semantic Search Performance

We compare our methods to different approaches for

spatial-semantic image search, including the text-based ap-

proach, the image-based approach with known image fea-

tures, and the exemplar-based approach introduced in [59].

Text-based approach: We use the annotation provided

with each database image to rank the images according to

how many number of concepts specified in the queries con-

tained in the image, regardless of their positions.

Image-based approach: This approach represents each

query with a known image features extracted from an ex-

ample image. We consider an oracle-like approach where

the image used to represent each test query is selected

to be the ground-truth one that was used to generate that

query. This makes a strong baseline as the feature for each

query is obtained from the image that is guaranteed to be

highly relevant to the query. In particular, we consider two

types of features: the GNet-Conv feature extracted at the

GoogLeNet’s fourth inception convolutional layer (similar

to the one used in our model) and the GNet-1024 feature

extracted at the layer prior to classification, which forms a

feature vector with 1024 dimensions.

Exemplar-based approach [59]: We also experiment

with Xu et al.’s approach [59] using our own implementa-

tion. Affinity Propagation (AP) clustering is first applied

to select 6 exemplars for each concept in the query from

which visual features are constructed and used to search

the database images. The original framework in [59] em-

ploys low-level visual features such as SIFT and local color

histogram for feature extraction. In this experiment, we

also consider a variant where the low-level features are re-

placed by the local features obtained from the output of the

GoogLeNet convolutional layer.

We compare the performance of all methods according

to three standard metrics that are widely used in the context

of learning-to-rank and information retrieval:

Normalized Discounted Cumulative Gain (NDCG):

NDCG is among the most popular evaluation metrics used
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Figure 4: Spatial-semantic image search performance.

to evaluate information retrieval systems [7, 24]. NDCG

measures the accumulated relevance score obtained by the

top-k retrieval results. We compute the NDCG quality for

each query and take their average values over all testing

queries to obtain the overall performance. Following pre-

vious works [34, 59], we compute the NDCG quality for

different values of k to obtain the NDCG curves.

Mean Average Precision (mAP): At each rank posi-

tion in the retrieval result, the precision and recall value are

computed according to the spatial-semantic relevance score

(Equation 5) by thresholding with a threshold T (we use

T = 0.3 in our experiments). The average precision is the

area under the resulted precision-recall curve. The overall

mean average precision (mAP) is computed by accumulat-

ing the average precision values over all test queries.

Spearman Rank Correlation: For each query, we ob-

tain the ground-truth ranking for all database images using

their relevance scores defined in Equation 5. The qual-

ity of each method can then be assessed by the Spearman

rank correlation [35, 40] between the ground-truth ranking

and the predicted ranking obtained according to the cosine

similarity between the query’s synthesized feature and the

database image features.

Figure 4 compares the spatial-semantic retrieval perfor-

mance of different methods. As expected, the text-based

approach does not perform well for this task as it cannot

take into account the spatial information. By construct-

ing visual features from relevant exemplars and capturing

spatial information, the exemplar-based approach [59] suc-

cessfully improve the retrieval performance compared to

the text-based approach. Leveraging the deep features from

GoogLeNet can further improve the performance.

The Image-based approaches demonstrates good perfor-

mance as it uses the known image features from the ground-

truth image. The results indicate that the features extracted
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from the convolutional layers perform better than the ones

from the later layers. This is due to the spatial information

retained at this layer, making it more suitable for our target

task of spatial-semantic image search.

Our method performs comparably to the known image

features when considering the top-ranked search results and

gradually performs better than the image features when the

longer rank list is considered. The features extracted from

the deep network such as GoogLeNet can faithfully cap-

ture both visual and semantic information in the image,

which helps retrieve highly relevant images. However, as

more images are considered, images with high visual simi-

larity but less spatially and semantically relevant may also

be ranked high. Our method explicitly learns the feature

synthesis model for the spatial-semantic retrieval task and

outperforms other methods according to all evaluation met-

rics. The results also demonstrate the effects of different

loss functions in our framework. Incorporating discrimi-

native loss helps synthesize a more discriminative feature,

which improves the performance compared to using only

similarity loss. The performance is further improved when

all three loss functions are applied. Figure 1 and Figure 3

show retrieval results of our methods for example queries

with different concepts and configurations.

4.2. Subjective Evaluation

In addition to the quantitative evaluation based on ob-

jective relevance scores and automatically generated test

queries, we also investigate the performance of our method

on queries constructed by human users through a user

study that lets participants create their own spatial-semantic

queries and rate the relevance of the retrieval results.

In our study, we recruit 14 participants. Each participant

is asked to performs six search sessions. In each session, we

let the participant construct the query canvas for a specific

target scene she wants to search and then rate the relevance

of the search results returned by our method along with two

baseline methods, including the text-based baseline, and the

exemplar-based baseline with GoogLeNet feature.

Without a specific content to start with, we found it diffi-

cult for users to imagine a realistic scene for which relevant

images can be found, especially when the database is not

too large. Therefore, during the query construction stage,

we prompt each participant with a caption obtained from

the MS-COCO caption set. That caption serves as a prompt

that helps participants easily imagine a realistic scene while

arranging the spatial query as they want. We limit the ran-

domly selected prompt captions to those that are at most

15-words long and contain at least one concept among our

269 trained concepts.

After constructing each query, the user is shown the top-

20 search results retrieved by all three algorithms, presented

in a random order. The user scores each result from 1 to 5
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Figure 5: Our spatial-semantic image search method ob-

tains significantly more search results with the high scores,

indicating its ability to retrieve results that satisfy the user

intent both semantically and spatially.
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Figure 6: The performance of our model on untrained con-

cepts, while lower than the model trained with all concepts,

is in general comparable or better than the ground-truth im-

age features, indicating we can synthesize useful features

even for untrained concepts.

(with 5 be the highest relevance) indicating how relevant it

is to the user intent.

Figure 5 depicts a histogram of relevance score values

for each of the algorithms. The results indicate that our

spatial-semantic image search method obtains significantly

more search results with the high relevance scores, which

reflects its ability to retrieve relevant images that satisfy the

user intent both semantically and spatially.

4.3. Generalization to New Concepts

Our feature synthesis model learns the transformation

from each visual concept to the corresponding visual fea-

tures using spatially and semantically labeled data. It there-

fore relies on the availability of the concepts in the training

data. In this section, we investigate how our model performs

when given the hitherto unseen concepts.

Figure 7 provides an example of the query with an un-

trained concept. In this case, the concept butterfly is not part

of the concept list used to train the model. The example in-

dicates that our method is able to leverage the knowledge

learned from the related trained concepts to synthesize the

useful features to retrieve relevant images. Note that while

our model was never trained with the butterfly concept, it

can somewhat leverage the features learned from semanti-
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Flower

Bird

Butterfly

Search results for the un-trained concept butterfly

Search results for the related trained concepts: flower and bird

Figure 7: The untrained concept butterfly can be captured by related concepts such as bird and flower which are similar in the

semantic Word2V ec space. As a result, the model can synthesize the useful features from both of these concepts to retrieve

several butterfly images (marked with green frames) in the top list.

cally relevant concepts, such as flower and bird which are

close to butterfly in the Word2V ec semantic space. With

the synthesized feature, several butterfly images were re-

trieved in the top list. Searching directly with the trained

concepts flower and bird (Figure 7), on the other hand, re-

turned mostly different results. This suggests that our model

can combine the knowledge from multiple trained concepts

to represent the novel ones instead of merely copying fea-

tures from the closest trained concept.

To further investigate how our model performs on un-

trained concepts, we randomly leave out ten selected con-

cepts from our original concept list. We then train our fea-

ture synthesis model from the remaining set and test on

queries containing the left-out concepts. Figure 6 com-

pares the rank correlation from three methods: our origi-

nal feature synthesis model trained with all concepts, our

model trained without the 10 left-out concepts, and the

image-based method with the ground-truth GoogLeNet fea-

ture. The result indicates that the performance of our model

on untrained concepts, while lower than the model trained

with all concepts, is mostly comparable or better than the

ground-truth image features, indicating we can synthesize

useful visual information even for untrained concepts.

5. Conclusion

This paper presents a data-driven approach to spatial-

semantic image search which learns to synthesize visual

features directly from the user canvas query using a vi-

sual feature synthesis model based on convolutional neu-

ral networks. A dedicated training framework with three

loss functions is developed to train the feature synthesis

model so as to optimize the the spatial-semantic retrieval

performance in the visual feature space. Experiments on the

combination of the MS-COCO and Visual Genome datasets

show that our method can learn an effective representation

from the query, which improves the retrieval performance

compared to other baseline and state-of-the-art methods. By

explicitly learning the mapping from the spatial-semantic

representation to the visual representation, our model can

exploit the relationship in the semantic space, which enables

generalization to novel concepts. In future work, we plan to

augment our current framework with additional information

such as high-level attributes and hand-drawn sketches to al-

low more fine-grained search and refinement.
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