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Abstract

In this work, we present a method for improving a ran-

dom sample consensus (RANSAC) based image segmenta-

tion algorithm by encapsulating it within a convolutional

neural network (CNN). The improvements are gained by

gradient descent training on the set of pre-RANSAC filter-

ing and thresholding operations using a novel RANSAC-

based loss function, which is geared toward optimizing the

strength of the correct model relative to the most convinc-

ing false model. Thus, it can be said that our loss function

trains the network on metrics that directly dictate the suc-

cess or failure of the final segmentation rather than met-

rics that are merely correlated to the success or failure.

We demonstrate successful application of this method to a

RANSAC method for identifying the pupil boundary in im-

ages from the CASIA-IrisV3 iris recognition data set, and

we expect that this method could be successfully applied to

any RANSAC-based segmentation algorithm.

1. Introduction

Convolutional neural networks (CNN) have revolution-

ized the field of computer vision over the course of the past

few years. This recent revolution had its ultimate origins in

the specific area of object recognition in two-dimensional

images, and then quickly spread to other areas such as se-

mantic segmentation. As part of the natural evolution of the

methodology, early work on utilizing CNNs for segmenta-

tion maintained as much similarity as possible to the suc-

cessful object recognition approaches. Among other things,

this led to the still commonly used approach of training a

CNN to classify individual patches from images rather than

operating on the entire image at once. Recent works on seg-

mentation [15] have begun to move away from this for a va-

riety of reasons, including efficiency. Indeed, the approach

of operating on the entire image at once in CNN-based seg-

mentation bears much clearer resemblance to segmentation

pipelines which do not involve deep learning.

Model-specific segmentation problems, defined as a seg-

Figure 1. Our method for improving RANSAC segmentation per-

formance by CNN encapsulation, shown with idealized interme-

diate outputs for an example problem of pupil segmentation. Fol-

lowing encapsulation of the algorithm into a CNN, the network is

finetuned with a RANSAC based loss function.

mentation problem in which some straightforward mathe-

matical form for the boundary of the desired object(s) is

known beforehand, have yet to be explored with CNNs to

the extent that other segmentation problems have. One pop-

ular approach to model-specific segmentation problems is
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to use RANSAC to enforce the mathematical form, as this

method is extremely robust to outliers. In these approaches,

there are usually filtering and thresholding steps that occur

on the original input to generate the input for the RANSAC

algorithm, and these steps traditionally do not utilize ma-

chine learning for optimization. We seek to demonstrate

that these approaches (or at least significant pieces of them)

can in general be directly encapsulated into a CNN ”as-is”,

and that upon doing so the parameters can be fine-tuned

through backpropagation using a novel error function which

is directly tied to the propensity of RANSAC to choose the

true segmentation over any false segmentation. Another in-

teresting aspect of doing this is that a CNN constructed for a

model-specific segmentation problem will generally be sig-

nificantly smaller than the CNN architectures currently par-

ticipating in the modern deep learning revolution. Thus, our

work offers some validation of how well CNN concepts and

techniques generalize to smaller problem sizes.

We apply our CNN formulation to the problem of pupil

segmentation in images of human eyes. This is a prob-

lem with important applications to biometric identification

[2][3][27] and ophthalmic surgery [1][16] that has been

well-studied with classical computer vision approaches,

which are capable of achieving a very high success rate on

this problem due to the contrast between the pupil and iris

being quite good under normal infrared imaging conditions.

The fact that gradient strength is a key underlying assump-

tion in these algorithms directly implies that it should be

possible to exchange parts of these algorithms for a CNN

and achieve better performance. We explore this directly

by first constructing an algorithm along the lines of typical

classical computer vision approaches (specifically, a com-

bination of thresholding, edge detection, and filtering out

extraneous edges), directly converting this algorithm into a

CNN (by directly copying convolutional filters, using com-

binations of filter biases and ReLU layers for thresholding,

and adding custom layers for additional calculations where

necessary), and then executing training epochs to further

fine-tune the constructed CNN.

In summary, our work makes the following contribu-

tions: we present a novel framework for model-specific

segmentation that unifies CNN and RANSAC approaches

using a loss function based on RANSAC outputs; we

demonstrate success in using our framework to fine-tune a

functional RANSAC segmentation algorithm through CNN

training; we demonstrate robustness of our method through

a multiplicity of experiments; and we demonstrate success-

ful utilization of a CNN for a problem type and size that is

very different from typical CNN work, thus providing sig-

nificant additional validation of the adaptability and gener-

alizability of the CNN framework.

2. Related Work

CNNs have been a topic of active research and discus-

sion, particularly since significant performance gains on im-

age classification were first reported [12]. Although the fun-

damentals of the CNN technique can be said to have already

existed for a few decades [13], it has only been in recent

years that CPUs and GPUs have advanced far enough to

allow these techniques to be applied to large sets of typi-

cally sized images. Since this time, there have been im-

portant ongoing discussions about topics like how trained

CNNs can be interpreted [30] and how well they generalize

to other data sets or even different tasks [21]. CNNs have

also been successfully applied to a variety of vision tasks

besides classification, such as segmentation [8][15], super-

resolution [4], and edge detection [28].

An important concept that has come to light with CNNs

in recent years is the idea of fine-tuning, normally referring

to the practice of taking as a starting point a CNN which has

been pre-trained for some task and data set and applying it

to a different task and/or data set. Success in doing so is

well documented [28][21], with the pre-trained nets having

at least reasonable performance right off the bat (due to the

fact that filters within a pre-trained CNN exhibit positive

responses to a large variety of useful features) and fantastic

performance following training. Our work slots into this

area in general, but with the important distinction of starting

from a manually designed ”simple” CNN rather than a pre-

trained deep CNN. We were unable to find any instances in

the literature of other researchers attempting this task.

Another interesting development in CNNs that has

emerged with the variety of problems they are being used

to tackle is the utilization of a wide variety of loss functions

for training. One example of growing interest is the use

of structured loss for precise locations of objects [31][23].

As another example, Shen et al. [22] proposed a unique

loss function for contour detection based on the idea that

a false negative in contour detection is a more significant

error than mislabeling the ”type” of contour. These exam-

ples demonstrate the importance of defining a loss function

that is aligned as closely as possible with the most important

metrics for the problem at hand. This philosophy is what in-

spired us to experiment with a unique RANSAC-based loss

function (see section 3.4) for a model-specific segmentation

problem, as this allowed us to pinpoint the loss function di-

rectly onto the success rate of the final emergent algorithm.

This is in direct contrast to typical CNN segmentation ap-

proaches in which object boundaries are not direct outputs

and must be found by applying additional algorithms to the

CNN output (e.g. the CNN might output some kind of prob-

ability map from which boundary information must be ex-

tracted via algorithms like graph cut or RANSAC).

RANSAC [5][19] has been applied to many different

problems, ranging from robotics [24][29] to biomedical im-
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age processing [26][17][11][20]. Its many advantages in-

clude robustness to outliers and ease of implementation.

However, like all estimation methods, its performance has

dependence on the input. If all inliers are present and there

is no set of outliers forming a strong instance of the model

being fit to, RANSAC is virtually guaranteed to identify

the correct model given enough iterations. If some inliers

are missing, RANSAC output can have accuracy issues. If

there are a lot of outliers present, or if a large subset of out-

liers just so happen to form a model instance, RANSAC

can experience a catastrophic failure of selecting a model

formed from outliers rather than inliers. Therefore, when-

ever RANSAC is in use, it is important to optimize the input

as much as possible. We seek to demonstrate that convolu-

tional neural networks can be an effective tool for accom-

plishing this optimization task.

3. Method

In this section we describe our approach in detail. Our

CNN contains four phases: preprocessing, feature extrac-

tion, clutter removal, and RANSAC model fitting. The first

three phases all contain convolutional kernel weights and

biases that can be optimized through network training. The

weights and biases can also be initialized prior to training

based on existing insights from other successful approaches

to the problem at hand. We would argue that the ease of

initialization with our approach makes it ideal for industrial

applications where the algorithms currently being used al-

ready perform very well, as this allows for a starting point

that largely (if not entirely) preserves the original perfor-

mance prior to any machine learning. The final phase of our

CNN is a RANSAC layer, which performs straightforward

RANSAC model fitting in the forward pass and computes a

novel RANSAC-based loss function in the backward pass.

3.1. Preprocessing

For the class of problems to which our method is ap-

plicable, the preprocessing phase can involve any combi-

nation of smoothing, rescaling, and thresholding. In CNN

terms, smoothing and rescaling are convolutional opera-

tions, while thresholding can be performed by adding biases

to the kernel outputs and then passing the output through a

rectified linear unit (ReLU) layer. The significance of this

phase has a lot of dependence on the regularity of the in-

tensity profile of the object to be segmented relative to that

of the background throughout the data samples. For more

irregular intensity profiles, this layer would either have to

be less aggressive, or include a sizable multiplicity of ker-

nel/bias combinations.

3.2. Feature Extraction

The goal of the feature extraction phase is to construct

feature maps from the outputs of the preprocessing phase.

For a successful segmentation, the union of these outputs

should ideally contain the full set of boundary points for

the object of interest, with the amount of false positives be-

ing minimal and/or easily reduced by the clutter removal

phase. The backbone of feature extraction is ultimately a

set of convolutional filters, with the main source of diver-

sity in different feature extraction methods lying in the set

of filters used and the way in which their outputs are ul-

timately combined. For example, edge features have di-

rectional dependence to them, meaning that a single filter

cannot capture all edges of an object. Therefore, a simple

edge detection approach is to use one filter to extract hor-

izontal edge strength and one filter to extract vertical edge

strength, and then build a complete edge map from the Eu-

clidean norm of the two resultant edge maps. To be sure,

this Euclidean normalization of two feature maps is not an

operation traditionally found in CNNs, but there is no rea-

son why it couldn’t be given the appropriate context, as the

euclidean norm is indeed differentiable with respect to its

inputs. We demonstrate successful application of this fact

in our experiments. In particular, we insert a custom layer

into a CNN that performs the following forward and back-

ward calculations on two input channels denoted gx and gy
given a loss function L:

h =
√

g2x + g2y (1)

∂L

∂gx
=

∂L

∂h

∂h

∂gx
=

∂L

∂h

(

gx
h

)

(2)

∂L

∂gy
=

∂L

∂h

∂h

∂gy
=

∂L

∂h

(

gy
h

)

(3)

On the other hand, by utilizing more filters, one could just

as well have a full bank of filters for different edge ori-

entations and combine them with one of several possible

methods, including Euclidean norm across all outputs, max

across all outputs, average of all outputs, or another layer of

convolutional filters applied to the outputs (which collapses

to the averaging option in the limit that a single filter is used

with the center value equal to 1 for all input channels and

all other values set to zero). Any differentiable operation is

fair game in a CNN.

3.3. Clutter Removal

Once features have been extracted, it is often necessary

to subject the features to some kind of pruning process,

consisting of any combination of throwing away weak fea-

tures, removing certain feature classes altogether, or suc-

cessive application of additional filters to the feature maps.

In a CNN, ReLU layers are the most straightforward way

to throw away weak features. Regarding the other types

of operations, a CNN can be constructed to have multiple

largely independent channels entering this phase, which is
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significant because it is then possible to interpret some of

these channels as focused on obtaining high feature strength

for boundary pixels of the object to be segmented with

the other channels instead focused on obtaining high fea-

ture strength for other objects or artifacts in the image. In

this framework, some kind of weighted subtraction of the

second kind of channels from the first kind should yield a

good final map for the desired object boundary. This idea

of a weighted subtraction can of course straightforwardly

be executed with convolutional kernels, which can simulta-

neously apply other interesting operations on the channels

(such as smoothing) prior to the subtraction. Alternatively,

undesired objects or artifacts can also be filtered out ahead

of time in some cases. For example, many segmentation

pipelines in iris recognition remove LED reflections as one

of the earliest steps [7][14]. A CNN embodying this de-

sign philosophy is simply one in which the first few layers

produce an output which is (ideally) the original image but

with the undesired artifacts removed. We performed CNN

experiments utilizing each of these approaches to artifact

removal (in fact, they are not mutually exclusive), but we

focused more effort on the first approach due to the imple-

mentation being much more straightforward.

3.4. RANSAC Fitting and Backpropagation

Perhaps the most unique aspect of our work is the novel

RANSAC-based loss function we employ in our CNN.

RANSAC [5][19] is a model fitting technique that is ex-

tremely robust to noise, as outliers have no impact on the

final shape provided the input has enough signal strength

for the desired shape. It is also an extremely generic tech-

nique, applicable to any modeling problem where a fixed

number of data points define an instance of the model. Our

RANSAC implementation for pupil detection operates di-

rectly on the output Z of the previous CNN layer according

to the following steps (assuming a circular model): con-

struct a list of all points (x , y) where Z (x , y) > 0 ; select

three of these points at random and construct the unique cir-

cle C passing through these points; compute a score for that

circle based on the values of Z at points sufficiently close

to the circle, but assigning a score of 0 if the circle vio-

lates known geometric constraints; repeat the random point

sampling and circle scoring steps for a fixed number of it-

erations, maintaining (and eventually returning) the highest

scoring circle.

We now turn to a very interesting question: what causes

RANSAC to fail? Certainly, if Z = 0 ∀(x , y) ∈ C ∗ with

C ∗ denoting the true circle, RANSAC will surely fail. In-

deed, the input values at the points along the true circle are

clearly a critical factor. But how high do these values actu-

ally have to be? How low do the other values actually have

to be? The answer is that if the points satisfying the true

model all have positive values, the only way RANSAC can

actually fail (assuming a sufficient number of iterations) to

return the true model is if a more convincing alternate model

is present in the data. This means that not all false posi-

tives in Z are equally important, as a set of false positives

that don’t fit a single model instance (i.e. randomly scattered

points) are considerably less likely to cause issue than a set

of false positives which do fit a model instance. In the case

of iris images, there are other structures present in the image

besides the pupil which form a circle: the eyelids, the outer

iris boundary, and the ring of LEDs inside the pupil. Thus,

the key factor in whether RANSAC succeeds or fails pro-

vided decent representation of true positives is the strength

of the strongest ”impostor” model instance. For this reason,

we propose a loss function centered on the ratio between

the RANSAC scores of the strongest impostor and the true

model, together with additive terms to penalize false nega-

tives and false positives (thus, the error function completely

ignores true negatives). Explicitly, our loss function is the

following:

L = log

(

1 + S
′

1 + S∗

)

−α
∑

(x,y)∈C∗

Z(x,y)≤0

Z(x, y) + β
∑

(x,y)/∈C∗∪C
′

Z(x,y)>0

Z(x, y) (4)

With S
′

and S∗ the scores of the strongest impostor C
′

and the true model C ∗ respectively, with scores computed

by the following:

S =
∑

(x,y)∈C
Z(x,y)>0

Z(x, y) (5)

This loss function can easily be differentiated with re-

spect to each point in Z , as follows:

∂L

∂zi
=























−1
1+S∗

: (xi, yi) ∈ C∗, zi ≥ 0
1

1+S′ : (xi, yi) ∈ C
′

, zi ≥ 0

−α : (xi, yi) ∈ C∗, zi ≤ 0

β : (xi, yi) /∈ C∗ ∪ C
′

, zi > 0
0 : otherwise

(6)

Our loss function has some interesting aspects. If a

strong impostor is present within the data, this loss func-

tion will drive down the values of the points comprising the

impostor. If there are no particularly strong impostors in

the data, this aspect of the loss function transitions toward

applying a harsher penalty to an arbitrary subset of false

positives on a stochastic basis. Additionally, false negatives

are always penalized.

3.5. Parameters

Our method does contain some parameters which must

be specified up front (i.e., parameters that are not learned
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or optimized directly from the data). Two of these are the

weights α and β applied globally to false negatives and pos-

itives (respectively) in the loss function. β does not need to

be very large; in fact, it can even be zero, as this just means

only false positives detected as impostors by the RANSAC

layer will contribute to backpropagation. α is a more impor-

tant parameter, as setting α > 0 is the only way to penalize

false negatives. Unless otherwise specified, we used values

α = 1 and β = 0.01 for our experiments. The other impor-

tant parameters are those involved in the RANSAC algo-

rithm. This includes the tolerance for model membership in

computing the scores, the number of RANSAC iterations in

relation to the number of points provided as input, the crite-

rion for labeling a proposed model as an impostor, and po-

tential constraints for rejecting models that grossly violate

feasible geometries for the object in question. An important

point about the tolerance parameter in score computation is

that the tolerance used for the forward and backward passes

of the CNN does not necessarily have to be the same; for ex-

ample, using a smaller value for the backward pass has the

effect of being a bit more conservative with weight updates.

Unless otherwise specified, we generally used a tolerance

of 2 pixels in the forward pass and 1 pixel in the backward

pass. We also applied an extremely loose upper bound on

pupil radii (roughly 5 times the average radius in the data

set) as a constraint. Finally, the number of RANSAC itera-

tions was set to the number of input data points divided by

5, but capped at a maximum value of 2000.

4. Experiments

We perform several experiments using images from the

CASIA-IrisV3 data set 1, which contains more than 2000

iris images from more than 249 subjects (including images

of both the left and right eye for most subjects). Ground

truth segmentations for this data set are publicly available

[9]. We are not the first to experiment with CNNs on im-

ages of the eye - see, for example, [6] and [10] - however,

as far as we are aware, no other published works evaluate

segmentation CNNs with a CASIA data set. The CNN we

construct for these experiments is extremely tiny, contain-

ing only a few thousand free parameters. All of our exper-

iments were performed in MATLAB utilizing Matconvnet

[25]. We did not utilize a GPU in our experiments, which

was not really a problem due to the size of the CNNs (com-

putational speed in our experiments is upwards of 5 images

per second for forward pass only and 1 to 2 images per sec-

ond for both forward and backward passes). For analysis

of the significance of small errors in pupil localization in

iris recognition and iris registration, the reader is referred to

[18] (recognition) and [16] (registration).

1http://biometrics.idealtest.org

4.1. Base Configuration Definition

Our base network architecture has a total of 3 convolu-

tion layers. The first convolution layer contains two filters

operating on the grayscale image (size H×W ), the first be-

ing initialized to an inverted Gaussian smoothing filter with

a large positive bias and the second being initialized to a

smoothing filter with a moderate negative bias. The outputs

are then fed to a ReLU layer, with the result that the nonzero

pixels in the first output channel of this ReLU layer belong

almost exclusively to the pupil. The next convolution layer

is initialized to extract horizontal and vertical edges from

the first input channel using basic Sobel-type filters, while

also convolving a family of four different orientations of a

Gabor wavelet designed to have a strong response to the

LED reflections - hence, a total of 6 output channels. These

are then fed to a customized layer, which computes the eu-

clidean norm of the first two input channels (see section 3.2)

and extracts the max value over the other four channels at

each pixel location to produce a second output map. These

outputs are then fed to another ReLU layer, and then to a

third convolution layer which is initialized to a weighted

subtraction of the ”clutter” channel from the ”signal” chan-

nel with very heavy smoothing applied to the clutter chan-

nel. Ideally, this layer produces output which contains the

entire pupil boundary and nothing else (see Figure 1). This

output is then fed to our RANSAC layer as discussed in sec-

tion 3.4. We train the network with a total of 35 epochs us-

ing a batch size of 30 images, momentum of 0.9, and weight

decay of 0.0005, with a learning rate of 10−6 for the first 15
epochs and 10−7 for the next 20 epochs.

4.2. Base Configuration Results

The results of this experiment with 1051 training images

and 1577 testing images are shown in Tables 1 and 2, and

further illustrated in Figures 2 and 3. Table 1 shows the

marginal but significant accuracy gains that were made in

the ability to correctly identify the pupil center and radius

through CNN training, while Figure 2 illustrates that the

nature of much of this gain actually came in the form of re-

moving directional bias. Additionally, Table 2 and Figure

3 show the efficacy of the final edge maps before and after

training. The network after training had a huge increase in

average recall with only a small decrease in average preci-

sion, good for a slightly higher average F1 score. Equally

important are the dramatically lower standard deviations for

these metrics, which show that the network became much

more robust and more repeatable after training. Another

important result is that no overfitting was observed; when

evaluated on the training set, the center and radius errors are

only slightly different (1.04 ± 0.54 and 0.48 ± 0.36), with

the average precision, recall, and F1 score virtually identical

(each within 0.002 of the corresponding test set value).

At this point, it is appropriate to wonder what exactly
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Figure 2. Pupil segmentation error distributions before (top) and after (bottom) training, using our base configuration with parameters set

as described in section 3.5. For all three geometric parameters governing the best fit circle for the pupil, the initial algorithm produced

measurable biases in one direction or another, and optimizing the algorithm through CNN training significantly reduced these biases.

Figure 3. Pupil edge precision, recall, and F1 score distributions before (top) and after (bottom) training, using our base configuration with

parameters set as described in section 3.5. Training led to dramatically improved recall and much more controlled precision (albeit with a

slightly decreased average precision), thus producing F1 scores that are slightly higher on average with a much tighter distribution.
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Figure 4. Learned alterations to the convolutional filters in the network, shown in the spirit of [30]. Most are extremely smooth functions,

implying that these alterations are taking advantage of meaningful patterns in the images. It is interesting that the ”horizontal gradient”

perturbation (shown in the top left corner of the Feature Extraction group) appears to take on different characteristics at the top of the

filter from the middle and bottom of the filter; one could speculate that this has something to do with some images having low-hanging

eyelashes near the upper pupil boundary. It is also interesting how much more complex (yet still incredibly symmetric) the perturbations

to the deepest two filters are compared to the others. These two filters are responsible for the final ”subtraction” of the clutter map from the

feature map to produce the final edge map.

the network learned in order to achieve these improvements.

The network contains a total of 16 two-dimensional convo-

lutional filters (some of which comprise multiple channels

of a single filter operating on multichannel input) - 2 in the

first convolutional layer, 12 in the second, and 2 in the third.

10 of these were specifically initialized as part of encapsu-

lating the classical edge detection and filtering operations

within the CNN, while the others were zeroed out (initial-

ized to extremely tiny random numbers prior to training,

but set to exactly zero for all ”pre-training” performance

evaluations). The differences between the post-training fil-

ters and the pre-training filters take the form of very smooth

functions for 11 out of the 16 filters, implying that the im-

proved results following training do indeed stem from lever-

aging meaningful patterns in the images. The learned filter

alterations are shown in Figure 4.

4.3. Hyperparameter Variation

We performed additional experiments with varied hyper-

parameters. One such variation was setting the backprop-

agation RANSAC tolerance to 2 pixels (instead of 1). The

results under this variation were very similar to the orig-

inal results, the final net being more sensitive than in the

prior case (average precision, recall, and F1 score of 0.24,

Measure Center Radius

Initial 1.20± 0.69 0.57± 0.48
Post-Training 1.06± 0.57 0.47± 0.36
Difference 0.15± 0.45 0.10± 0.42

Table 1. Accuracy results for our base configuration with param-

eters set as described in section 3.5. The CNN was initialized to

a pretty good performance prior to any training, and this perfor-

mance was improved by training on our RANSAC loss function.

The results were calculated over a test set of 1577 images, with the

post-training CNN having been trained on 1051 different images.

See Figure 5 for some specific examples of challenging images.

Measure Precision Recall F1 Score

Initial 0.40± 0.17 0.69± 0.18 0.46± 0.12
Post-Training 0.32± 0.05 0.94± 0.07 0.48± 0.06

Table 2. Edge map evaluation for our base configuration with pa-

rameters set as described in section 3.5. Training on the RANSAC

loss function resulted in greatly improved recall of pupil edges

with a minor decrease in mean precision, resulting in a better aver-

age F1 score. Equally important are the reduced spreads for each

of these metrics after training.
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Figure 5. Illustration of challenging images in the data set. The

top row shows the result and the corresponding edge map for the

sole image for which the trained network makes an obvious error

(green circle is network output, red circle is ground truth). The

bottom row similarly shows errors made by the net prior to train-

ing, which no longer occur after training.

0.98, and 0.38) with only slightly degraded accuracy (cen-

ter and radius errors 1.07± 0.57 and 0.50± 0.38). We also

tried reducing the RANSAC imposter threshold, defined in

terms of the sum of squared geometric parameter errors be-

ing greater than the threshold, from 80 to 15, and obtained

results virtually identical to the original results (center and

radius errors of 1.05± 0.57 and 0.47± 0.36; average preci-

sion, recall, and F1 score of 0.34, 0.94, and 0.50). The third

variation we tried was setting β = 0, such that the only false

positives that contributed to backpropagation were those

belonging to detected impostors. This resulted in a much

more sensitive net (average precision, recall, and F1 score

of 0.028, 0.997, and 0.055) with accuracy that was still bet-

ter than the initial net but clearly not as good as our other

results (center and radius errors 1.14±0.67 and 0.51±0.46).

4.4. Alternate Configurations

We ran an experiment with all pre-initialization related

to clutter removal removed. The net after training still

achieved performance very close to that of the base configu-

ration in terms of final edge map evaluation (average preci-

sion, recall, and F1 score of 0.30, 0.95, and 0.46), however

in terms of finding the pupil there was one catastrophic fail-

ure in which RANSAC identified a circle that went through

a combination of eyelid edges and LED edges that had not

been filtered out successfully (in other words, a convinc-

ing impostor that the net failed to suppress). Excluding

this case, the center and radius errors were 1.08± 0.65 and

0.51 ± 0.45. We repeated this experiment with extra lay-

ers added to the front of the net designed to attempt to re-

move the LED reflections from the image and pass the result

along to the rest of the net. After training, this configura-

tion actually produced the best edge map metrics of all our

experiments, with average precision, recall, and F1 score

of 0.44, 0.98, and 0.60 (the respective standard deviations

were 0.07, 0.04, and 0.07), although no improvements were

seen in the accuracy metrics relative to the base configura-

tion (center and radius errors 1.06± 0.57 and 0.54± 0.42).

However, it is important to point out that this configuration

is not quite as good as the base configuration pre-training

(center and radius errors 1.26±0.70 and 0.69±0.56). Thus

the amount of improvement gained through training is ac-

tually somewhat more significant than for the base configu-

ration (differences in center and radius error of 0.2 ± 0.46
and 0.15± 0.35).

4.5. Reduced Training Set

Encouraged by the complete lack of overfitting observed

in our experiments, we explored utilizing a reduced training

size. The training set was reduced by half - thus, only 525

images were utilized. We doubled the number of epochs at

each learning rate such that the total amount of parameter

updates remained fixed for each learning rate. Using the

same test set utilized for all other experiments, the accuracy

results were virtually unchanged from the base configura-

tion (center and radius errors 1.06± 0.57 and 0.48± 0.37)

with the final edge maps being slightly less sensitive (aver-

age precision, recall, and F1 score of 0.34, 0.94, and 0.50).

5. Conclusion

In this work, we successfully embedded a high-

performing RANSAC segmentation algorithm for a prac-

tical problem into a CNN by hand, and achieved even bet-

ter performance by fine-tuning the constructed CNN with

backpropagation. The fine-tuning utilized a novel loss func-

tion based on the strongest ”imposter” set detectable by

RANSAC so as to directly train on what ultimately im-

pacted segmentation performance. Our work strengthens

the case for CNNs as a robust problem solving approach

applicable to a wide variety of problem types and sizes. We

believe that our approach of CNN encapsulation and fine-

tuning with our RANSAC loss function has general appli-

cation to any computer vision problem where RANSAC has

been proven to be a successful method, and we look forward

to experimentally investigating this in the future.
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