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Abstract

Given a state-of-the-art deep neural network classifier,

we show the existence of a universal (image-agnostic) and

very small perturbation vector that causes natural images

to be misclassified with high probability. We propose a sys-

tematic algorithm for computing universal perturbations,

and show that state-of-the-art deep neural networks are

highly vulnerable to such perturbations, albeit being quasi-

imperceptible to the human eye. We further empirically an-

alyze these universal perturbations and show, in particular,

that they generalize very well across neural networks. The

surprising existence of universal perturbations reveals im-

portant geometric correlations among the high-dimensional

decision boundary of classifiers. It further outlines poten-

tial security breaches with the existence of single directions

in the input space that adversaries can possibly exploit to

break a classifier on most natural images.1

1. Introduction

Can we find a single small image perturbation that fools

a state-of-the-art deep neural network classifier on all nat-

ural images? We show in this paper the existence of such

quasi-imperceptible universal perturbation vectors that lead

to misclassify natural images with high probability. Specif-

ically, by adding such a quasi-imperceptible perturbation

to natural images, the label estimated by the deep neu-

ral network is changed with high probability (see Fig. 1).

Such perturbations are dubbed universal, as they are image-

agnostic. The existence of these perturbations is problem-

atic when the classifier is deployed in real-world (and pos-

sibly hostile) environments, as they can be exploited by ad-

versaries to break the classifier. Indeed, the perturbation
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1The code is available for download on https://github.com/

LTS4/universal. A demo can be found on https://youtu.be/

jhOu5yhe0rc.

Joystick

Whiptail lizard

Balloon

Lycaenid

Tibetan masti�

Thresher

Grille

Flagpole

Face powder

Labrador 

Chihuahua

Chihuahua

Jay

Labrador

Labrador

Tibetan masti�

Brabancon gri�on

Border terrier

Figure 1: When added to a natural image, a universal per-

turbation image causes the image to be misclassified by the

deep neural network with high probability. Left images:

Original natural images. The labels are shown on top of

each arrow. Central image: Universal perturbation. Right

images: Perturbed images. The estimated labels of the per-

turbed images are shown on top of each arrow.
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process involves the mere addition of one very small pertur-

bation to all natural images, and can be relatively straight-

forward to implement by adversaries in real-world environ-

ments, while being relatively difficult to detect as such per-

turbations are very small and thus do not significantly affect

data distributions. The surprising existence of universal per-

turbations further reveals new insights on the topology of

the decision boundaries of deep neural networks. We sum-

marize the main contributions of this paper as follows:

• We show the existence of universal image-agnostic

perturbations for state-of-the-art deep neural networks.

• We propose an algorithm for finding such perturba-

tions. The algorithm seeks a universal perturbation for

a set of training points, and proceeds by aggregating

atomic perturbation vectors that send successive data-

points to the decision boundary of the classifier.

• We show that universal perturbations have a remark-

able generalization property, as perturbations com-

puted for a rather small set of training points fool new

images with high probability.

• We show that such perturbations are not only univer-

sal across images, but also generalize well across deep

neural networks. Such perturbations are therefore dou-

bly universal, both with respect to the data and the net-

work architectures.

• We explain and analyze the high vulnerability of deep

neural networks to universal perturbations by examin-

ing the geometric correlation between different parts

of the decision boundary.

The robustness of image classifiers to structured and un-

structured perturbations have recently attracted a lot of at-

tention [2, 20, 17, 21, 4, 5, 13, 14, 15]. Despite the impres-

sive performance of deep neural network architectures on

challenging visual classification benchmarks [7, 10, 22, 11],

these classifiers were shown to be highly vulnerable to per-

turbations. In [20], such networks are shown to be unsta-

ble to very small and often imperceptible additive adver-

sarial perturbations. Such carefully crafted perturbations

are either estimated by solving an optimization problem

[20, 12, 1] or through one step of gradient ascent [6], and

result in a perturbation that fools a specific data point. A

fundamental property of these adversarial perturbations is

their intrinsic dependence on datapoints: the perturbations

are specifically crafted for each data point independently.

As a result, the computation of an adversarial perturbation

for a new data point requires solving a data-dependent opti-

mization problem from scratch, which uses the full knowl-

edge of the classification model. This is different from the

universal perturbation considered in this paper, as we seek

a single perturbation vector that fools the network on most

natural images. Perturbing a new datapoint then only in-

volves the mere addition of the universal perturbation to the

image (and does not require solving an optimization prob-

lem/gradient computation). Finally, we emphasize that our

notion of universal perturbation differs from the general-

ization of adversarial perturbations studied in [20], where

perturbations computed on the MNIST task were shown to

generalize well across different models. Instead, we exam-

ine the existence of universal perturbations that are common

to most data points belonging to the data distribution.

2. Universal perturbations

We formalize in this section the notion of universal per-

turbations, and propose a method for estimating such per-

turbations. Let µ denote a distribution of images in R
d, and

k̂ define a classification function that outputs for each im-

age x ∈ R
d an estimated label k̂(x). The main focus of this

paper is to seek perturbation vectors v ∈ R
d that fool the

classifier k̂ on almost all datapoints sampled from µ. That

is, we seek a vector v such that

k̂(x+ v) 6= k̂(x) for “most” x ∼ µ.

We coin such a perturbation universal, as it represents a

fixed image-agnostic perturbation that causes label change

for most images sampled from the data distribution µ. We

focus here on the case where the distribution µ represents

the set of natural images, hence containing a huge amount

of variability. In that context, we examine the existence of

small universal perturbations (in terms of the ℓp norm with

p ∈ [1,∞)) that misclassify most images. The goal is there-

fore to find v that satisfies the following two constraints:

1. ‖v‖p ≤ ξ,

2. P
x∼µ

(

k̂(x+ v) 6= k̂(x)
)

≥ 1− δ.

The parameter ξ controls the magnitude of the perturbation

vector v, and δ quantifies the desired fooling rate for all

images sampled from the distribution µ.

Algorithm. Let X = {x1, . . . , xm} be a set of images

sampled from the distribution µ. Our proposed algorithm

seeks a universal perturbation v, such that ‖v‖p ≤ ξ, while

fooling most images in X . The algorithm proceeds itera-

tively over the data in X and gradually builds the universal

perturbation (see Fig. 2). At each iteration, the minimal per-

turbation ∆vi that sends the current perturbed point, xi+v,

to the decision boundary of the classifier is computed, and

aggregated to the current instance of the universal perturba-

tion. In more details, provided the current universal pertur-

bation v does not fool data point xi, we seek the extra per-

turbation ∆vi with minimal norm that allows to fool data

point xi by solving the following optimization problem:

∆vi ← argmin
r
‖r‖2 s.t. k̂(xi + v + r) 6= k̂(xi). (1)
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Figure 2: Schematic representation of the proposed algo-

rithm used to compute universal perturbations. In this il-

lustration, data points x1, x2 and x3 are super-imposed, and

the classification regions Ri (i.e., regions of constant esti-

mated label) are shown in different colors. Our algorithm

proceeds by aggregating sequentially the minimal perturba-

tions sending the current perturbed points xi + v outside of

the corresponding classification region Ri.

To ensure that the constraint ‖v‖p ≤ ξ is satisfied, the up-

dated universal perturbation is further projected on the ℓp
ball of radius ξ and centered at 0. That is, let Pp,ξ be the

projection operator defined as follows:

Pp,ξ(v) = argmin
v′

‖v − v′‖2 subject to ‖v′‖p ≤ ξ.

Then, our update rule is given by v ← Pp,ξ(v + ∆vi).
Several passes on the data set X are performed to improve

the quality of the universal perturbation. The algorithm is

terminated when the empirical “fooling rate” on the per-

turbed data set Xv := {x1 + v, . . . , xm + v} exceeds the

target threshold 1− δ. That is, we stop the algorithm when-

ever Err(Xv) :=
1
m

∑m

i=1 1k̂(xi+v) 6=k̂(xi)
≥ 1− δ. The de-

tailed algorithm is provided in Algorithm 1. Interestingly,

in practice, the number of data points m in X need not be

large to compute a universal perturbation that is valid for the

whole distribution µ. In particular, we can set m to be much

smaller than the number of training points (see Section 3).

The proposed algorithm involves solving at most m in-

stances of the optimization problem in Eq. (1) for each pass.

While this optimization problem is not convex when k̂ is a

standard classifier (e.g., a deep neural network), several ef-

ficient approximate methods have been devised for solving

this problem [20, 12, 8]. We use in the following the ap-

proach in [12] for its efficency. It should further be noticed

that the objective of Algorithm 1 is not to find the smallest

universal perturbation that fools most data points sampled

from the distribution, but rather to find one such perturba-

tion with sufficiently small norm. In particular, different

Algorithm 1 Computation of universal perturbations.

1: input: Data points X , classifier k̂, desired ℓp norm of

the perturbation ξ, desired accuracy on perturbed sam-

ples δ.

2: output: Universal perturbation vector v.

3: Initialize v ← 0.

4: while Err(Xv) ≤ 1− δ do

5: for each datapoint xi ∈ X do

6: if k̂(xi + v) = k̂(xi) then

7: Compute the minimal perturbation that

sends xi + v to the decision boundary:

∆vi ← argmin
r
‖r‖2 s.t. k̂(xi + v + r) 6= k̂(xi).

8: Update the perturbation:

v ← Pp,ξ(v +∆vi).

9: end if

10: end for

11: end while

random shufflings of the set X naturally lead to a diverse

set of universal perturbations v satisfying the required con-

straints. The proposed algorithm can therefore be leveraged

to generate multiple universal perturbations for a deep neu-

ral network (see next section for visual examples).

3. Universal perturbations for deep nets

We now analyze the robustness of state-of-the-art deep

neural network classifiers to universal perturbations using

Algorithm 1.

In a first experiment, we assess the estimated universal

perturbations for different recent deep neural networks on

the ILSVRC 2012 [16] validation set (50,000 images), and

report the fooling ratio, that is the proportion of images that

change labels when perturbed by our universal perturbation.

Results are reported for p = 2 and p = ∞, where we

respectively set ξ = 2000 and ξ = 10. These numerical

values were chosen in order to obtain a perturbation whose

norm is significantly smaller than the image norms, such

that the perturbation is quasi-imperceptible when added to

natural images2. Results are listed in Table 1. Each result

is reported on the set X , which is used to compute the per-

turbation, as well as on the validation set (that is not used

in the process of the computation of the universal pertur-

bation). Observe that for all networks, the universal per-

turbation achieves very high fooling rates on the validation

set. Specifically, the universal perturbations computed for

CaffeNet and VGG-F fool more than 90% of the validation

2For comparison, the average ℓ2 and ℓ∞ norm of an image in the vali-

dation set is respectively ≈ 5× 104 and ≈ 250.

1767



CaffeNet [9] VGG-F [3] VGG-16 [18] VGG-19 [18] GoogLeNet [19] ResNet-152 [7]

ℓ2
X 85.4% 85.9% 90.7% 86.9% 82.9% 89.7%

Val. 85.6% 87.0% 90.3% 84.5% 82.0% 88.5%

ℓ∞
X 93.1% 93.8% 78.5% 77.8% 80.8% 85.4%

Val. 93.3% 93.7% 78.3% 77.8% 78.9% 84.0%

Table 1: Fooling ratios on the set X , and the validation set.

set (for p = ∞). In other words, for any natural image in

the validation set, the mere addition of our universal per-

turbation fools the classifier more than 9 times out of 10.

This result is moreover not specific to such architectures,

as we can also find universal perturbations that cause VGG,

GoogLeNet and ResNet classifiers to be fooled on natural

images with probability edging 80%. These results have an

element of surprise, as they show the existence of single

universal perturbation vectors that cause natural images to

be misclassified with high probability, albeit being quasi-

imperceptible to humans. To verify this latter claim, we

show visual examples of perturbed images in Fig. 3, where

the GoogLeNet architecture is used. These images are ei-

ther taken from the ILSVRC 2012 validation set, or cap-

tured using a mobile phone camera. Observe that in most

cases, the universal perturbation is quasi-imperceptible, yet

this powerful image-agnostic perturbation is able to mis-

classify any image with high probability for state-of-the-art

classifiers. We refer to supp. material for the original (un-

perturbed) images. We visualize the universal perturbations

corresponding to different networks in Fig. 4. It should

be noted that such universal perturbations are not unique,

as many different universal perturbations (all satisfying the

two required constraints) can be generated for the same net-

work. In Fig. 5, we visualize five different universal per-

turbations obtained by using different random shufflings in

X . Observe that such universal perturbations are different,

although they exhibit a similar pattern. This is moreover

confirmed by computing the normalized inner products be-

tween two pairs of perturbation images, as the normalized

inner products do not exceed 0.1, which shows that one can

find diverse universal perturbations.

While the above universal perturbations are computed

for a set X of 10,000 images from the training set (i.e., in

average 10 images per class), we now examine the influence

of the size of X on the quality of the universal perturbation.

We show in Fig. 6 the fooling rates obtained on the val-

idation set for different sizes of X for GoogLeNet. Note

for example that with a set X containing only 500 images,

we can fool more than 30% of the images on the validation

set. This result is significant when compared to the num-

ber of classes in ImageNet (1000), as it shows that we can

fool a large set of unseen images, even when using a set

X containing less than one image per class! The universal

perturbations computed using Algorithm 1 have therefore a

remarkable generalization power over unseen data points,

and can be computed on a very small set of training images.

Cross-model universality. While the computed pertur-

bations are universal across unseen data points, we now ex-

amine their cross-model universality. That is, we study to

which extent universal perturbations computed for a spe-

cific architecture (e.g., VGG-19) are also valid for another

architecture (e.g., GoogLeNet). Table 2 displays a matrix

summarizing the universality of such perturbations across

six different architectures. For each architecture, we com-

pute a universal perturbation and report the fooling ratios on

all other architectures; we report these in the rows of Table

2. Observe that, for some architectures, the universal pertur-

bations generalize very well across other architectures. For

example, universal perturbations computed for the VGG-19

network have a fooling ratio above 53% for all other tested

architectures. This result shows that our universal perturba-

tions are, to some extent, doubly-universal as they general-

ize well across data points and very different architectures.

It should be noted that, in [20], adversarial perturbations

were previously shown to generalize well, to some extent,

across different neural networks on the MNIST problem.

Our results are however different, as we show the general-

izability of universal perturbations across different architec-

tures on the ImageNet data set. This result shows that such

perturbations are of practical relevance, as they generalize

well across data points and architectures. In particular, in

order to fool a new image on an unknown neural network, a

simple addition of a universal perturbation computed on the

VGG-19 architecture is likely to misclassify the data point.

Visualization of the effect of universal perturbations.

To gain insights on the effect of universal perturbations on

natural images, we now visualize the distribution of labels

on the ImageNet validation set. Specifically, we build a di-

rected graph G = (V,E), whose vertices denote the labels,

and directed edges e = (i → j) indicate that the majority

of images of class i are fooled into label j when applying

the universal perturbation. The existence of edges i → j

therefore suggests that the preferred fooling label for im-

ages of class i is j. We construct this graph for GoogLeNet,

and visualize the full graph in the supp. material for space

constraints. The visualization of this graph shows a very pe-

culiar topology. In particular, the graph is a union of disjoint

components, where all edges in one component mostly con-
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Figure 3: Examples of perturbed images and their corresponding labels. The first 8 images belong to the ILSVRC 2012

validation set, and the last 4 are images taken by a mobile phone camera. See supp. material for the original images.

(a) CaffeNet (b) VGG-F (c) VGG-16

(d) VGG-19 (e) GoogLeNet (f) ResNet-152

Figure 4: Universal perturbations computed for different deep neural network architectures. Images generated with p =∞,

ξ = 10. The pixel values are scaled for visibility.

nect to one target label. See Fig. 7 for an illustration of two

connected components. This visualization clearly shows the

existence of several dominant labels, and that universal per-

turbations mostly make natural images classified with such

labels. We hypothesize that these dominant labels occupy

large regions in the image space, and therefore represent

good candidate labels for fooling most natural images. Note

that these dominant labels are automatically found and are

not imposed a priori in the computation of perturbations.

Fine-tuning with universal perturbations. We now ex-

amine the effect of fine-tuning the networks with perturbed

images. We use the VGG-F architecture, and fine-tune the

network based on a modified training set where universal

perturbations are added to a fraction of (clean) training sam-

ples: for each training point, a universal perturbation is

added with probability 0.5, and the original sample is pre-

served with probability 0.5.3 To account for the diversity

3In this fine-tuning experiment, we use a slightly modified notion of

universal perturbations, where the direction of the universal vector v is

fixed for all data points, while its magnitude is adaptive. That is, for each
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