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Abstract

This paper describes a joint intensity metric learning

method to improve the robustness of gait recognition with

silhouette-based descriptors such as gait energy images.

Because existing methods often use the difference of im-

age intensities between a matching pair (e.g., the abso-

lute difference of gait energies for the �1-norm) to mea-

sure a dissimilarity, large intrasubject differences derived

from covariate conditions (e.g., large gait energies caused

by carried objects vs. small gait energies caused by the

background), may wash out subtle intersubject differences

(e.g., the difference of middle-level gait energies derived

from motion differences). We therefore introduce a metric

on joint intensity to mitigate the large intrasubject differ-

ences as well as leverage the subtle intersubject differences.

More specifically, we formulate the joint intensity and spa-

tial metric learning in a unified framework and alternately

optimize it by linear or ranking support vector machines.

Experiments using the OU-ISIR treadmill data set B with

the largest clothing variation and large population data set

with bag, � version containing carrying status in the wild

demonstrate the effectiveness of the proposed method.

1. Introduction

Gait [55] is a behavioral biometric that has advantages

over other biometrics such as the face, irises, or finger veins

because (i) gait is available even when the subject is at a

distance from a camera because it can be recognized from a

relatively low-resolution image sequence [52], and (ii) a gait

feature can be obtained without subject cooperation because

people unconsciously exhibit their own walking styles in

general. Because of these advantages, gait recognition is

suitable for many potential applications such as surveil-

lance, forensics, and criminal investigation [8, 21, 44]).

Approaches to gait recognition mainly fall into two fam-

ilies: model-based approaches [2,7,10,35,68,69,76,80] and

model-free (appearance-based) approaches [5, 6, 16, 27, 47,

54, 60, 70, 71]. The model-based approaches fit articulated

human body models to images and extract kinematic fea-

tures such as joint angle sequences. While model-based ap-

Figure 1. Examples of carrying status. Carried objects (indicated

by yellow dotted circles) appear at various positions and hence

spatial metric learning does not work for robust gait recognition.
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Figure 2. Concept of joint intensity metric learning. A conven-

tional joint intensity metric (i.e., the absolute difference of the �1-

norm in this figure) returns a large dissimilarity for intrasubject

carried object differences (e.g., intensity level 255 vs. 0), while

it returns a small dissimilarity for intersubject motion difference

(e.g., intensity level 100 vs. 130) in GEI. We therefore want to

reduce the dissimilarity of the joint intensities derived from in-

trasubject differences while enhancing the dissimilarity for those

derived from the intersubject differences by joint intensity metric

learning.

proaches have robustness to some covariates such as cloth-

ing, carrying status, and partial occlusion, they require a

relatively high image resolution to get reasonable human

model fitting results and incur high computational costs.

The appearance-based approaches directly use input or

silhouette images in a holistic way to extract gait fea-

tures without model fitting, and hence they generally work

well, even for relatively low-resolution images, and incur

low computational costs. In particular, silhouette-based

representations such as gait energy images (GEIs) [16],

frequency-domain features (FDFs) [47], chrono-gait im-

ages [70], and Gabor GEIs [66], are dominant in the gait

recognition community because of their simple yet effective

properties. The appearance-based approaches, however, of-

ten suffer from large intrasubject appearance changes due

to covariates such as clothing [5, 6, 20, 36, 58], carrying sta-

tus [11, 65, 67], view [22, 28, 30, 32, 43, 47, 61, 62, 73], and
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walking speed [1, 13, 29, 31, 41, 48, 49, 64].

The most popular way to gain robustness to covariates

is to incorporate spatial metric learning such as linear dis-

criminant analysis (LDA) [16, 40, 70], general tensor dis-

criminant analysis (GTDA) [65, 66], discriminant analysis

with tensor representation (DATER) [74,77], or the random

subspace method (RSM) [14, 15]. It is, however, difficult

to cover all the variations only by spatial metric learning

because the spatial positions affected by covariates such as

clothing and carrying status are quite different depending

on the instances (e.g., backpacks, shoulder bags, handbags,

and briefcases), as shown in Fig. 1.

However, taking a closer look at an intensity metric as-

pect for gait recognition, we note that the difference of in-

tensities between a matching pair (e.g., the absolute dif-

ference of gait energies for the �1-norm) is often used to

measure a dissimilarity, where a larger difference of inten-

sities naturally results in a larger dissimilarity. Therefore,

large intrasubject differences derived from covariate con-

ditions, e.g., the difference between high intensity (large

gait energies in a GEI representation) from foreground car-

ried objects and low intensity (small gait energies) from

the background, may overwhelm subtle intersubject differ-

ences, e.g., the differences of medium intensities (middle-

level gait energies) derived from motion differences, as

shown in Fig. 2.

A few studies on gait recognition focus on this inten-

sity metric aspect. Bashir et al. [5] proposed gait entropy

image (GEnI), which transforms a gait energy into a Shan-

non entropy for each pixel to enhance the dynamic parts

while neglecting static parts to gain robustness to clothing

and carrying status (see Fig. 4(b) for an example). More-

over, a masked GEI was proposed in [6], where the static

parts of the GEI (i.e., small entropy regions) are masked out.

Both methods transform the complete background (the min-

imum gait energy) and complete foreground (the maximum

gait energy) to zero, and consequently make their difference

zero, which is an excessive suppression of intrasubject vari-

ation that risks overwhelming the intersubject difference de-

rived from individual shape variation.

We therefore introduce a metric on joint intensity to miti-

gate the large intrasubject differences and leverage the sub-

tle intersubject differences, as shown in Fig. 2. We learn

such a metric so as to separate pairs of the same subjects

and different subjects well in a data-driven way. The contri-

butions of this work are three-fold.

1. A data-driven joint intensity metric

While the existing intensity-oriented methods such as

GEnI [5] and masked GEI [6] are designed in a handcrafted

way and also completely discard individual shape differ-

ences, the proposed method learns the joint intensity met-

ric in a data-driven way. More specifically, we learn the

joint intensity metric to realize a good tradeoff between sup-

pressing intrasubject differences and enhancing intersubject

differences using a training set that includes covariate con-

ditions such as clothing and carrying status.

2. A unified framework for joint intensity and spatial

metric learning

We optimize not only the joint intensity metric but also

a spatial metric (weighting on each spatial position) in a

unified framework. More specifically, we define a dissim-

ilarity measure for a matching pair as a bilinear form of a

joint intensity metric vector and a spatial metric vector, and

then define an objective function that maximizes a margin

between positive (the same subjects) and negative (different

subjects) pairs. Consequently, we can alternately optimize

the joint intensity metric and spatial metric in a framework

of a linear support vector machine (SVM) or ranking SVM.

3. State-of-the-art accuracy on robust gait recognition

We achieved state-of-the-art accuracy on gait recognition

under clothing and carrying status variations using publicly

available gait databases containing the largest clothes vari-

ations (up to 32 types) and carrying status in the wild.

2. Related work

Joint intensity histogram

Joint intensity histograms were originally defined for a

pair of spatially adjacent pixels and applied for various pur-

poses such as texture analysis [17] and template match-

ing [18]. Thereafter, some studies defined the joint inten-

sity at the same spatial position for an image pair in the

same way as the proposed method. For example, Kita et

al. [23–25] constructed a joint intensity histogram between

a background image (sequence) and an input image, and

then detected the changed region (foreground) by finding

a background cluster from the joint intensity histogram,

which improves the robustness to illumination change com-

pared with simple background subtraction. Moreover, the

registration of 3D volume data is performed using joint in-

tensity histogram in medical image analysis [37].

Although the joint intensity histogram has been widely

used in a various research fields as above, there is no study

on joint intensity metric learning for better recognition of

individuals, to the best of our knowledge.

Joint probability modeling for sequence matching

The proposed joint intensity metric learning for image

pair matching, is conceptually similar to joint probability

modeling for a family of sequence matching or alignment

(e.g., approximate string matching [4] and DNA sequence

alignment [53]) methods to some degree. In short, a joint

probability for a pair of unit entries (e.g., characters for ap-

proximate string matching and amino acids for DNA se-

quence alignment) can be used to define the costs of in-

sertion, deletion, and substitution of the unit entries for an

elastic sequence matching algorithm such as dynamic pro-

gramming. Because the target of this work is an image, the
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joint intensity metric needs to be trained in conjunction with

a spatial metric for better performance in total. In contrast,

sequence matching does not consider such a spatial metric.

3. Joint intensity and spatial metric learning

3.1. Observation on spatial metric learning

To clarify the difference between the proposed method

and conventional spatial metric learning, we first review

typical spatial metric learning. Given a gray-scale im-

age with height � and width � (i.e., �� = �� pix-

els) whose image intensity at position (�, �) is denoted as

�(�,�) ∈ ℤ, an unfolded image intensity vector is denoted

as v = [�(1,1), . . . , �(�,1), . . . , �(1,�), . . . , �(�,�)]
� =

[�1, . . . , ���
]� ∈ ℤ

�� .1

Thereafter, given a matching pair of images, i.e., a probe

(or a query) v� and a gallery (or an enrollment) v�, their

�1-norm dissimilarity is

�(v� , v�) =

��
∑

�=1

∣��� − ��� ∣. (1)

Moreover, for better classification, we often incorporate

spatial weights into the dissimilarity measure as

�(v� , v�;w�) =

��
∑

�=1

��,�∣��� − ��� ∣, (2)

where w� = [��,1, . . . , ��,��
]� is a spatial weight vec-

tor. The above spatially weighted �1-norm is adopted in a

linear SVM framework for example, where a matching pair

is classified into two classes: a genuine pair (or the same

subject, positive sample) of an imposter pair (or different

subjects, negative sample) [51].

Another popular metric is the Mahalanobis distance

�(v� , v�;�) = (v� − v
�)��(v� − v

�), (3)

where � ∈ ℝ
��×�� is a semi-positive definite matrix.

Various metric learning approaches fall into this category,

for example, ranging from classical projection-based ap-

proaches such as LDA [57], 2D-LDA [39], GTDA [66] and

concurrent subspace analysis (CSA) [75], DATER [77] to

recent metric learning-based approaches such as rank-based

distance metric learning [34], large margin nearest neigh-

bor (LMNN) [72], probabilistic relative distance compari-

son (PRDC) [81], and random ensemble metrics (REMet-

ric) [26], which are often used in studies on gait recogni-

tion [6, 16, 41, 74] and person re-identification.

We note that intensities appear in a subtraction form

(v� − v
�) and hence the original values do not affect the

1The positional subscription-based notation �(�,�) and single sequen-

tial index-based notation �� are used interchangeably in this paper.

dissimilarity, e.g., (��� , �
�
� ) = (100, 0) and (��� , �

�
� ) =

(200, 100) result in the same dissimilarity. In addition, as

absolute difference ∣v� − v
�∣ increases, a dissimilarity

monotonically increases linearly (Eq. (2)) or quadratically

(Eq. (3)), and hence a dissimilarity for (��� , �
�
� ) = (255, 0)

is larger than (��� , �
�
� ) = (100, 130).

The above properties are generally reasonable and hence

exploited in most image matching algorithms. It is, how-

ever, not true under a certain situation. Consider gait

recognition using a silhouette-based representation such as

GEI [16] under covariate variations such as clothing and

carrying status. As shown in Fig. 2, an intrasubject car-

ried object difference (e.g., (��� , �
�
� ) = (255, 0)) returns a

large dissimilarity, while an intersubject motion difference

(e.g., (��� , �
�
� ) = (100, 130)) returns a small dissimilarity.

Therefore, if we learn an appropriate dissimilarity metric

on joint intensities to reduce intrasubject difference while

enhancing the intersubject difference, we can improve the

robustness against covariate conditions.

Although the ��-norm [33, 56] (0 < � < 1) may real-

ize this to some extent (i.e., small absolute differences are

somewhat more leveraged and large absolute differences are

somewhat reduced relative to the �1-norm), a more flexible

operation, such as setting a larger dissimilarity for smaller

absolute differences and setting a different dissimilarity for

the same absolute differences, is still impossible.

3.2. Representation of dissimilarity measure

Based on the above observation, we extend the spatially

weighted �1-norm (Eq. (2)) so that it represents a more gen-

eral metric for joint intensity as follows:

�(v� , v�;w� , �) =

��
∑

�=1

��,��(�
�
� , �

�
� ), (4)

where �(�, �) is a spatially independent dissimilarity metric

for joint intensity (�, �) (e.g., �(�, �) = ∣�−�∣ for �1-norm).

In other words, �(�, �) is regarded as a mapping func-

tion from an intensity pair (�, �) to a dissimilarity. Func-

tion �(�, �) takes as arguments a set of intensity pairs

{(�, �)∣� ∈ �� , � ∈ ��}, where �� = {0, . . . , �max} is

a set of integer intensity levels from 0 (the minimum) to

�max (the maximum. Hence, we may represent mapping

function �(�, �) using a set of ��(= (�max + 1)2) combi-

nations of dissimilarities {��,(�,�)}(� = 0, . . . , �max, � =
0, . . . , �max) as

�(�, �) = ��,(�,�) =

�max
∑

�=0

�max
∑

�=0

��,���,���,(�,�), (5)

where ��,� is Kronecker’s delta.

We further reformulate the above equation in a simple

inner product form as

�(�, �) = x
�
(�,�)w � , (6)

5707



where w�=[��,(0,0),. . .,��,(0,�max),. . .,��,(�max,0),. . .,��,(�max,�max)]
�

= [��,1, . . . ,��,��
]� ∈ ℝ

�� 2 is a joint intensity metric

vector, and x (�,�) = [�(�,�),1, . . . , �(�,�),��
]� is an �� -

dimensional indicator vector whose (�(�max + 1) + �)-th
component is activated (= 1) while the other components

are zero-padded. Specifically, the indicator vector is

derived from Eqs. (5) and (6) as

x(�,�)=[��,0��,0,. . .,��,0��,�max
,. . .,��,�max

��,0,. . .,��,�max
��,�max

]� .
(7)

Finally, we can reformulate the whole dissimilarity mea-

sure (Eq. (4)) as a bilinear form of spatial metric vector w�

and joint intensity metric vector w � as

�(v� , v�;w� ,w �) =

��
∑

�=1

��
∑

�=1

��,���,��(��
�
,��

�
)

= w
�
��(v� ,v�)w � , (8)

where �(v�,v�)=[x (��
1
,��

1
), . . . ,x (��

��
,��

��
)]
�∈{0,1}��×��

is an indicator matrix.

3.3. Metric learning

We next consider learning joint intensity metric w � and

spatial metric w� in the dissimilarity measure (Eq. (8))

so as to well separate the genuine and imposter pairs in a

data-driven way. More specifically, a training set is given

as a set � = {(v� , v�, �)} of image pairs v
� , v�, and a

corresponding class indicator � ∈ {−1, 1}, where 1 and −1
indicate genuine and imposter pairs, respectively.

Similar to prior work on spatial metric learning, we ex-

ploit an SVM framework and then introduce the following

objective function to be minimized:

�(w� ,w �) =
1

2
∥w�∥2 +

1

2
∥w �∥2

+ �
∑

(v� ,v�,�)∈�

�(w�
��(v� ,v�)w � + �, �),(9)

where the first two terms are regularization terms for mar-

gin maximization for spatial metric w� and joint intensity

metric w � , and the third term is a data term, i.e., a penalty

for a soft margin, which contains bias parameter � for op-

timization in SVM and hyper-parameter � to balance the

regularization and data terms. Function �(�, �) is a hinge

loss function, defined as

�(�, �) = �� max(0, 1− ��), (10)

where �� is a class specific weight that we define as �1 = 1
and �−1 = ����/���� so as to balance the genuine and

2The joint intensity subscription-based notation {��,(�,�)}(� ∈
�� , � ∈ ��) and a single sequential index-based notation {��,�}(� =
1, . . . , ��) are used interchangeably in this paper.

imposter samples, where ���� and ���� are the numbers

of genuine and imposter training samples, respectively.

Because the objective function (Eq. (9)) has a bilinear

data term, we adopt an alternate optimization framework.

Once we fix spatial metric w� , the objective function is

��(w �) =
1

2
∥w �∥2 + �

∑

(v� ,v�,�)∈�

�(h�
(v� ,v�)w � + �, �),(11)

h (v� ,v�) = ��
(v� ,v�)w� . (12)

Note that vector h (v� ,v�) ∈ ℝ
�� is regarded as a sort of

joint intensity histogram (see Fig. 3(d)), as its (�(�max +
1) + �)-th component is derived from Eqs. (7) and (8) as

h (v� ,v�),(�,�) =

��
∑

�=1

��,����
�
,����

�
,�, (13)

which is equivalent to counting the number of pixels whose

joint intensity coincides with (�, �).
In contrast, once we fix joint intensity metric w � , the

objective function is

��(w�) =
1

2
∥w�∥2+ �

∑

(v� ,v�,�)∈�

�(m�
(v� ,v�)w� + �, �),(14)

m (v� ,v�) = w
�
� �

�
(v� ,v�). (15)

Note that vector m (v� ,v�) ∈ ℝ
�� indicates a set of dissim-

ilarities at individual spatial positions (later called “spatial

dissimilarity,” see Fig. 3(e)) and that its �-th component

is simply derived from Eqs. (4) and (5) as �(v� ,v�),� =
��,(��

�
,��

�
).

Each objective function (Eqs. (11) and (14)) is efficiently

minimized by the linear SVM framework, and hence we

alternately optimize the joint intensity metric w � and spa-

tial metric w� given a training set (Fig. 3(a)). Specif-

ically, we (i) compute joint intensity histogram h (v� ,v�)

(Fig. 3(d)) under fixed spatial metric w� (Fig. 3(c)) and

update joint intensity metric w � (Fig. 3(b)) by minimizing

Eq. (11) and (ii) compute spatial dissimilarity m (v� ,v�)

(Fig. 3 (e)) under fixed intensity metric w � (Fig. 3 (b)) and

update spatial metric w� (Fig. 3 (c)) by minimizing Eq.

(14). For this alternate optimization framework, we initial-

ize joint intensity metric w � by the absolute difference, i.e.,

��,(�,�) = ∣� − �∣ ∀(�, �), while we initialize the spatial

metric to a uniform weight, i.e., ��,� = 1 ∀�.

3.4. Extension to identification mode

Because the objective function (Eq. (9)) introduced in

the previous section aims to separate genuine and imposter

pairs based only on the dissimilarity of the pair, it is suitable

for the verification mode, i.e., the one-to-one matching used

in, for example, access control. In contrast, when consider-

ing an identification mode, i.e., finding the top � matched
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Figure 3. Framework of joint intensity and spatial metric learning.

Given a training set (a), the joint intensity metric (b) is updated

using joint intensity histograms (d) under a fixed spatial metric (c),

while the spatial metric (c) is updated using spatial dissimilarity

(e) under a fixed joint intensity metric (b).

subjects from a gallery list (e.g., person re-identification), it

is not the dissimilarity of a specific pair but a relative dis-

similarity between the genuine and imposter galleries for a

specific probe (query) that is important. For this purpose, it

is well known that a triplet loss function works well [50,51],

where the optimizer drives a dissimilarity between probe

v
� and an imposter gallery v

���� to be larger than a dis-

similarity between the same probe v
� and genuine gallery

v
���� . Specifically, the objective function for the triplet

loss is

�(w� ,w �) =
1

2
∥w�∥2 +

1

2
∥w �∥2

+�
∑

(v� ,v���� ,v���� )∈�����

�(w�
�(�(v�,v����)−�(v�,v����))w� ,1), (16)

where ����� is a set of triplets of a probe, an imposter

gallery, and a genuine gallery.

We again solve this problem by alternate optimization of

joint intensity metric w � and spatial metric w� in a similar

way to the framework described in the previous section. The

only difference is that we used primal RankSVM [9] for this

optimization instead of linear SVM.

3.5. Regularization for proximity

Because each element in spatial metric w� is optimized

regardless of the spatial proximity in the above method, it

may easily over-fit the training set and hence lose its gen-

eralization capability. We therefore introduce a regularizer

for the spatial proximity. Simply, we introduce the 1st-order

smoothness on the adjacent points as

��(w�)=��

∑

�,�

{

(��,(�,�)−��,(�−1,�))
2+(��,(�,�)−��,(�,�−1))

2
}

=
1

2
��w

�
�Σ�w� , (17)

where Σ� ∈ ℝ
��×�� and �� are a symmetric matrix and a

coefficient for regularizing the spatial metric, respectively.

The objective function for spatial metric w� (Eq. (14)) is

now reformulated as

� ′
�(w�)=

1

2
w

�
� Σ̃�w� + �

∑

(v� ,v�,�)∈�

�(m�
(v�,v�)w�+�, �), (18)

Σ̃� = � + ��Σ� , (19)

where Σ̃� is a new matrix for the spatial regularization

considering both margin and spatial proximity. To solve

this problem, [12] suggests changing variables as w̃� =

Σ̃
1/2
� w� and m̃ = Σ̃

−1/2
� m and to apply the linear SVM

solver to the new variables.

Similarly, it is worth considering the proximity for the

joint intensity metric. Instead of the simple horizontal and

vertical proximity adopted in the spatial metric as above,

we consider the proximity for diagonal and antidiagonal di-

rections in the joint intensity by taking it into account a

relation between the joint intensity and dissimilarity. Be-

cause the absolute difference of intensities is kept along the

diagonal direction (e.g., (�, �) and (� − 1, � − 1)), while

it changes along the antidiagonal direction (e.g., (�, �) and

(� − 1, � + 1)), we set a stronger regularization on the di-

agonal direction than on antidiagonal direction and set a

medium-strength regularization on the horizontal and ver-

tical directions. Specifically, we introduce the following

regularizer for the joint intensity:

��(w �)=��

∑

�,�

{

(��,(�,�)−��,(�−1,�−1))2+�(��,(�,�)−��,(�−1,�+1))2

+
√
2�(��,(�,�)−��,(�−1,�))

2+
√
2�(��,(�,�)−��,(�,�−1))

2
}

=
1

2
��w

�
� Σ�w � , (20)

where Σ� ∈ ℝ
��×�� and �� are a symmetric matrix and

a coefficient for regularizing the joint intensity metric, re-

spectively, and �(≪ 1) is a hyperparameter for controlling

the strength between the diagonal and antidiagonal direc-

tions. Similarly to the spatial proximity, we can include the

joint intensity proximity by changing the variables.

Moreover, we can do the same thing in a ranking SVM

framework (Eq. (16)), although the details are omitted due

to page limitations.

4. Experiments

4.1. Data set

We conducted our experiments using two gait databases:

the OU-ISIR Gait Database, Treadmill Dataset B (OUTD-

B) [46], which includes the largest clothing variations, and

the OU-ISIR Gait Database, Large Population data set with

bag, � version (OU-LP-Bag �)3, which includes carrying

3Available at http://www.am.sanken.osaka-u.ac.jp/

BiometricDB/index.html.
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status variations in the wild. In both databases, we extract

88 × 128 pixel-sized GEIs as gait features.

OUTD-B includes 68 subjects with at most 32 combina-

tions of different clothing. Walking image sequences on the

treadmill were captured from a side view. The whole dataset

is divided into three subsets: a training set, a gallery set, and

a probe set. In the training set, there are 446 sequences of 20

subjects with a range of 15 to 28 different combinations of

clothing. The gallery set and probe set form the testing set,

and are composed of 48 subjects, that were disjoint from

the 20 subjects in the training set. The gallery contains only

standard clothing types (i.e., regular pants and full shirts),

while the probe set includes 856 sequences of other remain-

ing clothing types.

As for carrying status, because the existing gait

databases such as SOTON Large Database [63], USF Hu-

manID [60], CASIA Gait Database B [78], and TUM

GAID [19] contain only a few variations, we utilized gait

database that includes various carrying statuses. More

specifically, gait data in this database were collected in con-

junction with an experience-based demonstration of video-

based gait analysis at a science museum. While each sub-

ject enjoyed the demonstration, he or she was asked to walk

a path twice: once carrying his or her objects and once with-

out carrying objects, after agreeing to an informed consent

for the research purpose use of the gait data (see [45] for

details). As a result, two walking image sequences of 2,070

subjects with various carrying statuses were collected. Sim-

ilarly to OUTD-B, the whole dataset is divided into three

subsets: a training set, a gallery set, and a probe set. The

training set contains 2,068 sequences of 1,034 subjects,

while the gallery and probe sets form a test set composed

of 1,036 subjects that is disjoint from the 1,034 subjects in

the training set. The gallery contains a gait image sequence

without carried objects, while the probe set includes gaits

with carried objects. Because the number of imposter pairs

in the training set is quite large (1,000,000+), we randomly

chose 400,000 imposter pairs for more efficient computa-

tion for training. In addition, unlike OUTD-B, this dataset

contains a single period of gait features for each sequence.

4.2. Parameter settings

The proposed method contains some hyper-parameters.

We experimentally set the default hyperparameters for the

metric learning as � = 1.0, �� = �� = 0.2, and � = 0.1.

In addition, for more efficient computation for training, we

downsampled joint intensity metric w � and spatial metric

w� . Specifically, we reduced the dimensions of joint in-

tensity metric w� from 256 × 256 to 32 × 32, while we

reduced the dimension of spatial metric w� from 88× 128
to 22× 32. We refer the reader to the supplementary mate-

rial for a sensitivity analysis of these hyperparameters.

(a) (b) (c) (d) (e) (f)
Figure 4. Learnt metrics of the joint intensity and spatial met-

rics for the OU-LP-Bag � data set. (a) Sample GEI, (b) sam-

ple GEnI, (c) learnt spatial metric using linear SVM under the

absolute-difference joint intensity metric, (d) absolute difference

as a joint intensity metric for the �1-norm (i.e., w/o metric learn-

ing), (e) joint intensity metric for GEnI (i.e., hand-crafted), and

(f) learnt joint intensity metric using linear SVM under uniform

spatial weight. Brighter values indicate larger weights in (c) and

dissimilarity in (d–f), respectively. The metrics shown in (c) and

(f) are enlarged to the original size by linear interpolation from the

downsampled learnt ones.

4.3. Learnt metrics

In this section, we analyze the learnt metrics and show

typical matching examples using the learnt metrics. Figure

4 shows the learnt joint intensity and spatial metrics as well

as GEI [16] and GEnI [5] samples.

The learnt spatial metrics were often successfully inter-

preted in prior work [51, 79] (e.g., a region around the sil-

houette contour is enhanced, while a region affected by car-

ried objects is reduced), because they handle only a limited

variations of clothing or carrying status. The spatial metric

(Fig. 4(c)) learnt with diverse carrying conditions (Fig. 1),

is, however, too complex to be interpreted, which implies

the difficulty or over-fitting risk when we use the spatial

metric alone.

In contrast, the learnt joint intensity metric (Fig. 4(f)) is

more easily interpreted. Compared with the joint intensity

metrics for absolute-difference (Fig. 4(d)) and for GEnI [5]

(Fig. 4(e)), the learnt joint intensity metric (Fig. 4(f)) has

some interesting points. First, while small dissimilarities

are assigned to regions close to the diagonal line, i.e., sub-

tle motion differences appeared in GEI in Figs. 4(d) and

(e), relatively large dissimilarities are assigned to such re-

gions for the learnt metric (Fig. 4(f)), which indicates that

the learnt metric successfully leverages the informative in-

tersubject motion difference.

Moreover, for intensity pairs of complete foreground and

background regions (i.e., near the top-right and bottom-

left corners), which is partly derived from the intrasubject

carrying status variations, the absolute difference returns

the largest dissimilarity (Fig. 4(d)). In contrast, because

GEnI [5] enhances motion regions while discarding static

regions regardless of the background or foreground, such

intensity pairs return the smallest dissimilarity (Fig. 4(e)).

Generally speaking, GEnI cannot distinguish two intensity

values in GEI: � and (255 − �), i.e., an anti-diagonal line

in Fig. 4(e), this hand-crafted joint intensity metric may

overwhelm the important intersubject variations.

Unlike these two extreme joint intensity metrics, the pro-
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(a) (b) (c) (d) (e) (f) (g)

Figure 5. Matching examples for three probes with different types

of carried objects. (a) Probe. (b) Gallery (genuine). (c) Gallery

(imposter). (d) and (e) Spatial dissimilarity with absolute differ-

ence for a true match pair ((a) and (b)) and false match pair ((a) and

(c)), respectively. (f) and (g) Spatial dissimilarity with the learnt

joint intensity metric shown in Fig. 4(f) for a true match pair ((a)

and (b)) and false match pair ((a) and (c)), respectively. In (d)–(g),

darker and brighter regions indicate similar and dissimilar regions,

respectively. While the dissimilarities with the absolute difference

for the true match pairs are larger than those for the false match

pairs because of the carried objects (green-dotted circled regions),

they are suppressed to some extent with the learnt joint intensity

metric in (f). In contrast, the motion difference region between the

false match pairs are enhanced by the learnt joint intensity metric

in (g), and hence the dissimilarities using the learnt joint intensity

metric for the false match pairs are larger than those for the true

match pairs.

posed joint intensity metric (Fig. 4(f)) learns an appropriate

dissimilarity for the intensity pairs of complete foreground

and background regions in a data-driven way, i.e., neither

the maximum dissimilarity, as in Fig. 4(d), nor completely

zero, as in Fig. 4(e), but moderate value which is smaller

than dissimilarity for intersubject motion variations around

the diagonal line, as shown in Fig. 4(f).

Thanks to the properties of the learnt joint intensity met-

ric, we can successfully recover the failure modes of �1
norm-based gait recognition under various carrying condi-

tions (e.g., a subject carrying a backpack or briefcase) as

shown in Fig. 5. In fact, we can see that the learnt joint

intensity mitigates the effect of carrying status regardless

of its spatial position, while leveraging intersubject motion

differences, which results in successful recognition.

4.4. Analysis of individual modules

In this section, we analyze the effect of individual com-

ponents of the proposed metric learning (ML). We consider

�1-norm (Eq. (1)) (denoted as w/o ML) as a baseline, and

also three variants as benchmarks: (1) spatial metric learn-

ing only (S-ML), (2) joint intensity metric learning only (JI-

ML), and (3) both joint intensity and spatial metric learning

(JIS-ML). In addition, we train the above three metrics by

Table 1. EER [%] and rank-1 identification rate (denoted as Rank-

1) [%] for individual metrics and solvers for OUTD-B. Bold and

italic bold indicate the best and the second best performances, re-

spectively.

Set Test Training

Method EER Rank-1 EER Rank-1

w/o ML 26.3 61.6 27.2 72.3

S-ML (Linear SVM) 27.2 12.0 7.0 84.5

JI-ML (Linear SVM) 13.9 67.9 14.6 79.1

JIS-ML (Linear SVM) 14.5 56.4 1.5 96.9

S-ML (Ranking SVM) 14.6 60.2 7.9 97.7

JI-ML (Ranking SVM) 13.4 71.5 11.3 91.3

JIS-ML (Ranking SVM) 11.0 74.5 3.5 99.8

both linear SVM and ranking SVM. We evaluated them in

both verification (one-to-one matching) and identification

modes for both the test and training sets of OUTD-B, and

report in Table 1 the equal error rate (EER) of the false re-

jection rate (FRR) of the genuine pairs and the false accep-

tance rate (FAR) of the imposter pairs for the verification

mode. We also report the rank-1 identification rate in the

identification mode.

As a result, JIS-ML (Ranking SVM) yielded the best or

second best accuracies, and JIS-ML (Linear SVM) yielded

the best accuracy for the training set in verification mode

(i.e., the lowest EER), which is reasonable when taking the

properties of linear SVM and ranking SVM into account.

Another interesting aspect is that S-ML yielded better ac-

curacy than JI-ML for the training set while S-ML is per-

formed worse than JI-ML on the test set. This indicates

that the spatial metric tends to over-fit to the covariate con-

ditions in the training set (i.e., the spatial positions are af-

fected by the clothing variations of training subjects) and

hence suffers from generalization errors. In contrast, the

joint intensity metric successfully maintains its accuracy

(e.g., the EERs of the test set are not significantly degraded

from those of the training set,4) and hence has better gener-

alization capability than the spatial metric.

4.5. Comparison with the state-of-the-arts

In this section, we compare the proposed method of

joint intensity and spatial metric learning using rank-

ing SVM (JIS-ML (Ranking SVM)) with state-of-the-art

benchmarks. To evaluate the verification mode, we applied

probe-dependent z-normalization [3], i.e., we compute the

dissimilarity scores between a specific probe and all the gal-

leries, and normalize them so as that their means and stan-

dard deviations are 0 and 1, respectively, because the state-

of-the-art [5, 6, 16, 20, 36, 38, 42, 74, 75] are also evaluated

with z-normalization for OUTD-B.

As for the gait features used, in addition to GEI, which is

the most popular descriptor in the gait recognition research

4Note that rank-1 identification rates depend on the gallery size (20 and

48 subjects for training and test sets, respectively).
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SVB-frieze pattern [36] Component-based [38] FDF (Part-baesd) [20] EnDFT (Part-based) [58]

GEnI [5] Masked GEI [6] Gabor GEI [65] TPG + GEI [42]

GEI w/o ML [16] GEI w/ LDA [56] GEI w/ 2D-LDA [39] GEI w/ CSA [74]
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Figure 6. ROC and CMC curves for the comparison experiments

(left: OUTD-B, right: OU-LP-Bag �). Note that some bench-

marks do not provide curves.

Table 2. Comparison experiments. Rank-1 and z-EER indicate

rank-1 identification rate [%] and EER with z-normalization [%].

Bold and italic bold indicate the best and second best accuracies.

N/A and “-” indicate not applicable and not provided, respectively.

Dataset OUTD-B OU-LP-Bag �

Method z-EER Rank-1 z-EER Rank-1

SVB-frieze pattern [36] 19.81 - - -

Component-based [38] 18.25 - - -

FDF (Part-based) [20] 10.26 66.3 - -

EnDFT (Part-based) [59] - 72.8 - -

GEnI [5] 12.81 59.0 18.82 29.5

Masked GEI [6] 28.15 28.0 61.95 0.1

Gabor GEI [66] 11.80 62.3 10.48 46.4

Gabor GEI w/ RSM [15] N/A 90.7 N/A N/A

TPG + GEI [42] 7.10 - - -

GEI w/o ML [16] 16.21 55.3 19.59 24.6

GEI w/ LDA [57] 15.63 54.3 8.10 54.6

GEI w/ 2DLDA [39] 8.91 70.7 11.47 43.3

GEI w/ CSA [75] 16.00 - - -

GEI w/ DATER [74] 8.72 - - -

GEI w/ Ranking SVM [51] 10.75 58.4 10.81 28.3

Proposed method 6.66 74.5 5.45 57.4

community, we also chose gait features that are robust

against clothing variations and/or carrying status: shape

variation-based (SVB) frieze pattern [36], component-

based features [38], part-based FDF [20], part-based EN-

tropy of the Discrete Fourier Transform (EnDFT) [59],

GEnI [5], Masked-GEI [6], Gabor GEI [5], Gabor GEI with

a random subspace method (RSM) [15], and two-point gait

(TPG) + GEI [42]. Moreover, we applied a variety of spatial

metric learning methods to GEI: LDA [57], 2D-LDA [39],

CSA [75], DATER [74, 77], and ranking SVM [9, 51].

We show the accuracies of the verification mode by

the receiver operating characteristic (ROC) curve with z-

normalization, which indicates the tradeoff between FAR

and FAR for various genuine match acceptance threshold

values. In addition, we show the accuracies of the identifi-

cation mode by cumulative matching characteristic (CMC)

curves in Fig. 6. In addition, as a summary of each mode’s

evaluation, we reported the EER with z-normalization and

rank-1 identification rate in Table 2.

The results show that the proposed method yielded the

best or the second best results for the both OUTD-B and

OU-LP-Bag � data sets, which indicates the effectiveness

of the proposed joint intensity and spatial metric learning

for gait recognition under clothing and carrying status vari-

ations. Although Gabor GEI w/ RSM [15] achieved a supe-

rior rank-1 identification rate for OUTD-B, note that RSM

cannot be applied in the verification mode because of its

majority voting scheme for the gallery. It also cannot be

used on a data set that includes a single sample per gallery

(i.e., the OU-LP-Bag � data set). This is because it needs

a regular within-class matrix for the gallery set. Therefore,

considering the balance of application range and accuracy,

we conclude that the proposed method is a suitable choice

from among the benchmark methods.

5. Conclusion
This paper described a method of joint intensity metric

learning and its application to robust gait recognition. We

formulated the dissimilarity using a bilinear form of joint

intensity and spatial metrics, and alternately optimize it by

linear SVM or ranking SVM so as to well separate gen-

uine and imposter pairs. We conducted experiments using

OUTD-B and OU-LP-Bag �, and showed the effectiveness

of the proposed method compared with other state-of-the-

art methods.

Although the proposed method handles a common joint

intensity metric over spatial positions, suitable joint inten-

sity metrics may differ among the body parts (e.g., more

leverage on the motion difference in the legs). Therefore, a

future avenue of research is to extend the proposed frame-

work to spatially dependent joint intensity metric learn-

ing. Moreover, because applications of the proposed frame-

work are not limited to gait recognition, we plan to test the

proposed method with other problems such as person re-

identification.
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