
Abstract 

 

In linear representation-based image classification, an 

unlabeled sample is represented by the entire training set. 

To obtain a stable and discriminative solution, 

regularization on the vector of representation coefficients is 

necessary. For example, the representation in sparse 

representation-based classification (SRC) uses L1 norm 

penalty as regularization, which is equal to lasso. However, 

lasso overemphasizes the role of sparseness while ignoring 

the inherent structure among samples belonging to a same 

class. Many recent developed representation classifications 

have adopted lasso-type regressions to improve the 

performance. In this paper, we propose the adaptive class 

preserving representation for classification (ACPRC). Our 

method is related to group lasso based classification but 

different in two key points: When training samples in a 

class are uncorrelated, ACPRC turns into SRC; when 

samples in a class are highly correlated, it obtains similar 

result as group lasso.  The superiority of ACPRC over other 

state-of-the-art regularization techniques including lasso, 

group lasso, sparse group lasso, etc. are evaluated by 

extensive experiments. 

 

1. Introduction 

SRC is a widely used method in many computer vision 

applications including face recognition and other image 

classification problems [1]. In SRC, a test sample is 

collaboratively represented by a dictionary consisting of all 

the training samples, which is formulated as  

=y Ax                                       (1) 

where y is the test sample, A  is the dictionary matrix in 

which each column represents a sample, and x  is the 

corresponding representation vector for y . A model fitting 

procedure is used to produce the solution of x . Ordinary 

least squares (OLS) is a simple way to estimate x  and it is 

well known that to incorporate regularization on x  into 

OLS results in more stable and interpretable solution. The 

linear regression model used in SRC is built under the 

principle of parsimony which is also important in human 

perception. Representation of y by a small subset of entire 

training samples is a practice of parsimony [2]. In SRC, the 

lasso regression is a promising approach to select a subset of 

training samples by imposing a L1 norm penalty on x which 

produces a sparse vector [3]. This constrained least squares 

model is given by: 
2

2 1
argmin λ= − +

x
x y Ax x                     (2) 

where 
2

⋅ is L2 norm (vector norm), 
1

⋅ is L1 norm, and 

λ  balances the fidelity term with the regularization term. 

However, there is a limitation to lasso regression. If there 

are some samples whose correlation are high, lasso prefers 

to select only one sample from them and ignores others [4]. 

Such phenomenon leads to inconsistent selection of training 

samples [5]. Elastic net (EN) regression provides a flexible 

model to address problem above [4]. Elastic net criterion is 

defined as the following optimization problem:  

2 2

2 1 2
argmin (1 )λ α λα= − + − +

x
x y Ax x x . (3) 

The complex regularization function 
2

1 2
(1 )α α− +x x  is 

a convex combination of the lasso and ridge penalty where 

[ ]0,1α ∈ . Besides the sparsity of x , the solution of EN 

regression has the effect of grouping that highly corrected 

samples share similar regression coefficients. Many other 

improvement studies of lasso regression also tend to address 

the correlation problem. In [6], sample de-correlation is 

considered in the lasso regression. A covariate-correlated 

lasso is proposed to select covariates most strongly 

correlating with response variable in [7]. Another recent 

study [8] also considers correlation among training samples 

which proposes adaptive model balancing the L1 norm with 

L2 norm guided by training set itself. 

There is an obvious drawback for the mentioned methods 

above in classification. They do not incorporate the class 
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information into the representation procedure, that is, the 

regression is not aware of any intra-class structure. For 

example, in SRC, the solution of problem (2) is computed 

first and the followed decision is to determine which class 

has the smallest representative residual: 
2

2
( ) arg min i i

i
Label = −y y A x ( 1, ,i c=  ),   (4) 

where c is the number of classes, 
i

A  denotes the samples 

from the i th class and ix  is a vector consisting of 

coefficients associated with iA (the entire training set 

[ ]1 2 c
= ,  A , ,  A A A  and the representing vector 

1 2= ,  x ,  ,  
T

T T T

c
  x x x ). Only at this moment, the label of 

training set is used. Besides this drawback, let us carefully 

look at the parsimony principle for classification. A sparse 

x  means only a few training samples are involved in 

representing a test sample. These training samples can be 

distributed across different classes or come from only one or 

two classes. Surely the second case is favorable for 

classification. Hence it could be more discriminative to 

constrain the number of classes but not the number of 

samples. In some cases, a good representation of a test 

sample could be a dense one by samples from the correct 

class. So, strong sample-wise sparse constraint on x  can 

result in a poor solution.  

The group lasso (GL) regression, proposed in [9],  

produces a representation vector of group-wise sparsity. GL 

predefines sample groups before regression and is to let 

groups compete with each other during the regression, 

which means all the members of a particular group are either 

used or not used. In [10] class specific sparse representation 

classification is proposed based on the group lasso 

regression. In this method training samples from a certain 

class are defined as a group, and a group sparse solution of 

x  can be obtained by solving the following regularized 

optimization problem: 

2

2 2
1

arg min
c

i

i

λ
=

= − + 
x

x y Ax x               (5) 

Further improvement of group lasso can be found in [11] 

where the sparse group lasso (SGL) regression  is proposed: 

 
2

2 1 2
1

arg min (1 ) +
c

i

i

λ α λα
=

= − + − 
x

x y Ax x x . (6) 

SGL can be also seen as a variant of elastic net. SGLR not 

only considers the group-wise sparseness but also the 

sample-wise sparseness. A manually selected value of α  

determines the ratio of these two kinds of sparseness. Note 

that all classes are equally constrained despite of possible 

different intra-class sample structure. 

In this paper, we propose an adaptive class preserving 

sparse representation (ACPR) method and apply it to 

perform image classification. Our proposed method takes 

three factors into account. First, the class information 

should be preserved during regression; Second, the 

sparseness of the representation vector is constrained; 

Third, the extent of the sample-wise sparseness of a class is 

adaptive to intra-class correlation structure. Although 

previous studies of lasso-type regression consider class 

information, there is no study, to our knowledge, which 

exploits the intra-class correlation to build an adaptive 

model. In ACPR, classes receive separate constraint, i.e., 

the constraint on vector ix  is determined by correlation 

structure of the i th class. We find that our regularizer on 

each class can adaptively balance the L1 norm with L2 

norm. Thus, regression with ACPR can obtain a fine 

representation result that all three important factors are 

implemented.  

In the following, we first briefly review and summarize 

the related lasso-type regression methods. Then our 

regression model is presented. Next, we give an effective 

iterative algorithm to solve the optimization problem. 

Experiments on different datasets are preformed to evaluate 

the method. 

2. Related lasso-type regression techniques 

That a test image is collaboratively represented by 

training set is a key phase in representation based image 

classification algorithms. They assume the test sample can 

be represented well as a linear combination of the training 

samples belonging to its correct class. Under this linear 

regression framework, regularization on representation 

vector plays an important role in obtaining a correct 

solution when data set is large. A general constrained 

regression model employs the following optimization form:  
2

2
arg min g( )λ= − +

x
x y Ax x                   (7) 

where g( )⋅ is a penalty to regularize x . Variations and 

noises are highly likely to be seen in a test image. Without 

an effective regularizer, the performance of regression 

could be degraded seriously. Many lasso-type regularizers 

receive increasing attention. They tend to compel the 

solution of x  to be sparse. There are at least two merits to 

do this. First sparse representation has discriminative nature 

to perform classification. Second noises on test image are 

more likely to be detected. When 
1

g( )=x x  , (7) is lasso 

regression problem which is very popular to perform sparse 

representation. Lasso mainly considers sample-wise 

sparsity that only a very small subset of samples represent a 

test sample. If we define samples from a same class as a 

group, group sparse representation constrains the number of 

class used in the regression which results in group-wise 

sparsity. When each class consists of only one or two 

samples, group sparse representation obtains a similar result 

as lasso. According to the definition of group lasso 

that
21

g( )=
c

ii=x x , the intra-class representation 
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sub-vector 
i

x  is constrained by L2 norm which produces a 

dense solution of 
i

x . By using naive combination of both 

sample-wise sparsity and group-wise sparsity together 

1 2
1

g( )=(1 ) +
c

i

i

α α
=

− x x x , SGL balances the two kinds 

of sparseness by a pre-assigned parameter. The solution of 

EN regression shows grouping effect, however, a group of 

samples which are highly correlated can be across classes. 

Nevertheless, EN has its merit over lasso that correlation 

among samples is considered. Here, we summarize the 

mentioned lasso-type regressions from four aspects in Table 

1.  

3. Model of ACPR 

In this section, we consider a regression model which 

preserves class information and has self-adjustable 

constraint according to the specific intra-class inherent 

structure. For a certain class, we prefer L2 norm to L1 norm 

constraint when samples of the class are highly correlated. 

On the contrary, L1 norm based constrain is a better choice 

when samples are uncorrelated. 

3.1. Formulation 

The formulation of the proposed regression model is 

expressed as follows: 

1

min ( )      . .   
c

i

i

s t
=

Φ =
x

x y Ax                       (8) 

where
*

( ) Diag( )
i i i

Φ =x A x , the regularizer 
*

⋅  denotes 

the nuclear norm of a matrix which is the sum of the singular 

values of the matrix, and Diag( )⋅  transforms a vector into a 

diagonal matrix. Suppose there are 
i

n  samples in the i th 

class and each sample is preprocessed by normalization of 

zero mean and unit vector length. The representation vector 

for the i th class is a column vector 
1

,1 ,[ , , ] i

i

nT

i i i nx x R
×= ∈x  . 

Here we firstly discuss the property of ( )
i

Φ x . Assume 

that samples belonging to the i th class are distinct from 

each other, which means samples are orthogonal
T

i i =A A I . 

Then the regularizer is decomposed into  

( ) 1
( ) Tr Diag( ) Diag( ) = .T

i i i i i iΦ =x x A A x x     (9) 

Thus, for the i th class, the regularizer ( )iΦ x  turns into L1 

norm penalty. This is reasonable because when there is no 

intra-class structure L1 norm is a better choice to prevent 

overfitting. In the special case that every class does not have 

intra-class structure, (8) is equivalent to lasso regression.  

If we assume that the samples in the i th class are highly 

correlated that 
T T

i i ≈A A 11 ( 1  is a column vector of size in  

and every element is equal to one). Then we have 

2
( ) = .T

i i i iΦ =x x x x                      (10) 

So, if a class has very similar samples, its corresponding 

regularizer approximates L2 norm. Under the circumstances 

that every class has highly correlated samples, (8)  turns into 

GL regression. In general, samples from a class are neither 

too independent nor totally identical. The regularizer 

balances the L1 norm with L2 norm adaptively according to 

the intra-class structure of a class: 

2 1
( ) .

i i i
≤ Φ ≤x x x                         (11) 

Let us consider a special case that one sample, say the first 

one, is mistakenly grouped into a different class and it is 

independent to all other samples. Here we define two block 

matrices:   

1

,/1/1 /1

1
= and Diag( )=  

Diag( )

TT

iT

i i iT

ii i

x  
  
    

00
A A x

0 x0 A A

，
(12) 

where 0 is a column vector of size -1in  and in which every 

element is equal to zero, 
/1iA  is sample matrix without the 

first independent sample, and ,/1ix  is the representation 

vector for 
/1iA . Then we can see the regularizer has 

following property: 

,1 ,1

,/1 ,/1/1 /1

,1 1

,/1 /1 /1 ,/1

( )

1
Tr

Diag( ) Diag( )

=Tr
Diag( ) Diag( )

i

T TT

i i

T

i ii i

T

i

T

i i i i

x x

x

Φ

      =              
  
  
     

x

0 00

0 x 0 x0 A A

0

0 x A A x

,1 ,/11
+ ( ).

i i
x= Φ x                                                         (13) 

Methods 

Property 

Sample-

wise 

sparsity 

Group-

wise 

sparsity 

Correla

tion 

Adaptive

ness 

Lasso     

EN     

GL     

SGL     

ACPR      

Table 1. A summary of four aspects of the five related regression 

methods. ‘Correlation’ stands for that the corre-lation among 

samples are considered. ‘Adaptiveness’ means the model has the 

capability of self-adjustment for regularization according to the 

structure of data set. 
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So the independent sample is separated from others which is 

constrained by L1 norm alone. Furthermore, it is not hard to 

prove that if there are some subsets in a class which are 

independent of each other, the regularizer is transformed 

into subgroups: 
1

( )= ( ) ( )
p

i i iΦ Φ + + Φx x x                       (14) 

where p  denotes the number of subgroups in the class. It 

indicates that, compared with lasso and group lasso, the 

proposed regularizer can exploit the intra-class structure 

further. That is, although sample group is determined by the 

class label, adaptation of (8) is strong enough to reflect the 

intra-class structure.   

In real-world applications, a test image is more or less 

contaminated by variations and noises. So, we solve the 

following optimization problem instead of (8)  

     
2

2
1

arg min ( ) .
c

i

i

λ
=

− + Φ
x

y Ax x              (15) 

3.2. Optimization 

An iterative optimization algorithm is proposed to solve (8)

, which is summarized in Algorithm 1. In each iteration of 

updating x , we decompose (15) into c sub-problems:     

 
2

2 *
ˆarg min Diag( )

i

i i i i iλ− +
x

y A x A x ,  1, ,i c=  .(16) 

which is known as trace lasso problem [12]. In this way, 

Algorithm 1 updates x  one class at a time.  

Algorithm 1: Procedure of Adaptive Class Preserving 

Sparse Representation 

1: Input: training set [ ]1 c
=A A A , the query image y , 

parameter 0λ > , 0ε > , initial representation 

vector (0) (0) (0)

1= ( ) ( )
T

T T

c
  x x x , 1t = . 

2: Generate a random permutation vector 1 cR ×∈m  filled 

with integers from 1 to the number of class c .  

3: Define a temporary variable ( )new t=x x . 

For 1i to c=  

4: Compute ( )

( ) ( ) ( )
ˆ = new t

i i i
− +

m m m
y y Ax A x . 

5: Update only ( )

( )

t

im
x  by solving (16) with Algorithm 2. 

The input includes 
( )

ˆ
im

y  and ( )im
A . 

6: Let ( +1)

( ) ( )

new t

i i
=

m m
x x . 

End; 

7: Let 
( +1)

=
t new

x x . 

8: If ( +1) ( )t t ε
∞

− ≤x x , go to step 9, otherwise, let 

1t t= +  and go to step 2; 

9: Output: The optimal representation vector *x . 

In optimization problem (8), the objective function 

consists of a fidelity term and a regularization term. It is 

well known that OLS is convex and in  [13] nuclear norm is 

proved to be convex as well. So, linear combination of them 

is also a convex function. And then we let 

1( )= ( , , )cL Lx x x denote the objective function of (8). We 

break x  into small sub-vectors and update each sub-vector 

one by one at random order to avoid priority. The 

corresponding sub-vector of x  is replaced by new 

sub-vector immediately. So, if the sub-problem (16) is 

solved effectively, the original problem will converge to the 

unique global optimum solution.  

To solve (16), we first convert it to the following 

equivalent problem: 

2

2 *,
ˆmin    . .  Diag( ).

i
i i i i is tλ− + =

J x
y A x J J A x   (17) 

It can be solved by minimizing the corresponding 

augmented Lagrange multiplier formulation: 

2

2 *

2

ˆ( , ) Tr( ( Diag( )))

Diag( )
2

T

i i i i i i

i i F

L λ

µ

= − + + −

+ −

J x y A x J Y J A x

J A x
(18) 

where Y  is a Lagrange multiplier matrix and µ  is a 

penalty parameter. We solve (18), which now is an 

unconstrained problem, with alternating direction method 

(ADM) [14, 15]. J  and ix  are updated respectively by 

fixing the other one, and then Y  is updated. First, we fix ix  

to solve  

2

*

1 1
= arg min ( Diag( ) )

2
i i

F

λ

µ µ
+ − −

J
J J J A x Y .  (19) 

Singular Value Thresholding operator can provide a close 

form solution to (19)[14]. Then we fix J , and ix  is 

obtained by solving  

2

2

2

ˆargmin Tr( ( Diag( )))

Diag( ) .
2

i

T

i i i i i i

i i F

µ

= − + −

+ −

x
x y A x Y J A x

J A x

 (20) 

It also has a closed form solution: 

1

ˆ (2 diag( ( )))

(2 Diag(diag( )))

T T

i i i i

T T

i i i i

µ

µ −

= + +

= +

x P A y A Y J

P A A A A
              (21) 

where diag( )⋅  takes the diagonal elements of a matrix and 

stores them in a vector. The multiplier is updated by 

gradient descent method: 

( Diag( ))i iµ= + −Y Y J A x .                   (22) 

The procedure of solving the sub-problem is summarized in 

Algorithm 2. Since the whole procedure of solving 

optimization (16) is derived by the theory of ADM, the 

convexity of this sub-problem guarantees its global 

convergence. After computing optimal *x , we make the 
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decision of label by (4) which is widely used in 

representation based classifications. 

Algorithm 2:   Solving sub-problem (17) 

1: Input: training set of the i th class iA , the regressand 

ˆ
iy , parameter λ . 

2: Initialize: 
(0)

ix , Y˄0˅, 0
J
˄ ˅, 0µ >  , 0ε > , 0k = . 

3: Fix the others and compute +1k
J
˄ ˅ by solving (19). 

4: Fix the others and compute 
( 1)k

i

+
x  with (21). 

5: Update the multiplier 
( 1)k +

Y  according to (22) 

6: If 
1

|| ||
k k ε+

∞− ≤J J  , 
1

|| ||
k k

i i ε+
∞− ≤x x  , and 

1 1
|| Diag( )||

k k

i i ε+ +
∞− ≤J A x , go to step 7, 

otherwise, let  1k k= +  and go to step 3;  

7: Output: The optimal vector
*

ix . 

3.3. Time complexity 

Like conventional trace lasso, iterative optimization is 

used in solving ACPR model. In one round of updating, the 

time complexity of trace lasso is 3( )nΟ , where n  is the 

number of the entire training samples. The sub-problem of 

ACPR is also a trace lasso problem whose time complexity 

is 3( )pΟ (here we simply assume that each class has p  

training samples). And for each update of the entire x , the 

time complexity of proposed ACPR is 3( )cpΟ . Since =n cp , 

( ) ( ) ( )3 3 3 3
=cp c p nΟ Ο Ο . 

4. Sparsity vs correlation 

For image classification, many papers argue that the 

computation of a representation vector by collaboratively 

representing a test sample is better than by representing it 

separately [3, 16]. The reason is that constrained linear 

regression compels samples to compete with each other, 

which makes the decision more reliable. Since it is 

inevitable that there are variations and noises on test 

samples, to constrain the sparsity of the representation 

vector prevents it from overfitting. Some studies suggest 

using lasso regression with L1 norm can perform robust 

classification. In lasso regression, competition is among 

entire training samples. However, lasso ignores the 

correlation of the training set. If some samples are 

correlated, it is very likely that only one of them represents a 

test sample. In [10, 17], it is proved that competition among 

classes may obtain better performance. These papers use 

GL regression to represent a test sample where samples 

belonging to a same class form a group. It is common that 

images from a same class may be correlated to some extent.  

For a specific class, the representation sub-vector is 

constrained by L2 norm which allows correlated samples 

from a class to represent the test sample together and makes 

the representation adequate. However, if there are plenty of 

training samples in a class, the risk of overfitting will 

increase when the intra-class structure is complex. SGL 

regression and EN both consider the correlation and 

sparsity, but a manually chosen parameter is required to 

balance these two factors.  

An obvious drawback of previous lasso-type regressions 

is that it is impossible to assign different constraint for each 

specific class. In general, the intra-class structure can vary a 

lot in terms of correlation. The proposed ACPR constrains 

each specific class differently by balancing L1 norm with 

L2 norm. ACPR also exploits the potential rich intra-class 

structure of a specific class. If there are mutually 

independent sub-groups, ACPR regroups them adaptively 

so as to provide a more-refined representation.  

We provide a visualization of the representation vectors 

computed by different regression approaches in Figure 1. 

Lasso regression uses the least training samples to represent 

the test sample, which apparently ignores the correlation. 

Ridge regression which uses a L2 norm as its regularizer, 

produces a dense vector where many correlated samples 

responding together. ACPR performs similarly to GL 

regression. However, the intra-class sparsity of ACPR is 

stronger than GL regression and weaker than lasso 

regression. It indicates that ACPR not only takes into 

account intra-class sample-wise sparsity but also 

group-wise sparsity in an adaptive way. For EN regression 

and SGL regression, if two parameters in them are carefully 

chosen case by case, they may obtain an approximate vector 

as ACPR. But it is almost impossible to implement in 

practice. 

Figure 1. Illustration of the representation vectors by lasso 

regression, ridge regression, group lasso regression, and ACPR. 

The ORL face data set consisting of 40 subjects is used and each 

subject has 10 frontal face images. An artificial test sample is 

created by combining 5 images (from the first class) and some 

Gaussian noises together. 
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5. Experiments 

In this section, we evaluate the effectiveness of the 

proposed ACPRC by comparing with five state-of-the-art 

regressions including Ridge, Lasso, GL, SGL, and EN. 

Some well-known image datasets are used: two common 

face databases (GT and ORL), two large face databases 

(LFW and FERET), MNIST handwritten digits database, 

and COIL20 object recognition database. Some samples are 

shown in Figure 2 where intra-class variations can be seen. 

All used images are normalized to have zero mean and unit 

L2 norm. 

5.1. Georgia Tech (GT) database 

The GT database, which can be downloaded from 

http://www.anefian.com/research/face_reco.htm, consists 

of 15 images per subject from 50 individuals taken in 

different times. It characterizes some variations such as 

facial expressions, cluttered backgrounds, and lighting 

conditions. Images were processed to an order of 15 15× . 

For each subject, we selected  ( 2,  5, 8, 10)t =  images to 

form the training set and the rest for testing. Table 2 shows 

the recognition rates and standard deviations of all the 

algorithms over 10 random splits.  

Taking into account such a complex situation, all the used 

methods faced a huge challenge. The performances of all 

algorithms, especially ridge regression, are not satisfactory 

because of the lack of training samples and various noises in 

the case of 2t = . The recognition accuracies rise along 

with increase of training samples for the most methods. 

ACPRC has advantage of performance in all cases, which 

obviously indicate that our method has shown better 

tolerance for illumination and pose variations. Especially, 

ACPRC is the only one whose accuracy exceeds 80% when 

10t = . 

5.2. ORL database 

The ORL face database is composed of 40 distinct 

subjects with 10 images per subject sampled at different 

times with sorts of variations such as facial expressions, 

varying illuminations and facial details (glasses or not). We 

selected the first 2, 3, 4, 5, and 6 images from each subject 

for training and the remaining for testing. Images were 

resized to 15 12× . The recognition accuracy rates are 

reported in the Table 3. 

We can figure out that the accuracy rates of all the 

algorithms increase along with adding more training 

samples. GL and SGL perform better than Lasso, which is 

different from the results on GT database. The cause may be 

that GT has lower intra-class correlation, which weakens 

role of group structure. Although methods with grouping 

effect performed better, ACPRC outperformed the second 

best around 1% on average.  

5.3. LFW database 

The LFW is a large-scale database composed of more 

than 13000 images of unconstrained faces with variations of 

pose, illumination, expression, misalignment and occlusion, 

and so on. In the first test scheme (LFW11), a subset of 143 

subjects with no less than 11 images per subject was chosen. 

We randomly selected 10 images as training dataset and the 

Method 2t =  5t =  8t =  10t =  

Lasso 48.00 65.88 74.46 77.20 

Ridge 30.09 52.44 65.83 69.52 

GL 43.35 60.52 65.49 68.88 

SGL 48.52 62.62 70.00 69.84 

EN 51.88 67.44 70.86 75.36 

ACPRC 53.05 71.36 78.23 81.96 

Table 2. The recognition accuracy (%) corresponding to t   

samples from each class on the GT database. 

 

Method 2t =  3t =  4t =  5t =  6t =  

Lasso 80.00 87.39 90.04 92.80 93.75 

Ridge 75.56 82.11 87.17 91.80 93.69 

GL 82.00 89.50 92.63 94.80 96.31 

SGL 85.84 90.71 94.42 96.10 96.75 

EN 85.13 91.36 93.79 96.35 96.81 

ACPRC 87.03 92.07 94.75 96.50 97.56 

Table 3. The mean accuracy (%) corresponding to t samples from 

each class on the ORL database. 
 

Figure 2. Some samples from FERET, LFW, GT, ORL, COIL20, 

and MNIST databases (from top to bottom). 
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remaining images as testing dataset. In the second subset 

(LFW16), which consists of 85 subjects with no less than 16 

images per subject, we randomly used 15 images as training 

dataset and the remaining images as testing dataset. Images 

were processed to an order of 15 12× .  

The recognition accuracy rates of each method were 

reported in Table 4. We can easily figure out that the 

advantage of our proposed ACPRC by the competitive 

results. Especially, in the subset of LFW16, only our method 

achieves the accuracy of 80% up. The method of EN just 

reaches 70.16% and 74.00% on the two subsets, and the 

reason is that EN does not consider the group-wise sparsity.  

5.4. FERET database 

In this experiment, a subset with 1400 images from 200 

subjects is selected from the FERET database, which is 

arguably one of the largest publicly available database. 

Each subject consists of 7 facial images with mainly 

expression variations and posture changes. We used the first 

2, 3, 4, and 5 images in each individual for training and the 

remaining images for testing. Images were processed to the 

resolution of 15 12× . The experiment results are listed in 

Table 5. 

It can be seen from Table 5 that our method still obtains 

the best results in all cases, although all the method perform 

not better when the number of images per subject is 3. More 

specifically, the recognition accuracy of our method reaches 

70.50% when the number of images per subject is 5. The 

improvement over other algorithms are respectively 6.50%, 

8.50%, 3.75%, 4.5%, and 9.25%.  

5.5. MNIST and COIL20 databases 

The MNIST database of handwritten has been widely 

adopted in the field of pattern recognition. It contains 10 

images classes, corresponding to 10 handwritten digits from 

0 9  and each class has more than 5000 images. We 

selected the first 50 samples of each subject and randomly 

chose a half as training set and the rest as test set.  

The COIL20 database contains 20 objects and each 

object has 72 images taken at pose interval of 5 degrees. We 

randomly selected a half of each object as training dataset 

and the other half as test set respectively.  

For these two databases, images were resized to 15 15× . 

We reported the means and standard deviations of the 

accuracy rates in Table 6. On the both databases, the 

state-of-the-art regularization methods worked similar 

except Ridge. ACPRC outperformed the second best over 

2% on the MNIST database and around 1% on the COIL20 

database respectively. 

5.6. Discussion on experiments 

A full summary of our extensive experimental results is 

illustrated in Figure 3. Without imposing sparsity, 

performance of Ridge regression is not comparable with 

others in all cases, which confirms the fact that sparsity is 

essential to achieve robust recognition.  

On the ORL database, lasso regression performs only a 

little better than Ridge regression because there are small 

variations within class. GL achieves the second best result 

on GT database. The reason could be that the change within 

each class of GT database is larger and group-wise sparsity 

benefits the representation.  

Group-wise sparsity of GL shows instability with the 

larger standard deviation than ACPRC on the LFW 

database because of the different intra-class correlation for 

each group. However, our proposed ACPRC considers both 

the group-wise sparsity and the correlation of data which is 

self-adjustable to specific with-in class structure. For the 

roles of group-wise sparsity and sample-wise sparsity, one 

is not necessarily better than another. Especially, our 

method performs the perfect competitive on GT database 

because of the superiority of adaptive class preserving 

regularization term which can balance the L1 regularization 

Method LFW11 LFW16 

Lasso 72.21 1.02±  76.83 2.44±

Ridge 72.79 0.86±  78.25 1.01±

GL 71.95 1.38±  79.29 2.05±

SGL 70.70 1.32±  76.96 1.68±

EN 70.16 1.38±  74.00 1.86±

ACPRC 74.84 1.04±  80.64 1.57±
Table 4. The mean accuracy (%) with standard deviations 

corresponding to two test schemes respectively on the LFW 

database. 

 

Method 2t =  3t =  4t = 5t =

Lasso 53.00 46.13 57.00 64.00 

Ridge 56.20 45.38 51.33 62.00 

GL 59.60 50.50 63.83 66.75 

SGL 59.50 50.88 63.83 65.00 

EN 54.70 43.13 54.50 60.25 

ACPRC 60.00 52.63 64.17 70.50 

Table 5. The mean accuracy (%) corresponding to t samples 

from each class on the FERET database. 

Method MNIST COIL20

Lasso 86.68 2.00±  98.08 0.55±

Ridge 82.36 2.17±  94.61 1.08±

GL 84.16 1.22±  97.50 0.93±

SGL 86.48 1.28±  96.67 0.52±

EN 85.20 1.67±  96.69 0.76±

ACPRC 88.88 1.65±  99.03 0.60±
Table 6. The mean accuracy (%) with standard deviations on the 

MNIST and COIL20 databases. 
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and group sparse regularization according to the 

correlation.  

None of these algorithms including our ACPRC performs 

perfect on the MNIST database, although ACPRC obtains 

the highest accuracy. The main reason may lie in the fact 

that the number of images for experiment is not enough and 

the handwritten digit data do not fit the subspace structure 

well. ACPRC get the best accuracies 99.03% on the 

COIL20 database, which indicate that the adaptive class 

preserving sparse regularization term also helps handle 

general pattern recognition problems. 

6. Conclusion 

In this paper, we propose adaptive class preserving sparse 

representation for image classification. In the procedure of 

collaboratively representing a test sample, ACPR penalties 

the representation vector of each class differently. 

Comparing with previous lasso-type regressions, ACPR 

balances lasso regression with group lasso regression 

adaptively. To solve optimization problem of ACPR, we 

decompose the model into sub-problems and solve it by 

ADM. The superiority of ACPR based image classification 

is validated by extensive experiments.  
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