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Abstract

Principal component analysis (PCA) is one of the most

versatile tools for unsupervised learning with applications

ranging from dimensionality reduction to exploratory data

analysis and visualization. While much effort has been de-

voted to encouraging meaningful representations through

regularization (e.g. non-negativity or sparsity), underlying

linearity assumptions can limit their effectiveness. To ad-

dress this issue, we propose Additive Component Analysis

(ACA), a novel nonlinear extension of PCA. Inspired by

multivariate nonparametric regression with additive mod-

els, ACA fits a smooth manifold to data by learning an ex-

plicit mapping from a low-dimensional latent space to the

input space, which trivially enables applications like denois-

ing. Furthermore, ACA can be used as a drop-in replace-

ment in many algorithms that use linear component analysis

methods as a subroutine via the local tangent space of the

learned manifold. Unlike many other nonlinear dimension-

ality reduction techniques, ACA can be efficiently applied to

large datasets since it does not require computing pairwise

similarities or storing training data during testing. Multi-

ple ACA layers can also be composed and learned jointly

with essentially the same procedure for improved represen-

tational power, demonstrating the encouraging potential of

nonparametric deep learning. We evaluate ACA on a va-

riety of datasets, showing improved robustness, reconstruc-

tion performance, and interpretability.

1. Introduction

Identifying the underlying structure of data is one of the

most important tasks in machine learning. As technologi-

cal advancements facilitate the construction of datasets with

increasing size and dimensionality, data analysis is becom-

ing more challenging due to computational constraints and

the curse of dimensionality. In the field of computer vision

especially, data often consist of thousands if not millions

of features, resulting in drastically increased training data

requirements. However, real-world data often concentrate

  

 

 

 

 

 

 

 

 

(a) Additive Component Analysis (ACA)

  

 

 

 

 

 

 

 

 

(b) Principal Component Analysis (PCA)

Figure 1: An overview of ACA (a) in comparison to PCA (b) on

the task of fitting a two-dimensional surface to three-dimensional

data. Both methods minimize the sum of squared distances be-

tween the data and their orthogonal projections. However, while

PCA learns a linear subspace spanned by basis vectors bj , ACA

learns a nonlinear manifold defined by the summation of points

along smooth curves f j , resulting in reduced reconstruction error.

The key to our approach is the decomposition of each data point

xi into a sum of target components gij , which allows the basis

functions to be learned through simple, univariate regression.

near manifolds with lower intrinsic dimensionality [27]. For

example, while the typical image resolution of digital pho-

tographs is large, the space of natural images occupies an

extremely small volume in comparison to that of all possi-

ble pixel instantiations.

Because the geometric nature of data is typically un-

known, a variety of properties have been proposed for en-

couraging the extraction of meaningful low-dimensional

representations. Component analysis methods are founded

on the implicit assumption that useful representations are

those that can accurately reconstruct input data. However,

to enable effective generalization and interpretability, mod-

eling assumptions or regularization often must be employed.

Principal Component Analysis (PCA) fits a low dimen-

sional subspace to data by finding directions of maximal
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variance. While the underlying linearity assumption holds

remarkably well for some data (e.g. aligned images of Lam-

bertian objects such as faces [3]), even small perturbations

(e.g. image translations) can introduce nonlinearities that

bias the results. Kernel PCA handles nonlinear interactions

by performing PCA in a higher-dimensional reproducing

kernel Hilbert space, but is not optimized to effectively re-

construct the input data. Alternatively, manifold learning

has acheived much success under the assumption that mean-

ingful representations should preserve the local geometry of

input data. However, these methods are often computation-

ally expensive, difficult to interpret, and sensitive to noise.

To address these issues, we propose Additive Compo-

nent Analysis (ACA), a novel method for nonlinear compo-

nent analysis that explicitly optimizes reconstruction error.

The motivating hypothesis underlying our approach is that

reconstructed input data should vary slowly with respect to

lower-dimensional representations, relaxing the strict lin-

earity assumption of PCA. This is closely related to the

slowness principle of Slow Feature Analysis (SFA) [38], in

which invariant, high-level visual representations of sequen-

tial data are assumed to change slowly in time. However,

our approach is more general, allowing for its application to

unordered data and the automatic discovery of latent dimen-

sions of variation other than time.

Our approach can be interpreted as an unsupervised ad-

ditive model [10] constructed to predict training data from

latent input variables, effectively fitting a smooth manifold

to data with complexity controlled by an intuitive roughness

penalty. An overview is shown in Fig. 1, along with com-

parisons to PCA. Our contributions can be summarized as

follows: (1) ACA learns a memory-efficient explicit map-

ping from a low-dimensional latent space to the original in-

put space by minimizing reconstruction error. This differs

substantially from most other methods for nonlinear compo-

nent analysis and manifold learning, resulting in improved

robustness to noise while circumventing typical complica-

tions such as the pre-image problem [18] and out-of-sample

inference [7]. (2) Efficient learning is accomplished with

an alternating optimization algorithm that does not require

the computation or storage of pairwise similarity matrices,

thus enabling its efficient application to large datasets. (3)

To enable increased representational power via nonparamet-

ric deep learning, we extend our optimization procedure to

jointly learn multiple ACA layers. (4) Finally, we demon-

strate the effectiveness of our method by showing improved

performance on a variety of datasets.

1.1. Background and Related Work

Nonlinear dimensionality reduction has been an active

area of research in recent years. In this section, we provide

a brief overview of some previous methods along with some

background on nonparametric statistics.

Nonlinear Component Analysis: Numerous attempts

have been made to model nonlinearities within a component

analysis framework. The most prominent example is kernel

PCA [33], which applies an implicit nonlinear function to

the input data and performs PCA in this feature space using

the kernel trick. While out-of-sample inference is enabled

via a representer theorem, there is no clear back-projection

from the latent space to the original input space due to the

pre-image problem [18]. Furthermore, the computational re-

quirements of kernel PCA prevent its use on large datasets.

Similarly, Gaussian Process Latent Variable Models [19]

provide a general probabilistic interpretation of nonlinear

PCA, but still suffer from many of the same issues due to

the kernelized covariance function. Recently, approximate

kernel methods have been proposed to improve computa-

tional efficiency. In [30], data are explicitly mapped to a

randomized feature space in which inner products approxi-

mate kernel function evaluations. Using this idea, random

nonlinear features have led to scalable algorithms for nonlin-

ear PCA [23]. However, these approaches all first transform

the input data, preventing their effective application to data

reconstruction and denoising.

Manifold Learning: Methods for manifold learning find

low-dimensional data representations by minimizing local

geometric distortions, e.g. [34, 4]. Most often formalized as

eigendecompositions, these algorithms do not learn explicit

mappings to the latent space and thus cannot support back-

projection or out-of-sample extensions directly [7]. Further-

more, these techniques tend to be topologically unstable,

relying on unintuitive hyperparameters (e.g. neighborhood

size) that require careful tuning in order to avoid degenerate

behavior like short circuiting [1].

Autoencoders and Deep Neural Networks: Alterna-

tively, autoencoders attempt to reconstruct data by learning

explicit nonlinear mappings to and from latent representa-

tions. While shown to be equivalent to PCA in the linear

case [2], nonlinear activation functions and stacking can en-

able a rich class of nonlinear representations [36]. In fact,

some deep learning models can be interpreted as learning

data manifolds [5] or lower-dimensional distributions [16].

While these methods employ explicit nonlinear mappings

for reconstructing the original data, it is not yet clear how

different regularization techniques and model architectures

affect the space of learnable nonlinear functions [39], so

they tend to require significant engineering effort and still

often result in overfitting and poor interpretability.

Nonparametric Statistics: Unlike parametric methods

that have a fixed complexity, nonparametric methods can

adapt to the data, allowing for the representation of a wide

range of nonlinearities. However, they are ineffective in

high-dimensional settings due to the large amount of train-

ing data required to effectively characterize full data distri-

butions [37]. To address this issue, additive models consider
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a smaller class of nonparametric functions that decompose

into sums of univariate functions considering each input di-

mension independently [10] via smoothing splines, piece-

wise polynomial functions with roughness penalties that en-

courage functions with small second derivatives [37]. Other

nonparametric methods have also generalized the notion of

principal components as geometric objects passing through

the center of data [15, 29], but they cannot generally be used

for dimensionality reduction. The method that is most simi-

lar to ACA is [11], which also learns explicit nonparametric

functions to minimize a least-squares objective, but requires

good initializations and is intractable for large datasets.

2. Additive Component Analysis

In this section, we formalize learning for ACA as an op-

timization problem and describe an approach for solving it.

Given a dataset of vectors xi ∈ R
d for i = 1, . . . , n, we aim

to infer lower-dimensional latent representations wi ∈ R
m

that can be used to optimally reconstruct the correspond-

ing data. Recall that PCA accomplishes this by minimiz-

ing the error of approximating data as linear combinations

of learned basis vectors bj for j = 1, . . . ,m with lower-

dimensional latent representations given as the correspond-

ing coefficients wi. We generalize this idea by approximat-

ing data as the sum of learned nonlinear basis functions f j

evaluated at some latent variables wij , resulting in approxi-

mations given by the additive model f(wi) =
∑

j f j(wij).
With a least-squares reconstruction objective, our opti-

mization problem can be formalized as follows in Eq. 1.

Here, we aim to learn both the basis functions f j and la-

tent variables wi. We constrain the basis functions to be-

long to the set of cubic smoothing splines F with a rough-

ness parameter ρ that balances approximation accuracy and

smoothness. In addition, in order to compress the latent

space and constrain the domains of the basis functions, we

enforce that the latent representations belong to a closed set

W , implemented using a small amount of ℓ2 regularization

with a fixed hyperparameter of λ = 0.01.

argmin
fj∈F,
wi∈W

n
∑

i=1

∥

∥

∥
xi −

m
∑

j=1

f j(wij)
∥

∥

∥

2

2

(1)

This objective essentially minimizes the error in approxi-

mating data by projecting them onto an m-dimensional non-

linear manifold. Optimization for this problem presents an

interesting challenge. A common approach for similar con-

strained component analysis problems (e.g. non-negative

matrix factorization [8], dictionary learning [17], etc.) is

alternating minimization. With one set of variables fixed,

the resulting problem is usually much simpler. In our case,

however, this is not so. With the latent representations wi

fixed, the optimization problem reduces to that of a super-

vised additive model, which must be solved using an iter-

ative backfitting algorithm, often requiring many iterations

to converge [10]. Instead, we derive an equivalent formula-

tion of our problem that allows for alternating minimization

with simple, closed-form updates.

2.1. Equivalent Problem Formulation

To enable simpler optimization, we introduce additional

auxiliary variables by decomposing xi into a sum of target

components gij , which we enforce with an affine equality

constraint. Our optimization problem can then be equiva-

lently written as follows:

argmin
fj∈F,

wi∈W,gij

n
∑

i=1

∥

∥

∥

m
∑

j=1

(

gij−f j(wij)
)

∥

∥

∥

2

2

s.t.

m
∑

j=1

gij = xi (2)

When expanded, the squared norm introduces additional

cross terms in the form of (gij−f j(wij))
⊺(gik−fk(wik))

for k �= j. Interestingly, we can simply ignore these cross

terms without affecting the solution, resulting in Eq. 3:

argmin
fj∈F,

wi∈W,gij

n
∑

i=1

m
∑

j=1

∥

∥

∥
gij −f j(wij)

∥

∥

∥

2

2

s.t.

m
∑

j=1

gij = xi (3)

To see why this problem is equivalent to Eq. 1, con-

sider solving only for the auxiliary target components gij

with the basis functions f j and latent representations wi

fixed. This decomposes into independent subproblems for

each data instance i = 1, . . . , n. We can then concate-

nate the variables so that Gi = [gi1, . . . , gim], Fi =
[f1(wi1), . . . ,fm(wim)], and A = 1

⊺

m ⊗ Id, where ⊗ de-

notes the Kronecker product. The target components in Gi

can then be found by solving the optimization problem in

Eq. 4. Note that this is simply the projection of the evalu-

ated basis functions f j(wij) in Fi onto the affine subspace

defined by the equality constraint. Thus, its solution is given

in closed form, where A
+xi is a point on the affine sub-

space and the columns of N form an orthonormal basis for

the nullspace of A.

argmin
Gi

‖Gi − Fi‖
2

F s.t. Avec(Gi) = xi

vec(Gi) = A
+xi +NN

⊺
(

vec(Fi)−A
+xi

)

(4)

Here, A+xi=
1

m
xi⊗1 and NN

⊺=
(

I− 1

m
11

⊺
)

⊗I. After

some simplification, the target components gij are given by

Eq. 5. Intuitively, this can be interpreted as distributing the

current approximation error equally among the target com-

ponents gij so that they sum to xi.

gij = f j(wij) +
1

m

(

xi −

m
∑

j=1

f j(wij)
)

(5)

Plugging this back into our problem in Eq. 3 gives our origi-

nal objective function in Eq. 1 rescaled by m−1. Thus, both

problems have exactly the same solutions.
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(a) Find w̃i given lj

 

 

  

 

 

(b) Find wi given w̃i, fj

 

 

 

 

 

 

(c) Find gij given f(wi)

 

 

 

 

  

 

 

(d) Find fj given wij , gij

Figure 2: A visualization of one iteration of our alternating opti-

mization procedure. (a) First, approximate latent variables w̃i are

found by projecting each data point xi onto the affine subspace de-

fined by linear basis function approximations lj , initialized using

PCA. (b) Then, wi is updated by projecting xi onto the tangent

space at the point f(wi). This step is repeated multiple times with

smaller step sizes for increased accuracy, resulting in an approxi-

mate orthogonal projection of xi onto the manifold. (c) The target

components gij are then found by equally redistributing the recon-

struction error between them. (d) Finally, the basis functions f j

(along with their linear approximations lj) are found using simple

univariate regression.

2.2. Alternating Optimization

Unlike our original problem formulation in Eq. 1, the

one in Eq. 3 naturally lends itself to an efficient alternating

minimization algorithm. After initializing with PCA, we fix

the basis functions f j and jointly solve for the latent repre-

sentations wi and target components gij . Then, with these

variables fixed, we solve for the basis functions f j , repeat-

ing this process until convergence. Despite the nonconvex-

ity of our problem, this alternating optimization procedure

has been shown to converge consistently to good solutions,

as demonstrated empirically in the experiments discussed in

Sec. 4. An overview is shown in Fig. 2 and an example of

its progression on a synthetic dataset is shown in Fig. 3.

1.) Latent Variables: With f j fixed, we solve Eq. 6 for

each data instance i = 1, . . . , n:

argmin
wi∈W,gij

m
∑

j=1

∥

∥gij − f j(wij)
∥

∥

2

2
s.t.

m
∑

j=1

gij = xi (6)

This is simply the projection of xi onto the learned man-

ifold. Solving this directly is difficult due to the nonlinear

basis functions f j . However, since we enforce that they

be smooth with small second derivatives, they can be ef-

fectively approximated by first-order Taylor expansions cen-

tered around some approximate solutions w̃ij , which define

the tangent space of the manifold at the point f(wi):

f j(wij)≈uij+wijf
′
j(w̃ij),uij=f j(w̃ij)−w̃ijf

′
j(w̃ij)(7)

Initialization Iteration 20 Iteration 40 Iteration 56 Original Data

Figure 3: An example of our optimization procedure applied to a

noisy synthetic dataset. The original data points are shown on the

right. On the left are their denoised projections using the learned

basis functions (shown in black) throughout optimization. Starting

from a linear subspace at initialization, the basis functions adapt

to the nonlinear structure of the data, resulting in a near perfect

reconstruction of the true underlying manifold.

The initial w̃ij can be found by projecting xi onto the

affine subspace defined by linear approximations lj to the

spline functions f j . After plugging in this approximation,

the resulting problem, shown below in Eq. 8, is a strictly-

convex quadratic program. Furthermore, its unique mini-

mizers are given by simple, closed-form expressions.

argmin
wi∈W,gij

m
∑

j=1

∥

∥gij−uij−wijf
′
j(w̃ij)

∥

∥

2

2
s.t.

m
∑

j=1

gij=xi (8)

Due to the equivalence between Eqs. 1 and 3, we can sub-

stitute in the solution for gij into Eq. 8 and solve for wi

directly as follows, where Di = [f ′
1(w̃ij), . . . ,f

′
m(w̃ij)]

and ui =
∑

j uij :

argmin
wi∈W

‖xi − ui −Diwi‖
2

2
(9)

This approximation can be improved by repeatedly updat-

ing wi with decreasing step sizes. Afterward, the target

components gij are found using the closed form solution in

Eq. 5. Note that inference can later be performed on test

data using this same procedure.

2.) Basis Functions: With wi and gij fixed, we then

solve Eq. 10 for each j = 1, . . . ,m:

argmin
fj∈F

n
∑

i=1

∥

∥gij − f j(wij)
∥

∥

2

2
(10)

This is standard univariate regression in which the latent

variables wij are mapped to the target components gij . We

restrict the basis functions f j to be roughness-penalized

smoothing splines [13] due to their generality and efficient

computation. Thus, the set F can be defined as:

F =
{

f : R → R
d
∣

∣

∣
∀q ∈ [1, d]:

∫

(f ′′
q (x))

2dx ≤ γ
}

(11)

These constraints are implemented with a roughness penalty

balancing approximation accuracy and complexity with a

roughness hyperparameter ρ. The solution to the problem

in Eq. 10 is a cubic spline with knots at each of the training
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points, which can be expressed as a linear combination of

spline basis functions btj for t = 1, . . . , nb [13]. Specif-

ically, we model the target components gij as f j(wij) =
∑

t ctjbtj(wij) with coefficient vectors ctj ∈ R
d. In our

implementation, we use B-spline basis functions because

they have bounded support resulting in sparse, banded ma-

trices and linear-time inverse computations [14]. Further-

more, their evaluation and derivatives can be efficiently

computed using a simple recursive formula [37]. Eq. 10

can then be reformulated as a simple ℓ2-regularized least-

squares problem with the closed form solution given in

Eq. 12 below for i = 1, . . . , n and s, t = 1, . . . , nb, where

Cj = [c1j , . . . , cnbj ].

Bj(i, t) = btj(wij), Ωj(s, t) =

∫

b′′sj(x)b
′′
tj(x)dx

Cj =
(

ρB
⊺

jBj + (1− ρ)Ωj

)−1
B

⊺

j

[

g1j · · · gnj

]⊺

(12)

With knots at each training instance, the number of ba-

sis functions would grow linearly with the number of train-

ing examples, which would become computationally in-

tractable for large datasets. However, with a small enough ρ,

the solution can be well-approximated with knots placed at

a randomly selected subset of nb = 20 training instances so

that nb ≪ n. This allows the basis functions to be defined

using a relatively small number of parameters.

2.3. Approximate Stochastic Optimization

While the optimization procedure described in the previ-

ous section is memory efficient due to the separability of the

cost function into smaller subproblems, solving for all latent

variables at each iteration can be computationally expensive

(and possibly redundant) for extremely large datasets. Ide-

ally, we would instead prefer to take a stochastic approach

that considers only a random subset of the data at each it-

eration. The basis functions could then be updated with a

certain step size by taking a weighted average with the pa-

rameters from the previous iteration. However, since the

knot locations of the spline functions change at each itera-

tion, their corresponding parameters are not comparable.

To overcome this issue, we propose an approach that ap-

proximates the spline functions from the previous iteration

using the knots from the current iteration so that their param-

eters can be averaged. Specifically, we use Schoenberg’s

variation diminishing spline approximation [25, 24], a sim-

ple and efficient method for function approximation that

does not require solving a linear system of equations as with

the roughness-penalized spline approximation described in

Sec. 2.2. To understand this method, first recall that spline

functions can be interpreted geometrically as smoothed ver-

sions of their control polygons, which are piecewise-linear

functions with vertices located at specific control points.

For a cubic spline f(w) =
∑

t ctbt(w) with a knot vector τ ,
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Figure 4: An example of the variation diminishing spline approx-

imation used in our stochastic optimization technique for parame-

ter averaging of basis functions with different knot locations. The

original basis function (a) was fitted to target components with

knot locations denoted by dotted vertical lines while the updated

basis function (b) was approximated with different knot locations

without requiring expensive least-squares fitting.

these control points have coordinates (τ∗t , ct) where τ∗t =
1

3
(τt+1+τt+2+τt+3) are the knot averages of τ . Similarly,

for any function f , it’s variation diminishing cubic spline ap-

proximation is given by (V f)(w) =
∑

t f(τ
∗
t )bt(w) where

the coefficients are given directly as function evaluations at

the knot averages. Thus, before updating the basis function

parameters from the previous iteration, we take a variation

diminishing spline approximation of their control polygons

evaluated at the new knot averages from the current iter-

ation, essentially resulting in a linear interpolation of the

control points. While this is only a rough approximation as

shown in Fig. 4, it leads to effective learning with signifi-

cantly reduced training time, which we demonstrate experi-

mentally in Sec. 4.

3. Composition of Additive Models

Despite their generality, additive models can only repre-

sent a relatively small set of possible multivariate functions.

Thus, the space of manifolds that can be learned with ACA

is also limited. Consider, for example, a dataset of noisy im-

ages containing translated circles like those in Fig. 5b. Its

intrinsic dimensionality equals two because there are only

two independent dimensions of variation: horizontal and

vertical location. However, the underlying nonlinearities

cannot be effectively modeled with ACA, resulting in poor

latent separability and reconstruction performance. This is

demonstrated in the top of Fig. 5.

This fundamental limitation of component analysis is a

result of the restricted additive interactions allowed between

latent variables. To address this, we propose a deep exten-

sion of our approach that stacks multiple ACA layers to-

gether, increasing representational power by composing ℓ

additive models fk constructed as the sum of basis func-

tions fk
j for j = 1, . . . ,mk where mk−1 < mk < d so that

f = f �◦f �−1◦· · ·◦f1. Similar approaches have seen much

success within the area of deep learning, partially due to the

observation that increasing depth can allow for comparable

expressivity with exponentially fewer parameters [6]. In-
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Figure 5: A demonstration of the increased representational

power provided by the composition of additive models, comparing

ACA with one layer (a), with two layers trained greedily layer by

layer (b), and with two layers trained jointly (c). The learned low-

dimensional latent space (top) indicates two numbered example

points. The corresponding original images (middle) are compared

alongside the denoised reconstructions (bottom). Deep ACA re-

sults in better performance and more interpretable representations

by jointly learning richer interactions between latent variables.

deed, in Fig. 5c, we show that deep ACA successfully mod-

els translation, resulting in reduced reconstruction error and

an interpretable two-dimensional representation in which la-

tent variables correspond to different spatial dimensions.

While function composition makes optimization more

difficult, we use the an approach similar to the Method of

Auxiliary Coordinates (MAC) [12] to learn the parameters

of all layers jointly using essentially the same procedure de-

scribed in Sec. 2.2. This leads to a more interpretable latent

space in comparison to a greedy approach that learns the

parameters of each layer independently, as shown in Fig. 5.

We now aim to infer a set of latent variables wk
i ∈ R

mk

for k = 1, . . . , ℓ, where w1
i is our low-dimensional repre-

sentation and the others are constrained to be intermediate

layer outputs, i.e. wk+1

i = fk(wk
i ) for k = 1, . . . , ℓ − 1.

For simpler notation, we fix w�+1

i = xi and denote fk↑ =

f � ◦ f �−1 ◦ · · · ◦ fk, giving the optimization problem in

Eq. 13. Our optimization procedure can then proceed as

described in Sec. 2.2.

argmin
fk

j∈F,

wi∈W

n
∑

i=1

�
∑

k=1

∥

∥

∥
xi−fk↑(wk

i )
∥

∥

∥

2

2

s.t. wk+1

i =fk(wk
i ) (13)

To enable effective learning of the intermediate layers,

we ignore the equality constraint when solving for the latent

variables so that each fk↑(wk
i ) optimally reconstructs xi.

(Note that this bears some similarity to deeply-supervised

deep neural networks, in which intermediate loss functions

encourage the discriminability of hidden layers [21].) In

other words, deep ACA can be interpreted as learning a se-

quence of manifolds with decreasing dimensionality so that

wk
i can be found by orthogonally projecting xi onto the

mk-dimensional manifold defined by fk↑.

As before, we first approximate the latent variables by

fixing the basis functions and iteratively projecting xi onto

the resulting manfiold’s tangent space, which is constructed

as the first-order Taylor expansion of fk↑(wk
i ) around w̃k

i :

D
k
i = [fk′

1 (w̃k
ij), . . . ,f

k′
mk

(w̃k
ij)], D

k↑
i = D

�
iD

�−1

i · · ·Dk
i

fk↑(wk
i ) ≈ D

k↑
i wk

i + uk
i , u

k
i = fk↑(w̃k

i )−D
k↑
i w̃k

i (14)

Analogous to Eq. 9, the result can be solved in closed-form.

We again decompose each set of latent variables into

target components so that wk+1

ij =
∑mk

j=1
gk
ij . After rein-

troducing the equality constraint and following a derivation

similar to that in Sec. 2.1, they can then be given as:

gk
ij = f j(w

k
ij) +

1

mk

(

wk+1

i −

mk
∑

j=1

f j(w
k
ij)

)

(15)

Finally, we fit the basis functions fk(wk
ij) to the target

components gk+1

ij using standard regression as in Sec. 2.2.

4. Experimental Results

In this section, we evaluate the effectiveness of our

method through qualitative and quantitative analyses on a

variety of synthetic and real datasets. This is intended to

demonstrate the wide applicability of ACA and to encour-

age its use as a simple alternative to PCA. Specifically, we

demonstrate robustness to noise, improved denoising and

reconstruction performance, and more interpretable repre-

sentations with better separation of semantic categories, in-

cluding large-scale experiments on the MNIST dataset.

Because ACA explicitly optimizes reconstruction accu-

racy, it is naturally very robust to noise unlike most ap-

proaches to manifold learning that require estimation of a

neighborhood graph using pairwise distances. To demon-

strate this, we constructed a synthetic dataset consisting of

1000 points sampled along a curved two-dimensional mani-

fold embedded in three-dimensions. We then added various

amounts of Gaussian noise along with 50 uniformly random

outliers. A visualization of this data can be seen in Fig. 3

and qualitative comparisons are shown in Fig. 6 with a vari-

ety of nonlinear dimensionality reduction techniques. ACA

consistently results in superior low-dimensional representa-

tions even in the presence of extreme noise. Importantly,

unlike the other compared nonlinear methods, ACA trivially

supports reconstruction of the underlying manifold for visu-

alization of denoised data.

In image data, “noise” can take a variety of forms, in-

cluding sensor noise, cast shadows, misalignment, occlu-

sions, etc. Due to its ability to model complex nonlinear

structure, ACA results in perceptually more accurate image
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Figure 6: Qualitative comparisons showing our method’s supe-

rior robustness to noise. In each column, different amounts of

Gaussian noise are added to points along the manifold from Fig. 3

(shown in color) along with uniformly random outliers (shown in

grey). Top views of the original noisy data (a) are compared to the

denoised reconstructions achieved by ACA (b). The correspond-

ing low-dimensional latent spaces (c) are also compared to those

of PCA (d) and a variety of other nonlinear dimensionality reduc-

tion techniques (e-k). Even with large amounts of noise, ACA

recovers the underlying structure of the data very well resulting in

consistent low-dimensional representations.

reconstructions that are invariant to many of these sources.

This is demonstrated in Fig. 7 on the Extended Yale Face

Database B [22], which contains partially aligned images

of faces under different lighting conditions. Dimensionality

reduction was performed on ZCA whitened images using

ACA and PCA with 4 and 20 components respectively, giv-

ing similar average mean-squared reconstruction error. Ex-

ample components are visualized in Fig. 8. Also compared

was Kernel PCA with 4 components and a Gaussian kernel
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Figure 7: A demonstration of the invariance and complex denois-

ing capabilities of ACA. Given images of faces under a variety of

different lighting conditions (a), dimensionality reduction was per-

formed using ACA (b) and KPCA (c) with 4 components and PCA

(d) with 20 components. Because it is able to learn rich nonlinear-

ities, ACA achieves more perceptually plausible denoised images

that retain more detail with fewer components.
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Figure 8: A visualization of m = 2 example components learned

by (a) PCA and (b) ACA evaluated at different values of the latent

variables wij (increasing from left to right) from the experiment in

Fig. 7. The PCA basis vectors bj can only be rescaled by a scalar

multiple while the nonlinear basis functions f j of ACA allow for

richer variations that better model individuals’ appearance.

with parameter σ2 = 2. Since KPCA does not directly en-

able back-projection, approximate pre-images were found

using fixed-point iterations [26]. The resulting de-whitened

image reconstructions for ACA are perceptually more plau-

sible, resulting in better shadow removal while preserving

more details for improved identity preservation.

In addition to enabling accurate data reconstruction,

ACA can also encode complex invariances due to the

underlying smoothness constraints. This results in low-

dimensional representations that are useful for high-level

tasks such as exploratory data analysis and clustering. This

is demonstrated in Fig. 9, which shows how the parameter

ρ affects class separability and data reconstruction perfor-

mance on unseen testing data. In this experiment, approx-

imately half of the 1440 processed images from the COIL-

20 dataset [28] were used as training data for a two layer

deep ACA model with m = [2, 4] and a varying rough-

ness parameter. The learned models were then applied to

the remaining testing images and the corresponding two-

dimensional representations plotted alongside example im-

age reconstructions. Increasing ρ allows for rougher basis

functions with higher complexity, giving better separability

of categories (shown as different colors) in the latent space
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Figure 9: A visualization of how the roughness parameter ρ

affects the performance of ACA on novel testing data. Two-

dimensional latent embeddings (a) of images from the COIL-20

dataset are shown in columns for PCA, KPCA, and ACA with dif-

ferent values of ρ. Two example images (b) are also shown, along

with their reconstructions (c). Increasing ρ can improve image

reconstruction performance and the separability of object classes

(shown as different colors in the latent space), but can also reduce

performance due to overfitting.

in comparison to PCA and KPCA with a Gaussian kernel

(σ2 = 7). However, it can also lead to overfitting and poor

reconstruction accuracy of test images.

Finally, we demonstrate large-scale results on the

MNIST dataset [20] containing 60k training images and 10k

testing images, which is prohibitive for many nonlinear di-

mensionality reduction implementations. In Fig. 10, train-

ing error is shown against elapsed time using both batch op-

timization and the approximate stochastic technique from

Sec. 2.3 with a batch size of 1000. Stochastic optimization

leads to much faster convergence in less than 10 minutes

with an unoptimized Matlab implementation. Also shown

are the resulting two-dimensional latent representations and

example reconstructions of the testing images. While batch

optimization leads to slightly lower training error, the over-

separated latent space indicates overfitting in comparison

to stochastic optimization. Note that while some techniques

designed specifically for low-dimensional visualization (e.g.

t-SNE [35]) may result in better class separation, they can-

not reconstruct the input or be applied to new data, leading

to limited applicability. In Figure 11, quantitative results are

also shown demonstrating reconstruction performance and

nearest-neighbor classification performance.

5. Conclusion

Additive Component Analysis combines the simplicity

and broad applicability of linear component analysis with

the nonlinear representational power of manifold learning.

It produces robust and interpretable latent representations

given by memory-efficient models optimized for data re-

construction. This results in significantly improved per-

formance, especially in the presence of noise, enabling

the detailed analysis and visualization of large, real-world

datasets. Furthermore, the composition of multiple ACA

layers can overcome the modeling limitations of additive

components, with parameters that can be learned jointly
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Figure 10: The effect of our approximate stochastic optimization

scheme applied to the MNIST dataset. Reconstruction error (a)

is plotted throughout training for both stochastic and batch opti-

mization with solid dots shown every 20 iterations. The resulting

two-dimensional test data embeddings for ρ = 10−3 (b,c) are com-

pared against to those of PCA (d) alongside grids of reconstructed

images from the regions indicated by black squares.
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Figure 11: Results on the MNIST datset, showing reconstruction

error of training images (a), reconstruction error of testing images

(b), and testing nearest-neighbor classification error (c). Perfor-

mance is compared between PCA and ACA for a variety of rough-

ness parameters ρ and numbers of components m.

with the same memory-efficient optimization procedure.

We believe that this demonstrates the encouraging potential

for nonparametric deep learning using compositions of ad-

ditive models as an alternative to standard linear transforma-

tions with fixed nonlinear activation functions. This could

potentially lead to adaptive representational power with far

fewer parameters, reduced overfitting due to the underlying

smoothness assumption, and superior robustness.
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