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Abstract

Current Elastic SfT (Shape from Template) methods are
based on ℓ2-norm minimization. None can accurately re-
cover the spatial location of the acting forces since ℓ2-norm
based minimization tends to find the best tradeoff among
noisy data to fit an elastic model. In this work, we study
shapes that are deformed with spatially sparse set of forces.
We propose two formulations for a new class of SfT prob-
lems dubbed here SLE-SfT (Sparse Linear Elastic-SfT). The
First ideal formulation uses an ℓ0-norm to minimize the car-
dinal of non-zero components of the deforming forces. The
second relaxed formulation uses an ℓ1-norm to minimize
the sum of absolute values of force components. These new
formulations do not use Solid Boundary Constraints (SBC)
which are usually needed to rigidly position the shape in
the frame of the deformed image. We introduce the Pro-
jective Elastic Space Property (PESP) that jointly encodes
the reprojection constraint and the elastic model. We prove
that filling this property is necessary and sufficient for the
relaxed formulation to: (i) retrieve the ground-truth 3D de-
formed shape, (ii) recover the right spatial domain of non-
zero deforming forces. (iii) It also proves that we can rigidly
place the deformed shape in the image frame without using
SBC. Finally, we prove that when filling PESP, resolving
the relaxed formulation provides the same ground-truth so-
lution as the ideal formulation. Results with simulated and
real data show substantial improvements in recovering the
deformed shapes as well as the spatial location of the de-
forming forces.

1. Introduction

SfT(Shape from Template) is one of the most critical
open problems in computer vision of the last decade. The
problem is quite challenging since with few adequate priors
one must retrieve a 3D deformed shape from a single im-
age. Usually these priors concern the Reprojection Bound-
ary Constraint (RBC) and the model of deformation. The
former establishes a correspondence between the template
shape (known 3D shape) and a deformed image (2D pro-
jection of the deformed shape). RBC gives the subspace
of possible deformed shapes that explains the current de-
formed image. The latter constrains the possible deforma-

tions of the template given the RBC. It allows us to keep
one or at most a finite set of plausible deformed shapes [4].
The model prior can differ from physics based to statistics
based.

Statistics based approaches usually represent the defor-
mation as a linear combination of learnt shape or mode
basis [23, 27, 25, 29, 1]. Physics based approaches were
mainly instanciated for isometry [7, 25, 28, 9], conformal
[19, 4] and elasticity [14, 21, 2]. It has been theoretically
proven that in the case of isometric prior there is a unique
solution and in the case of conformal prior there is a set
of discrete number of solutions [4]. In the case of elastic-
ity, usually it requires a set of SBC (Solid Boundary Con-
straints). This requirement is necessary to rigidly position
the shape in the frame of the deformed image such that we
seek only the non-rigid deformation. This constraint en-
sures that the SfT problem has a unique solution with an ℓ2-
norm linear formulation [20]. It was experimentally shown
that a sequential approach does not require SBC [2].

Among existing SfT methods, sparsity has already been
exploited as a modal prior in the statistics based approaches.
It was used to express the deformed shape as a sparse lin-
ear combination of the basis shapes. This approach has
shown substantial improvement of the reconstruction accu-
racy [34, 12, 26]. Nevertheless, in this case there is no for-
mal proof that the linear combination is indeed sparse. In
physics based SfT and to the best of our knowledge, spar-
sity has never been used as a spatial prior to characterize
such type of deformation. Addressing this class of defor-
mation is important for practical as well as theoretical rea-
sons. In practical terms there is a non-negligible number of
daily life deformed objects that might be subjected to sparse
deforming forces. For instance clothes, plastic bottles, bal-
loons, etc. In theoretical terms, since the usage of sparsity
is here physically justified, it becomes important to formal-
ize it, to investigate the well posedness of it and to provide
tools to solve it.

In this paper, we study the formalization and well
posedeness of elastic SfT with sparse deforming forces. It
is the first time where sparsity is used as a prior to charac-
terize a specific type of spatial deformation. We use a linear
elastic model as a physics based prior and a linear formula-
tion with finite element method as suggested in [20]. This
previous formulation minimizes the ℓ2-norm of the force
which is applied to obtain the deformed shape. In the case
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of sparse deforming force vectors, only few components of
these vectors are non-zeros. Thus, such formulation is not
appropriate since an ℓ2-norm minimization may recover a
dense deforming force especially in the case of noisy data
and errors in modelling. This work provides also a theoreti-
cal condition for which the SBC is not required to uniquely
retrieve the ground-truth 3D deformed shape.

Contributions. We propose two formulations for a new
class of SfT problems dubbed here SLE-SfT (Sparse Lin-
ear Elastic-SfT). Equation (IF) establishes the Ideal For-
mulation with the ℓ0-norm which minimizes the number of
non-zeros components of the applied force vector. Equation
(RF) states the Relaxed Formulation with an ℓ1-norm since
the ℓ0-norm is NP-hard to solve [13]. These new formula-
tions do not use SBC. We introduce the Projective Elastic
Space Property (PESP) that jointly encodes the RBC and
the elastic model (Definition 2). In Theorem 2, we prove
that filling this property is necessary and sufficient for the
relaxed formulation to: (i) retrieve the ground-truth 3D de-
formed shape, (ii) recover the right spatial domain of non-
zero deforming forces. (iii) It also proves that we can rigidly
place the deformed shape in the image frame without us-
ing SBC. Finally, we establishes in Proposition 1 that under
some conditions the unique ground-truth solution of (RF) is
also the unique ground-truth solution of (IF).

2. Related Works and Contributions

Physics-based SfT without sparse prior. The isometry-
based SfT [7, 25, 28] requires that any geodesic distance
is preserved by the deformation. This approach has proven
its accuracy for paper-like surfaces [9]. Conformal-based
SfT imposes a local isotropy constraint on the deforma-
tions. It was tested on ball-like shapes [19, 9]. For a de-
tailed study of these two geometric-based SfT we recom-
mend [4]. Elastic-based SfT constrains the shape to undergo
linear or non-linear elastic deformations. [21] proposed an
non-linear iterative SfT method using linear elasticity. The
approach relies on stretching energy minimization under re-
projection boundary conditions. This method was then cast
as a linear problem [20] which can be solved in one opti-
mization run.[14] used a non-linear iterative method based
on non-linear elasticity and orthographic projection. [15]
used shape contours as RBC to estimate both the deforma-
tion and the rigid placement of the shape in the deformed
image frame.

A close approach to SfT but conceptually different is
NRSfM (Non-Rigid Structure-from-Motion). In this ap-
proach a deformable shape is reconstructed from multi-
frame 2D-2D correspondences. Most of these methods
model the deformations using low-rank shapes [10]. A se-
quential framework which jointly estimate shape and cam-
era poses from multi-image frames was proposed in [2].
This method relies on the Navier-Stokes fluid-flow model.
It makes use of FEM to represent the surface and approx-
imates the deformation forces with Gaussians. Both the
shape and the forces are reconstructed using an EKF (Ex-
tended Kalman Filter).

Statistical-based SfT with sparse prior. Sparsity is fa-
mous in computer vision for solving classification prob-
lems [32, 30, 33]. Up to now and to the best of our knowl-
edge it was used only in statical-based SfT. It was mainly at-
tempted for human pose estimation. [26] proposed a sparse
representation of shape basis to reconstruct 3D human pose
from annotated landmarks in a still image. [12] enforces
locality when building the pose dictionary. Recently [34]
proposes a convex relaxation of the problem of jointly esti-
mating shape and camera pose.

3. Surface Parameterization with FEM

We use shape functions in a finite elements (FEM)
framework [8] to represent both the surface and the defor-
mation. This is particularly adapted to elastic SfT and al-
lows to cast it as a linear problem. The finite discrete set
of point correspondences has a natural boundary condition
through the RBC. Any other point of the surface is free from
this boundary condition and is subject to the linear elastic
prior. Thus let N be this discrete set of point correspon-
dences between the template and the deformed surface and
n = |N | be its cardinal. In FEM vocabulary, these points
are knowns as the nodes of the elements which are used to
mesh the surface. We denote M the set of elements which
compose the surface and m = |M| the total number of ele-
ments.

The template surface is denoted S0 ⊂ R3n. A subset of

n points P ,

{

¯
p
i
∈ S0

}n

i=1
are taken to be nodes of the

finite element meshing. The template global node vector
p ∈ R3n is obtained by stacking column-wise the coordi-
nates of the node points. These coordinates are expressed
in the frame of the deformed image. Any point

¯
p ∈ S0 of

the surface is expressed with respect to the n nodes as:

¯
p(u, v) =

n∑

i=1

hi(u, v)
¯
p
i
, i ∈ [3n], (1)

where [3n] , {1, . . . , 3n} and (u, v) ∈ R2 is a
global parameterization of the surface. {hi(u, v)}i∈[3n],
are real valued differentiable functions called shape func-
tions [8]. The support of hi is the union of elements
that contains node i. The shape functions must sum to
one for all u, v. The deformed surface is denoted S ⊂
R3. Defining S is equivalent to determining the vec-
tor field (δ : S0 → R3n :

¯
p 7→

¯
x) such that S =

{

¯
p+ δ(

¯
p) =

¯
p+

¯
x,

¯
p ∈ S0,

¯
x ∈ R3n

}

. Here
¯
x denotes

the deformation vector associated to the point
¯
p ∈ S0. Tak-

ing into account the set P of n nodes, The associated set

of deformation vector is defined as D ,
{

¯
xi ∈ R3n

}n

i=1
.

With isoparameteric FEMs, a deformation
¯
x ∈ R3 of a

given point
¯
p ∈ S0 is expressed similarly as in (1) with

respect to the elements of the set deformation vector D and
the same set shape functions

¯
x(u, v) =

n∑

i=1

hi(u, v)
¯
x
i, i ∈ [3n]. (2)
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The global deformation vector of the nodes x ∈ R3n is
obtained by stacking column-wise the coordinates of the de-
formation vector of the node points. The global node vector
of the deformed shape can be represented as p+x in the de-
formed image frame. The reprojection of these points onto
the image plane must fit the corresponding point of the tem-
plate. The obtained linear constraint is called Reprojection
Boundary Constraint (RBC) and is developed in the follow-
ing paragraph.

4. Physics and Prior Constraints

4.1. The Reprojection Boundary Constraint

Lets take a single node
¯
p
i
∈ P from the template surface

with coordinates
¯
p
i
=

(

x0
i y0i z0i

)⋆
(the star symbol de-

notes here the vector and matrix transpose). The coordi-
nates of the corresponding deformation vector are denoted

¯
xi =

(

xi yi zi
)⋆

. The point correspondence between
template and deformed surface is known and given by the
value of the 3D-2D warp at this point η : S0 → ΠS :

¯
p
i
7→ η(

¯
p
i
) =

(

ηui ηvi
)⋆

. Where ΠS ⊂ R2 is the pro-

jected domain of the deformed surface. We use perspective
projection and assume that the effect of the camera intrin-
sics are removed on the projected coordinates. The resulted
equation can be written as

¯
Πi

¯
xi =

¯
yi. (3)

Where,

¯
Πi =

(

1 0 −ηui
0 1 −ηvi

)

and
¯
yi = −

¯
Πi

¯
p
i
. (4)

Taking into account the n nodes as point correspondences,
we obtain an n-block diagonal matrix equation with respect
to the global deformation vector x ∈ R3n

Πx = y. (5)

The global matrix Π ∈ R2n×3n and global vector y ∈ R2n

are written as:

Π =











¯
Π1 0

. . .

0
¯
Πn











and y =







¯
y1

...

¯
yn






. (6)

4.2. The Physics of Deformation

A deformation vector
¯
x ∈ R3 is due to a deforming force

vector
¯
f ∈ R3. Taking into account the set D of n defor-

mation vector of the nodes, The associated set of deforming

force vector is defined as F ,
{

¯
fi ∈ R3

}n

i=1
. The global

force vector of the nodes f ∈ R3n is obtained by stacking
column-wise the coordinates of the deformation vector of
the node points. The relation between the global deforming
force vector f and the global deformation vector x is written
as

f = Kx, (7)

K is the stiffness matrix of size 3n × 3n, see for instance
[20, 2] for the construction of K. This construction can use
for instance plate theory [6] if we assume that the addressed
surface has locally planar properties (2-manifolds). By con-
struction, matrix K is symmetric positive semi-definite. We
further assume that it satisfies the following two properties

Property 1. If we assume that we have a regular meshing
of the surface [11], then the stiffness matrix K is well con-
ditioned.

Property 2. If we assume that the shape functions satisfy
the completeness property [18], then rank(K) = 3n − 6.
The null space of dimension 6 can be parameterized by a
set of three rotations and 3-vector of translation (rigid de-
formation vector ). We denote N ∈ R3n×6 the matrix ob-
tained by concatenating a set of vector basis of this null
space

N =
(

v1 . . . v6

)

,

s.t. Kvi = 0, i ∈ [6], (8)

v1, . . . ,v6 are linearly independent.

The completeness of the shape function ensures that
rigid transformations of the template surface S0 does not
involve a deforming force. The only non-zero deforming
force is due to non-rigid deformation.

4.3. Support and Sparsity of Deforming Force

Definition 1. We call the support of f , the location of non-
zero elements of its components

Q ,{i| fi 6= 0, i ∈ [3n]}, (9)

The size of the support being its cardinal

|Q| , ‖f‖0. (10)

‖·‖0 is the ℓ0-norm. fi is the i−th component of f . We

denote by Q̄ the complement of Q in [3n]. In the case of
sparse deformation, the cardinal |Q| is expected to be far
smaller than |Q̄|.

5. Previous formulation: the ℓ2-norm Formu-
lation

As was stated in [20] SfT can be formalized as finding x̂
such that

x̂ ∈ argmin
x̃∈R3n

1

2
‖Kx̃‖22 s.t.

{

Πx̃ = y RBC,

S x̃ = 0 SBC.
(11)

S is an l×3n sparse matrix. It adds l equality constraints
on the depth besides the corresponding 2l equations of RBC.

It was proven in [20] that to have a unique solution with
this formulation, it is necessary and sufficient to have l
equations of solid boundary constraints such that the ma-
trix K becomes full rank when updated with the following
equations

K(3i, 3j) =1, if i = j,

K(3i, 3j) =0, otherwise. (12)
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Here, i runs over the l solid boundary points and j runs over
the 3n columns.

6. Formulation of the SLE-SfT

6.1. Removing the SBC

The necessary usage of SBC is of limited interest in real
world application. They are indeed difficult to set in real
context unless setting them by hand or by some artificial
markers. In this work, we remove SBC from the formulation
(11) and we prove, up to a certain level of sparsity, that
it is possible to recover the ground-truth solution with the
correct support. Without SBC, K is of rank n− 6 and if x
is a non-rigid deformation, then there is an infinite number
of rigid transformations of the surface that obeys the same
deforming force f , i.e.,

f = K(x+Nw), for all w ∈ R6. (13)

Taking into account this equation with the sparsity prior on
the deforming force gives rise to the following formulation.

6.2. Ideal Formulation of the SLE­SfT (IF)

Let us denote by K+ the Moore-Penrose pseudo-inverse
matrix of K [5]. If we remove SBC and take into account
the sparsity of f , then we obtain the following formulation
labelled (IF)



















x̂ = K+f̂ −Nŵ,

where,
(

f̂ , ŵ
)

∈ argmin
f̃ ,w̃

∥

∥

∥f̃

∥

∥

∥

0
s.t.

{

Π
(

K+f̃ +Nw̃
)

= y,

f̃ ∈ span(K).
(IF)

By Property 1, we can assume that the computation of

K+ is numerically stable. The additional condition f̃ ∈
span(K) is used here to ensure that (13) is verified. Al-
though this formulation is ideal to exploit the sparsity of
f , it has two characteristics that can be simplified: (i) the
ℓ0-norm is NP-hard [13]. (ii) If the proposed formula-
tion retrieve the unique ground-truth f , then it must satisfy

f̃ ∈ span(K). Thus we can simplify the formulation (IF)
by: (i) using a relaxed formulation with ℓ1-norm instead of

ℓ0-norm and (ii) removing the condition f̃ ∈ span(K). This
final formulation can be stated in the following paragraph.
The solution of the final problem is relevant if and only if it
is the ground-truth solution and thus equal to the solution of
the ideal formulation. This solution equality and the condi-
tion under which it is true are established in Proposition 1
in Section 7.2.

6.2.1 Relaxed Formulation of the SLE-SfT (RF)

The relaxed formulation without the condition on f being in
span(K) is denoted (RF) and is given by















x̂ = K+f̂ −Nŵ,

where,
(

f̂ , ŵ
)

∈ argmin
f̃ ,w̃

∥

∥

∥f̃

∥

∥

∥

1
s.t. Π

(

K+f̃ +Nw̃
)

= y.

(RF)

The global scheme of this minimization problem corre-
sponds to an ℓ1 linear convex problem with linear con-
straint. If this problem has a unique solution if the feasible
set is non-empty, it is not always the case that this solution
corresponds to the ground-truth solution. Deriving condi-
tions under which this solution is the ground-truth solution
allows us to prove that the solution of (RF) is the same as
the one of (IF). Though it has been widely studied in the
theory of compressive sensing [13], it was never been pro-
posed in the field of SfT for sparse deforming force. The
following theoretical results are derived from this theory. In
particular, the proofs of Theorems 1 and 2 below are derived
from those in [13] to the specific SLE-SfT problem.

7. Exact Recovery Condition for (RF)

In this section we want to establish the exact recovery
condition for (RF) where the unique estimated solution x̂
via this formulation is equal to the ground-truth deforma-
tion x. For this purpose, we first give an extension of the
definition of the Null Space Property. This property is fa-
mous in compressive sensing [13] and allows us to provide
necesseray and sufficient conditions for ℓ1-norm relaxed
problems.

7.1. The Projective Elastic Space Property (PESP)

Let us denote fQ ∈ R
|Q| and fQ̄ ∈ R

|Q̄| as the restric-

tions of f to the indices in Q and Q̄ respectively.

Definition 2. We say that the couple (Π,K) satisfies
the Projective Elastic Space Property (PESP) relative to
Q ⊂ [3n] if for every f ∈ R

3n\{0} such that ΠK+f ∈
span(ΠN), we have

‖fQ‖1 < ‖fQ̄‖1. (14)

This definition is an extension of the more generic mod-
ified Null Space Property [3, 13]. This definition is con-
cerned with all the non-zero forces f such that the perspec-
tive projection of a non-rigid deformation can be explained
by a perspective projection of a rigid transformation. If the
couple (Π,K) satisfies the PESP for a given Q ⊂ [3n], then
the restriction of such force to Q is strictly dominated by
the restriction of this force to Q̄ in the sense of the ℓ1-norm.
We say that it satisfies the PESP of order s if it satisfies the
PESP relative to any support Q ⊂ [3n] with card(Q) ≤ s.

Theorem 1. Every couple (f ,w) ∈ R
3n × R

6, where the
force vector f is supported on a set Q, is the unique solution
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of (RF) with the observed image y = Π(K+f +Nw) if
and only if the couple (Π,K) satisfies the PESP relative to
Q. The unique reconstructed deformation is thus given by
x = K+f −Nw.

The strength of this theorem is to state that satisfying the
PESP relative to a support Q is necessary and sufficient to
retrieve the ground-truth solution x and (f ,w) via (RF). To
prove this theorem, we first need the following lemma

Lemma 1. For any n > 3, a given Π and N as defined
respectively in (6) and (8), we have

ker(ΠN) = {0}. (15)

Proof. Let us consider p ∈ R
3n as the node points of

the template surface S0. If we consider that there exists
w ∈ ker(ΠN) such that w 6= 0. Then this is equivalent
to saying that there exists a rigid displacement Nw 6= 0
of the template nodes p that does not change their initial
projection

Π(Nw + p) = Πp. (16)

Which means that ΠN is injective. As a matter of fact, a
rigid positioning of a set of n points to fit a given perspec-
tive projection is nothing but a PnP problem [24]. It has
been established [16] that for n > 3, there is no rigid trans-
formation of p that can give similar perspective projection
as stated in (16) which is a contradiction with the hypothesis
w 6= 0.

In this paper, we study our new formulation for generic
cases where n > 3. The case n ≤ 3 is a very specific study
that requires more care. We let this case for later develop-
ment as potential futur work. The proof of Theorem 1 is
thus given as follows.

Proof. Let us first prove the necessity of PESP. Given
a known support set Q, let assume that every cou-
ple (f ,w) ∈ R

3n × R
6, where f is supported on

a set Q, is the unique minimizer of

∥

∥

∥f̃

∥

∥

∥

1
subject to

Π
(

K+f̃ +Nw̃
)

= Π(K+f +Nw). Particularly, if f ∈
R

3n is any vector (not necessarily supported on Q) such
that ΠK+f ∈ span(ΠN), then by the assumption we have

that (fQ,w) is the unique minimizer of

∥

∥

∥
f̃

∥

∥

∥

1
subject to

Π
(

K+f̃ +Nw̃
)

= Π(K+fQ +Nw). Since ΠK+f ∈
span(ΠN), there exists a unique w′ ∈ R

6 (thanks to
Lemma 1) such that ΠK+f = ΠNw′. If we choose
w̃ = w′+w and write f = fQ+fQ̄ then we find that (fQ̄, w̃)
is a feasible solution. Since by assumption (fQ,w) is the
unique minimizer, we must have ‖fQ‖1 < ‖fQ̄‖1 which es-

tablishes the PESP relative to Q for the couple (Π,K).
Let us now prove the sufficiency of PESP. Let assume

that the couple (Π,K) satisfies the PESP relative to a given
set Q ⊂ [3n]. For a given couple (f ,w) ∈ R

3n×R
6, where

f is supported on Q and any other feasible couple
(

f̃ , w̃
)

∈

R
3n ×R

6 satisfying Π
(

K+f̃ +Nw̃
)

= Π(K+f +Nw),

we can easily check that the vector v , f − f̃ is such that
ΠK+v ∈ span(ΠN). Thus we can use the PESP with v
to prove that

‖f‖1 =
∥

∥

∥f − f̃Q + f̃Q

∥

∥

∥,

≤
∥

∥

∥f − f̃Q

∥

∥

∥

1
+
∥

∥

∥f̃Q

∥

∥

∥

1
, by triangular inequality

= ‖vQ‖1 +
∥

∥

∥f̃Q

∥

∥

∥

1
, by definition of v

< ‖vQ̄‖1 +
∥

∥

∥f̃Q

∥

∥

∥

1
, by PESP on v

=
∥

∥

∥f̃ Q̄

∥

∥

∥

1
+

∥

∥

∥f̃Q

∥

∥

∥

1
, since f = fQ, fQ̄ = 0

=
∥

∥

∥f̃

∥

∥

∥

1
. (17)

This concludes that f is the unique minimizer of (RF). If
w̃ ∈ R

6 is a feasible solution then ΠNw̃ = y −ΠK+f =
ΠNw. By Lemma 1, ΠN is injective and then w̃ = w.

Theorem 2. Every couple (f ,w) ∈ R
3n × R

6, where f
is an s-sparse force vector, is the unique solution of (RF)
with the observed image y = Π(K+f +Nw) if and only if
the couple (Π,K) satisfies the PESP of order s. The unique
reconstructed deformation is thus given by x = K+f−Nw.

Proof. If (Π,K) satisfies the PESP of order s then by defi-
nition it satisfies the PESP relative to any support Q ⊂ [3n]
with card(Q) ≤ s. Hence for every such support Q and
by Theorem 1 every couple (f ,w) ∈ R

3n × R
6, where f is

supported on Q, is the unique solution of (RF).

7.2. Exact Recovery for (IF)

Proposition 1. Under the condition of Theorem 2 every re-
covered ground-truth solution via problem (RF) is also the
unique ground-truth solution of problem (IF).

Proof. Under the condition of Theorem 2, the recovered
solution corresponds to the ground-truth solution (f ,w),
where f is s- sparse. By hypothesis, this force f ∈ R

3n

causes the deformation and satisfies the model f = Kx
which stands for f ∈ span(K). Moreover, let (z, c) be

the minimizer of (IF) with y = Π
(

K+f̃ +Nw̃
)

then

‖z‖0 ≤ ‖f‖0 so that z is also s-sparse. Since every s-
sparse vector is the unique solution of (RF) with the same

y = Π
(

K+f̃ +Nw̃
)

, it follows that f = z. We have

w̃ = c because of Lemma 1.

8. Implementation and Compared Methods

The method implementation and evaluation used MAT-
LAB R2014A running upon a MAC PRO (OS X 10.11.4)
with INTEL CORE I5 running at 2 × 2.66 GHz with 8
GB DDR3 memory. The resolution of the constrained ℓ1
minimization part of (RF) was implemented using ADMM
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algorithm[31]. The Alternating Direction Method of Mul-
tipliers (ADMM) is an algorithm that solves linear con-
vex optimization problems by breaking them into smaller
pieces, each of which are then easier to handle. We used
triangular elements and polynomial shape functions to de-
scribe the finite element meshing of the surface [8]. We used
a plate model to describe the mechanics of the deformable
surface [6]. This model is valid as soon as the thickness of
the surface remains negligible when compared to the max-
imum side length of a single triangular element. For each
material used in the experiments, we used its mechanical
parameters represented by the Poisson’s ratio ν and Young
modulus E. These parameters with the shape functions are
used to compute the stiffness matrix K [20, 2].

To illustrate quantitatively and qualitatively the benefits
of the proposed SLE-SfT, we compared five methods: (1)
SLE, the proposed method through the resolution of (RF).
(2) LM [20], a linear iterative method that minimizes the
ℓ2-norm of the force. (3) NLM [21], a non-linear iterative
method that minimizes the elastic energy of deformation.
(4) KFM [2], a sequential method that uses mechanical pri-
ors embedded in a Kalman Filtering process. (5) AG [4],
an analytic method that uses conformal prior as geometric
constraints. We do not compare to methods that use iso-
metric prior since the deformations that we study are non-
isometric.

To compare the proposed methods to those that use SBC,
namely LM and NLM, we mimicked their approach in us-
ing SBC to position the template in the deformed image.
We thus set K to be full rank as shown in (12). The pseudo-
inverse is replaced by the inverse matrix and N is set to
zero. For fair comparison, we did not compare SLE to LM
and NLM in the case of datasets that did not make usage of
SBC.

9. Experimental Evaluation

9.1. Synthetic Data

In order to fit the linear elastic model, each deformed el-
ement triangle has an increasing area rate of at most 25%
than the template element triangle (triangle at rest) [20].
We used 3D STUDIO MAX [22] to simulate plausible de-
formed surfaces. We used a balloon-like synthetic mate-
rial with Poisson’s ratio ν = 0.50 and Young’s modulus
E = 103 Pa1. The template surface was planar and of
size 90 × 90 mm2. We sampled it in a regular triangular
grid of n = 100 nodes and 162 special right triangle faces.
The perpendicular sides are of length 10 mm each and the

hypotenuse being 10
√
2 mm. We choosed a thickness of

h = 0.75 mm such that it fits the local plate mechanical
model []. The generated deformations were completely free
from such constraint. The sparse deforming forces are ap-
plied at some nodes of the mesh. Their magnitude and ori-
entation are randomly generated. The magnitude is gener-
ated with a centered Gaussian distribution of standard de-
viation of 5 Newton. The orientations follows a uniform
distribution. The non-rigidly deformed surface was also

1Pa stands for Pascals to measure force per unit area.

moved with rigid transformations. They were randomly
generated with uniform distributions for translations and ro-
tations. The nodes of the simulated deformed surfaces are
projected with a perspective projection. The center of pro-
jection was in average at a distance of 300 mm from the
closest point on the surface. We generated two sets of data:
one set with SBC at the border of the square and a second
set without SBC at the boundary. For each of them, we ran
two sets of test; (i) varying image noise: centred Gaussian
noise NQ with varying standard deviation σ = [0 : 1 : 4]2

pixels was added to the image points. (ii) varying size of
support s: we used uniformly random generated supports
with varying sizes |Q| = [1 : 1 : 3 5 : 5 : 200]. It makes
430 different experimental setup that we ran with 500 sam-
ples to obtain a representative result. We measure the re-
construction accuracy with two criteria: (i) The ratio of the
size of exactly recovered locations of zeros of the force to
the total size of the force vector. (ii) The 3D residual error
in mm between the generated deformed 3D points and the
reconstructed 3D points. SLE methods shows substantial
improvement especially when the support size s is less than
30% of the total size of the force vector, i.e., s ≤ 0.3(3n).
figure 1 summarizes the obtained results with the synthetic
data. figure 1-(a) reveals the rate of recovery of the locations
of zeros in the force vector f . It shows that SLE recovers
exact location when sparsity goes to 45% of the total size
of the vector (135 among 300 components). This rate nat-
urally decreases when the noise increases. However, SLE
presents more stable recovery than the compared methods.
The other methods are more sensitive to noise and generally
fail to recover these locations in presence of noise. KFM
uses the force as noise embedded in an Extended Kalman
Filter framework. For this reason, the force is not used in
the field of its physical meaning and then the method cannot
provide the correct support of f . LM is an ℓ2-norm formula-
tion and in presence of noise it tends to find the best tradeoff
among data in the sense of least squares. Thus polluting the
estimated f with false negative non-zero locations in the the
complement of the support Q̄. In this figure we do not com-
pare AG and NLM since they dont make usage of any force
modelling. figure 1-(b) shows quantitative comparison of
accuracy of the 3D reconstruction for each method. Method
SLE demonstrates for this data accuracy in both mean and
std 3D errors. This observation is qualitatively confirmed in
figure 1-(c).

9.2. Real Data

We used four sets of data with ground-truth that was ob-
tained with stereo calibrated cameras. The two cameras
have a resolution of 1920 × 1080 pixels. A set of 15 de-
formed shapes was used for each dataset. The four datasets
were subdivided into two classes. The first class was ex-
perimented with SBC and contained: (1) cup-lid dataset
composed of deformed lid made of silicone rubber mate-
rial (ν = 0.27, E = 109 Pa). The boundary of the lid was
fixed to the boundary of the cup, see figure 2-(a). The thick-
ness of the material is set to h = 2 mm and its bounding box

2As in MATLAB notation: [init:step:final] values.
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(a) Ratio of correctly recovered locations of zeros in force vector to the total size of this vector.

From left to right: SLE and KFM without SBC. Then SLE, LM and KFM with SBC.
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(b) Average mean and std 3D error of reconstruction.

Left pair of figures are related to experiment with SBC. Right pair of figures are related to those without SBC.
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(c) SfT reconstructions with errors displayed as heatmaps (σ = 1). From left to right: ground-truth, SLE, AG, KFM, NLM, LM.

First row with SBC. Second row without SBC.

Figure 1. Results on synthetic data. Results of methods with large errors are not shown to fit the average error scale.

size is 50×50×20 mm3. (2) strip dataset composed of de-
formed band made of polyester material (ν = 0.3, E = 105

Pa). The two side widths of the strip were fixed to a circular
wood, see figure 2-(b). The thickness of the material is set to
h = 1 mm and its bounding box size is 25× 100 mm2. The
second class was experimented without SBC and contained:
(3) clothes dataset composed of deformed clothes made of
spandex material (ν = 0.5, E = 104 Pa). The boundary of
the clothes were barely maintained by hand to obtain elastic
deformation, see figure 2-(c). The thickness of the material
is set to h = 1 mm and its bounding box size is 200 × 200
mm2. (4) balloon dataset composed of deformed inflated
balloon made of rubber material (ν = 0.5, E = 103 Pa), see
figure 2-(d). The thickness of the material is set to h = 0.5

mm and its bounding box size is 150×100×20 mm3. Fea-
ture points are obtained semi-automatically with SIFT [17].
These feature points represents the nodes of the mesh. For
the cup-lid pattern, we used a total of 500 feature points
among which 50 fixed boundary points were used as SBC .
For the strip pattern, we used a total of 350 feature points
among which 30 fixed boundary points were used as SBC .
We used 420 feature points for the clothes pattern and 600
feature points for the balloon pattern. The ability of recov-
ering the correct support of the deforming force was similar
to the results obtained for synthetic data with 10% of the
support size and 2 pixels of std Gaussian noise in image fea-
tures. The mean 3D error was measured at about 1.2 mm for
SLE, 2.5 mm for KFM method, 2.0 mm for LM, 3.2 mm
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Figure 2. . Results with real data. The reconstruction of the deformation of the balloon are returned up side down to appreciate the creases.

Method SLE KFM LM NLM AG

silicone-lid 1.2[1.7] 2.0[3.5] 1.9[2.7] 3.1[2.1] 2.8[3.1]

strip 1.5[2.0] 2.1[2.5] 2.0[2.6] 3.3[2.4] 2.9[2.1]

clothes 1.6[2.1] 2.9[3.5] - - 2.8[2.2]

balloon 1.6[1.9] 3.1[3.9] - - 3.1[2.6]

Table 1. Reconstruction errors for the real datasets (mean[std] in
mm).

for NLM and 2.9 mm for AG. SLE has a remarquable sta-
bility through the tight std in the reconstruction error. Table
1 summarizes the statistics of the errors in terms of mean
and std of 3D reconstructed points.

10. Conclusion

In this paper we formalized a new class of SfT, namely
SLE-SfT, that can handle spatially sparse deforming forces.
We used both an ideal ℓ0-norm formulation and a relaxed
ℓ1-norm formulation. We introduced the PESP (Projec-

tive Elastic Space Property) that allowed us to character-
ize the exact recovery of both the support of the deform-
ing force and the ground-truth deformed shape. We also
proved that if PESP is verified then the solution of the re-
laxed formulation is the solution of the ideal formulation.
We provided experimental results on both synthetic and
real data. We showed the effectiveness of the proposed
method over state-of-the-art methods. It is worth to no-
tice that the ADMM algorithm used to solve the problem
in the current setup is relatively slow. For real-time appli-
cation, it is worth to investigate the way the current solv-
ing method could be speeded-up in a futur development
work.
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