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Abstract

There have been remarkable improvements in the se-
mantic labelling task in the recent years. However, the
state of the art methods rely on large-scale pixel-level an-
notations. This paper studies the problem of training a
pixel-wise semantic labeller network from image-level an-
notations of the present object classes. Recently, it has
been shown that high quality seeds indicating discrimin-
ative object regions can be obtained from image-level la-
bels. Without additional information, obtaining the full ex-
tent of the object is an inherently ill-posed problem due to
co-occurrences. We propose using a saliency model as ad-
ditional information and hereby exploit prior knowledge on
the object extent and image statistics. We show how to com-
bine both information sources in order to recover 80% of
the fully supervised performance — which is the new state
of the art in weakly supervised training for pixel-wise se-
mantic labelling.

1. Introduction

Semantic image labelling provides rich information about
scenes, but comes at the cost of requiring pixel-wise la-
belled training data. The accuracy of convnet-based mod-
els correlates strongly with the amount of available train-
ing data. Collection and annotation of data have become
a bottleneck for progress. This problem has raised interest
in exploring partially supervised data or different means of
supervision, which represents different tradeoffs between
annotation efforts and yields in terms of supervision sig-
nal for the learning task. For tasks like semantic segment-
ation there is a need to investigate the minimal supervision
to reach the quality comparable to the fully supervised case.
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Figure 1: We train a semantic labelling network with (a)
image-level labels and (b) saliency masks, to generate (c) a
pixel-wise labelling of object classes at test time.

A reasonable starting point considers that all training
images have image-level labels to indicate the presence or
absence of the classes of interest. The weakly supervised
learning problem can be seen as a specific instance of learn-
ing from constraints [38, 47]. Instead of explicitly super-
vising the output, the available labels provide a constraint
on the desired output. If an image label is absent, no pixel in
the image should take that label; if an image label is present
at least in one pixel the image must take that label. How-
ever, the objects of interest are rarely single pixel. Thus to
enforce larger output regions size, shape, or appearance pri-
ors are commonly employed (either explicitly or implicitly).

Another reason for exploiting priors, is the fact that the
task is fundamentally ambiguous. Strongly co-occurring
categories (such as train and rails, sculls and oars, snow-
bikes and snow) cannot be separated without additional in-
formation. Because additional information is needed to
solve the task, previous work have explored different aven-
ues, including class-specific size priors [31], crawling ad-
ditional images [33, 46], or requesting corrections from a
human judge [17, 37].
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Despite these efforts, the quality of the current best res-
ults on the task seems to level out at ~ 75% of the fully
supervised case. Therefore, we argue that additional in-
formation sources have to be explored to complement the
image level label supervision — in particular addressing the
inherent ambiguities of the task. In this work, we propose to
exploit class-agnostic saliency as a new ingredient to train
for class-specific pixel labelling; and show new state of the
art results on Pascal VOC 2012 semantic labelling with im-
age label supervision.

We decompose the problem of object segmentation from
image labels into two separate ones: finding the object loc-
ation (any point on the object), and finding the object’s ex-
tent. Finding the object extent can be equivalently seen as
finding the background area in an image.

For object location we exploit the fact that image clas-
sifiers are sensitive to the discriminative areas of an image.
Thus, training using the image labels enables to find high
confidence points over the objects classes of interest (we
call these “object seeds”), as well as high confidence re-
gions for background. A classifier, however, will struggle
to delineate the fine details of an object instance, since these
might not be particularly discriminative.

For finding the object extent, we exploit the fact that a
large portion of photos aim at capturing a subject. Using
class-agnostic object saliency we can find the segment cor-
responding to some of the detected object seeds. Albeit sali-
ency is noisy, it provides information delineating the object
extent beyond what seeds can indicate. Our experiments
show that this is an effective source of additional inform-
ation. Our saliency model is itself trained from bounding
box annotations only. At no point of our pipeline accurate
pixel-wise annotations are used.

In this paper we provide an analysis of the factors that in-
fluence the seeds generation, explore the utility of saliency
for the task, and report best known results both when using
image labels only and image labels with additional data. In
summary, our contributions are:

e Propose an effective method for combining seed and
saliency for the task of weakly supervised semantic
segmentation. Our method achieves the best perform-
ance among the known works that utilise image level
supervision with or without additional external data.

e Compare recent seed methods side by side, and ana-
lyse the importance of saliency towards final quality.

§3 presents our overall architecture, §4 investigates suitable
object seeds, and §5 describes how we use saliency to guide
the convnet training. Finally §6 discusses the experimental
setup, and presents our key results.

2. Related work

The last years have seen a renewed interest on weakly su-
pervised training. For semantic labelling, different forms
of supervision have been explored: image labels [32, 31,

, 33, 46, 18], points [3], scribbles [47, 24], and bounding
boxes [9, 30, 16]. In this work we focus on image labels as
the main form of supervision.

Object seeds. Multiple works have considered using a
trained classifier (from image level labels) to find areas of
the image that belong to a given class, without necessar-
ily enforcing to cover the full object extent (high precision,
low recall). Starting from simple strategies such as “prob-
ing classifier with different image areas occluded” [50],
or back-propagating the class score gradient on the image
[41]; significantly more involved strategies have been pro-
posed, mainly by modifying the back-propagation strategy
[43, 51, 40], or by solving a per-image optimization prob-
lem [6]. All these strategies provide some degree of em-
pirical success but lack a clear theoretical justification, and
tend to have rather noisy outputs.

Another approach considers modifying the classifier train-
ing procedure so as to have it generate object masks as by-
product of a forward-pass. This can be achieved by adding
a global a max-pooling [33] or mean-pooling layer [54] in
the last stages of the classifier.

In this work we provide an empirical comparison of existing
seeders, and explore variants of the mean-pooling approach

[54] (§4).

Pixel labelling from image level supervision. Initial work
approached this problem by adapting multiple-instance
learning [32] and expectation-maximization techniques
[30], to the semantic labelling case. Without additional pri-
ors only poor results are obtained. Using superpixels to in-
form about the object shape helps [33, 47] and so does using
priors on the object size [31]. [18] carefully uses CRFs to
propagate the seeds across the image during training, while
[36] exploits segment proposals for this.

Most methods compared propose each a new procedure to
train a semantic labelling convnet. One exception is [40]
which fuses at test time guided back-propagation [43] at
multiple convnet layers to generate class-wise heatmaps.
They do this over a convnet trained for classification. Being
based on classifier, their output masks only partially capture
the object extents, as reflected in the comparatively low per-
formance (table 3).

Recognizing the ill-posed nature of the problem, [17] and
[37] propose to collect user-feedback as additional inform-
ation to guide the training of a segmentation convnet.

The closest work to our approach is [46], which also uses
saliency as a cue to improve weakly supervised semantic
segmentation. There are however a number of differences.
First, they use a curriculum learning to expose the segment-
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ation convnet first with simple images, and later with more
complex ones. We do not need such curriculum, yet reach
better results. Second, they use a manually crafted class-
agnostic saliency method, while we use a deep learning
based one (which provides better cues). Third, their train-
ing procedure uses ~ 40k additional images of the classes
of interest crawled from the web; we do not use such class-
specific external data. Fourth, we report significantly better
results, showing in better light the potential of saliency as
additional information to guide weakly supervised semantic
object labelling.

The seminal work [45] proposed to use “objectness” map
from bounding boxes to guide the semantic segmentation.
By using bounding boxes, these maps end up being diffuse;
in contrast, our saliency map has sharp object boundaries,
giving more precise guidance to the semantic labeller.

Detection boxes from image level supervision. Detecting
object boxes from image labels has similar challenges as
pixel labelling. The object location and extent need to be
found. State of the art techniques for this task [4, 44, 15]
learn to re-score detection proposals using two stream archi-
tectures that once trained separate “objectness” scores from
class scores. These architecture echo with our approach,
where the seeds provide information about the class scores
at each pixel (albeit with low recall for foreground classes),
and the saliency output provides a per-pixel (class agnostic)
“objectness” score.

Saliency. Image saliency has multiple connotations, it can
refer to a spatial probability map of where a person might
look first [48], a probability map of which object a person
might look first [23], or a binary mask segmenting the one
object a person is most likely to look first [5, 39]. We em-
ploy the last definition in this paper. Note that this notion
is class-agnostic, and refers more to the composition of the
image, than the specific object category.

Like most computer vision areas, hand-crafted methods
[14, 28, 8] have now been surpassed by convnet based ap-
proaches [53, 22, 21] for object saliency. In this paper we
use saliency as an ingredient: improved saliency models
would lead to improved results for our method. We describe
in §6.1 our saliency model design, trained itself in a weakly
supervised fashion from bounding boxes.

Semantic labelling. Even when pixel-level annotations are
provided (fully supervised case), the task of semantic la-
belling is far from solved. Multiple convnet architectures
have been proposed, including recurrent networks [34],
encoder-decoders [29, 1], up-sampling layers [27], using
skip layers [2], or dilated convolutions [7, 49], to name a
few. Most of them build upon classification architectures
such as VGG [42] or ResNet [13]. For comparison with
previous work, our experiments are based on the popular
DeepLab [7] architecture.

Guide labeller

—>
1 Y Dense

__________________ classifier
loss

Segmenter
convnet

image

Figure 2: High level Guided Segmentation architecture.

3. Guided Segmentation architecture

While previous work have explored sophisticated training
losses or involved pipelines, we focus on saliency as an ef-
fective prior knowledge, and keep our architecture simple.

We approach the image-level supervised semantic seg-
mentation problem via a system with two modules (see fig-
ure 2), we name this architecture “Guided Segmentation”.
Given an image and image-level labels, the “guide labeller”
module combines cues from a seeder (§4) and saliency (§5)
sub-modules, producing a rough segmentation mask (the
“guide”). Then a segmenter convnet is trained using the
produced guide mask as supervision. In this architecture the
segmentation convnet is trained in a fully-supervised pro-
cedure, using per pixel softmax cross-entropy loss.

In §4 and 5 we explain how we build our guide labeller,
by first generating seeds (discriminative areas of objects of
interest), and then extending them to better cover the full
object extents.

4. Finding goods seeds

There has been a recent burst of techniques for localising
objects from a classifier. Some approaches rely on image
gradients from a trained classifier [41, 43, 51], while the
others propose to train global average pooling (GAP) based
classifiers [54]. Although the classifier based localisation
approach has a theoretical limitation that the training object-
ive (image classification) does not match final goal (object
locations), they have proved to be effective in practice.

In this section, we review the seeder techniques side by
side and compare their empirical performances. We report
empirical results on different GAP architectures [54, 18, 7].

4.1. GAP

GAP, or global average pooling layer, can be inserted in the
last or penultimate layer of a fully convolutional architec-
ture, which produces a dense prediction, to turn it into a
classifier. The resulting architecture is then trained with a
classification loss, and at test time the activation maps be-
fore the global average pooling layer have been shown to
contain localisation information [54].

In our analysis, we consider four different fully con-
volutional architectures with a GAP layer: GAP-LowRes,
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Figure 3: Precision-recall curves for different seeds. Fore-
ground curves show the average precision and recall among
the 20 foreground classes.

GAP-HighRes, GAP-DeepLab, and GAP-ROI. The archi-
tectural differences are summarised in table 1, and the
full details are provided in the supplementary materials.
GAP-LowRes [54] is essentially a fully convolutional ver-
sion of VGG-16 [42]. GAP-HighRes, inspired by [18],
has 2 times higher output resolution than GAP-LowRes.
GAP-DeepLab is a state of the art semantic segmenter Dee-
pLab with a GAP layer over the dense score output. The
main difference between GAP-HighRes and GAP-DeepLab
is the presence of dilated convolutions. GAP-ROT is a variant
of GAP-HighRes where we use the region of interest pool-
ing to replace the sliding window convolutions in the last
layers of VGG-16. GAP-ROI is identical to GAP-HighRes,
except for a slight structural variation.

4.2. Empirical study

In this section, we empirically compare the seed methods
side by side focusing on their utility for the final semantic
segmentation task. Together with GAP methods discussed
in the previous section, we consider the back-propagation
family: Vanilla, Guided, and Excitation back-propagations
[41,43,51]. We include the centre mean shape baseline that

always outputs the average mask shape; it works as a lower
bound on the localisation performance.

Evaluation. We evaluate each method on the val set of the
Pascal VOC 2012 [11] segmentation benchmark. We plot
the foreground and background precision-recall curves in
figure 3. In the foreground case, we compute the mean pre-
cision and recall over the 20 Pascal categories.

We define mean precision (mP) as a summary metric for
localisation performance. It averages the foreground pre-
cision at 20% recall and the background precision at 80%
recall; mP = Prech@%%;PrecBg@gO% . Intuitively, for the
foreground region we only need a small discriminative re-
gion, as saliency will fill in the extent; we thus care about
precision at ~ 20% recall. On the other hand, background
has more diverse appearance and usually takes a larger re-
gion; we thus care about precision at ~ 80% recall. Since
we care about both, we take the average (as for the mAP
metric). This metric has shown a good correlation with the
final performance in our preliminary experiments.

We measure the classification performance in the stand-
ard mean average precision (mAP) metric.

Implementation details. We train all four GAP network
variants for multi-label image classification over the train-
aug set of Pascal VOC 2012. Full convnet training details
are in the supplementary materials. At test time, we take the
output per-class heatmaps before the GAP layer and norm-
alise them by the maximal per-class scores.

For the back-propagation based methods, we obtain im-
age (pseudo-)gradients from the VGG-16 [42] classifier
trained on the frainaug set of Pascal VOC 2012 (10582
images in total). We take the maximal absolute gradient
value across the RGB channels to generate a rough object
mask (following [41]); it is successively smoothed first with
vanilla Gaussian kernel and then with dense CRF [19].

In both GAP and backprop variants, we mark pixels with
all foreground class scores below 7 as background; other
pixels are marked according to the argmax foreground class.

Results. See figure 3 for the precision-recall curves. GAP
variants have overall greater precision than backprop vari-
ants at the same recall rate. We note that the Guided back-
prop gives highest precision at a very low recall regime
(~ 5%), but the recall is too low to be useful. Among the
GAP methods, GAP-HighRes and GAP-ROI give higher pre-
cisions over a wide range of recall. GAP-DeepLab shows a
significantly lower quality than any other GAP variants.

Network matters for GAP. Table | shows detailed ar-
chitectural comparisons and classification/localisation per-
formances of the GAP variants. We observe that the net-
work with higher resolution output has better localisation
performance (80.7 mP for GAP-HighRes versus 76.5 mP for
GAP-LowRes). Dilated convolutions significantly hurt the
GAP performance (87.0 mP for GAP-HighRes versus 57.7
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GAP -LowRes -HighRes -ROI -Deeplab
[54] [18] [7]
high res. X v v v
dil. conv. X X X v
ROI pool X X v X
mAP 88.0 87.0 87.2 92.7
mP 76.5 80.7 80.8 57.7

Table 1: Architectural comparisons among GAP variants to-
gether with classification (mAP) and localisation (mP; see
text for details) performances. We compare the output resol-
ution (high res.), use of the dilated convolutions (dil. conv.),
and the region of interest pooling (ROI pool).

mP for GAP-DeepLab). The architectural choice matters a
lot for the localisation performance. This contrasts with the
classification performances (mAP), which are stable across
design choices. Intriguingly, GAP-DeepLab is in fact the
best classifier and the worst seeder at the same time; better
design choices for classifiers do not lead to better seeders.

We use GAP-HighRes as the seeder module in the next
sections. In [18], foreground and background seeds are
handled via different mechanisms; in our experiments we
treat all the non-foreground region as background.

5. Finding the object extent

Having generated a set of seeds indicating discriminative
object areas, the guide labeller needs to find the extent of
the object instances (§3).

Without any prior knowledge, it is very hard, if not im-
possible, to learn the extent of objects only from images and
image-level labels. Image-level labels only convey inform-
ation about commonly occurring patterns that are present in
images with positive tags and absent in images with negat-
ive tags. The system is thus susceptible to strong inter-class
co-occurrences (e.g. train with rail), as well as systematic
part occlusions (e.g. feet).

CRF and CRFLoss. A traditional approach to make labels
match object boundaries is to solve a CRF inference prob-
lem [20, 19] over the image grid; where the pair-wise terms
relate to the object boundaries. CRF can be applied at three
stages: (1) on the seeds (crf-seed), (2) as a loss function
during segmenter convnet training (crf-loss) [18], and
(3) as a post-processing at test time (crf-postproc). We
have experimented with multiple combinations of those (see
supplementary materials).

Albeit some gains are observed, these are inconsist-
ent. For example GAP-HighRes and GAP-ROI provide near
identical classification and seeding performance (see table
1), yet using the same CRF setup provides 413 mloU per-
cent points in one, but only +7 pp on the other. In com-
parison our saliency approach will provide +17 mloU and

+18 mloU for these two networks respectively (see below).

5.1. Saliency

We propose to use object saliency to extract information
about the object extent. We work under the assumption that
a large portion of the dataset are intentional photographies,
which is the case for most datasets crawled from the web
such as Pascal [1 1] and Coco [25]. If the image contains
a single label “dog”, chances are that the image is about a
dog, and that the salient object of the image is a dog. We
use a convnet based saliency estimator (detailed in §6.1)
which adds the benefit of translation invariance. If two loc-
ally salient dogs appear in the image, both will be labelled
as foreground.

When using saliency to guide semantic labelling at least
two difficulties need to be handled. For one, saliency per-se
does not segment object instances. In the example figure
4a, the person-bike is well segmented, but person and bike
are not separated. Yet, the ideal Guide labeller (figure 2)
should give different labels to these two objects. The second
difficulty, clearly visible in the examples of figure 4, is that
the salient object might not belong to a category of interest
(shirt instead of person in figure 4b) or that the method fails
to identify any salient region at all (figure 4c).

We measure the saliency quality when compared to the
ground truth foreground on Pascal VOC 2012 validation
set. Albeit our convnet saliency model is better than hand-
crafted methods [14, 52], in the end only about 20% of im-
ages have reasonably good (IoU > 0.6) foreground saliency
quality. Yet, as we will see in §6, this bit of information is
already helpful for the weakly supervised learning task.

Crucially, our saliency system is trained on images con-
taining diverse objects (hundreds of categories), the object
categories treated as “unknown”. To ensure clean experi-
ments we handicap the system by removing any instance
of Pascal categories in the object saliency training set (fig-
ure 5). Our saliency model captures a general notion of
plausible foreground objects and background areas (details
in §6.1).

On every Pascal training image, we obtain a class-
agnostic foreground/background binary mask from our sali-
ency model, and high precision/low recall class-specific im-
age labels from the seeds model (§4). We want to combine
them in such a way that seed signals are well propagated
throughout the foreground saliency mask. We consider two
baselines strategies to generate guide labels using saliency
but no seeds (Gy and G1), and then discuss how we combine
saliency with seeds (Gs).

Go Random class assignment. Given a saliency mask, we
assign all foreground pixels to a class randomly picked from
the ground truth image labels. If a single “dog” label is
present, then all foreground pixels are “dog”. Two labels
are present (“dog, cat”), then all pixels are either dog or cat.
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Figure 4: Example of our saliency map results on Pascal VOC 2012 data.

and boxes

Saliency  Salient object

model result

Figure 5: Example of saliency results on its training data.
We use MSRA box annotations to train a weakly supervised
saliency model. Note that the MSRA subset employed does
not contain Pascal categories.

G1 Per-connected component classification. Given a sa-
liency mask, we split it in components, and assign a sep-
arate label for each component. The per-component labels
are given using a full-image classifier trained using the im-
age labels (classifier details in §6.1). Given a connected
component mask le 9 (with pixel values 1: foreground, 0:
background), we compute the classifier scores when feed-
ing the original image (I), and when feeding an image with
background zeroed (I ® le 9). Region le 9 will be labelled
with the ground truth class with the greatest positive score
difference before and after zeroing.

G- Propagating seeds. Here, instead of assigning the label
per connected component R{ 9 using a classifier, we instead
use the seed labels. We also treat the seeds as a set of con-
nected components (seed 1}). Depending on how the seeds
and the foreground regions intersect, we decide the label for
each pixel in the guide labeller output.

Our fusion strategy uses five simple ideas. 1) We treat the
seeds as reliable small size point predictors of each object
instance, but that might leak outside of the object. 2) We as-
sume the saliency might trigger on objects that are not part
of the classes of interest. 3) A foreground connected com-
ponent R{ 9 should take the label of the seed touching it, 4)
If two (or more) seeds touch the same foreground compon-
ent, then we want to propagate all the seed labels inside it.
5) When in doubt, mark as ignore. The details for the corner
cases are provided in the supplementary material.

Figure 6 provides example results of the different guide

strategies. For additional qualitative examples of seeds, sa-
liency foreground, and generated labels, see figure 7. With
our guide strategies Gy, G1, and G» at hand, we now proceed
to empirically evaluate them in §6.

6. Experiments

§6 and 6.1 provide the details of the evaluation and our im-
plementation. §6.2 compares our different guide strategies,
and §6.3 compares with previous work on weakly super-
vised semantic labelling from image-level labels.

Evaluation. We evaluate our image-level supervised se-
mantic segmentation system on the Pascal VOC 2012 seg-
mentation benchmark [11]. We report all the intermediate
results on the val set (1 449 images) and only report the final
system result on the fest set (1 456 images). Evaluation met-
ric is the standard mean intersection-over-union (mloU).

6.1. Implementation details

For training the seeder and segmenter networks, we use the
ImageNet [10] pretrained models for initialisation and fine-
tune on the Pascal VOC 2012 trainaug set (10 582 images),
an extension of the original train set (1 464 images) [1 1, 12].
This is the same procedure used by previous work on fully
[7] and weakly supervised learning [ 8].

Seeder. Results in tables 2 and 3 are obtained using
GAP-HighRes (see §4), trained for image classification on
the Pascal trainaug set. The test time foreground threshold
T is set to 0.2, following the previous literature [54, 18].

G1 Classifier. The guide labeller strategy G; uses an image
classifier trained on Pascal trainaug set. We use the VGG-
16 architecture [42] with the softmax cross-entropy multi-
label loss.

Saliency. Following [53, 22, 21] we re-purpose a semantic
labelling network for the task of class-agnostic saliency. We
train the DeepLab-v2 ResNet [7] over a subset of MSRA
[26], a saliency dataset with class agnostic bounding box
annotations. We constrain the training only to samples of
non-Pascal categories. Thus, the saliency model does not
leverage class specific features when Pascal images are fed.
Out of 25k MSRA images, 11 041 remain after filtering.
MRSA provides bounding boxes (from multiple annotat-
ors) of the main salient element of each image. To train the
saliency model to output pixel-wise masks, we follow [16].
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Figure 6: Guide labelling strategies example results. The image, its labels (“bicycle, chair”), seeds, and saliency map are

their input. White overlay indicates “ignore” pixel label.

We generate segments from the MSRA boxes by applying
grabcut over the average box annotation, and use these as
supervision for the DeepLab model. The model is trained
as a binary semantic labeller for foreground and background
regions. The trained model generates masks like the ones
shown in figure 5. Although having been trained with im-
ages with single salient objects, due to its convolutional
nature the network can predict multiple salient regions in
the Pascal images (as shown in figure 7).

At test time, the saliency model generates a heatmap of
foreground probabilities. We threshold at 50% of the max-
imal foreground probability to generate the mask.

Segmenter. For comparison with previous work we use the
DeepLabv1-LargeFOV [7] architecture as our segmenter
convnet. The network is trained on Pascal trainaug set with
10 582 images, using the output of the guide labeller (§2),
which uses only the image itself and the presence-absence
tags of the 20 Pascal categories as supervision. The network
is trained for 8k iterations.

Following the standard DeepLab procedure, at test time we
up-sample the output to the original image resolution and
apply the dense CRF inference [19]. Unless stated oth-
erwise, we use the CRF parameters used for DeepLabv1-
LargeFOV [7]. Additional training details and hyper-
parameters are given in the supplementary materials.

6.2. Ingredients study

Table 2 compares different guide strategies Gy, G1, G2, and
oracle versions of Go. The first row shows the result of train-
ing our segmenter using the seeds directly as guide labels.
This leads to poor quality (38.7 mIoU). The “Supervision”
column shows recall and precision for foreground and back-
ground of the guide labels themselves (training data for the
segmenter). We can see that the seeds alone have low re-
call for the foreground (37%). In comparison, using sali-
ency only, Gy reaches significantly better results, due to the
higher foreground recall (52%), at a comparable precision.
Adding a classifier on top of the saliency (G — G1)
provides only a negligible improvement (45.8 — 46.2).
This can be attributed the fact that many Pascal images con-
tain only a single foreground class, and that the classifier
might have difficulties recognizing the masked objects. In-

Sali- Supervision val. set

Method Seeds ncy | Fg P/Rp Bg P/R mloU
Seeds only v X 69 37 81 95 38.7
Go X v 65 52 65 52 45.8
Gi X v 75 51 75 51 46.2
Go v v 73 59 87 95 51.2
Saliency oracle v v 8 91 100 99 56.9

Table 2: Comparison of different guide labeller variants.
Pascal VOC 2012 validation set results, without CRF post-
processing. Fg/Bg P/R: are foreground/background preci-
sion and recall of the guide labels. Discussion in §6.2.

terestingly, when using a similar classifier to generate seeds
instead of scoring the image (G; — G2) we gain 5 pp (per-
cent points, 46.2 — 51.2). This shows that the details of
how a classifier is used can make a large difference.

Table 2 also reports a saliency oracle case on top of Gs.
If we use the ground truth annotation to generate an ideal
saliency mask, we see a significant improvement over G
(51.2 — 56.9). Thus, the quality of saliency is an important
ingredient, and there is room for further gains.

6.3. Results

Table 3 compares our results with previous related work.
We group results by methods that only use ImageNet
pre-training and image-level labels (I, P, E; see legend
table 3), and methods that use additional data or user-
inputs. Here our Gy and G- results include a CRF post-
processing (crf-postproc). We also experimented with
crf-loss but did not find a parameter set that provided
improved results.

We see that the guide strategies Gy, which uses saliency
and random ground-truth label, reaches competitive per-
formance compared to methods using I+P only. This shows
that saliency by itself is already a strong cue. Our guide
strategy Go (which uses seeds and saliency) obtains the best
reported results on this task'. We even improve over other

1[36] also reports 54.3 validation set results, however we do not con-
sider these results comparable since they use the MCG scores [35], which
are trained on the ground truth Pascal segments.
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val. set  test set

Method Data mloU mloU FS%
MIL-FCN[32] I+P 25.0 25.6 36.5
. CCNN [31] 1+P 35.3 35.6 50.6
g WSSL[30] 1+P 38.2 39.6 56.3
7‘3 MIL+Seg[33] 1+E7g0k 42.0 40.6 57.8
§ DCSM[40] 1+P 44,1 45.1 64.2
:é;}, CheckMask [37] 1+P 46.6 - -
E SEC[18] 1+P 50.7 51.7 73.5
AF-ss[30] 1+P 51.6 - -
Seeds only I+P 39.8 - -
§ CCNN[31] [+P+Z 451 642
‘é STC[46] [+P+S+E 0 49.8 51.2 72.8
5 CheckMask [37] I+P+u 51.5 - -
£ MicroAnno[l7] I+P+u 519 532 75.7
£ Go +P+S 488 - -
= Go I+P+S 557 56.7 80.6
DeepLabvl I+Pfyy 67.6 70.3 100

Table 3: Comparison of state of the art methods, on Pascal
VOC 2012 val. and test set. FS%: fully supervised percent.
Ingredients: I: ImageNet classification pre-training, P: Pas-
cal image level tags, P,;: fully supervised case (pixel wise
labels), E,,: n extra images with image level tags, S: sali-
ency, Z: per-class size prior, p: human-in-the-loop micro-
annotations.

methods using saliency (STC) or using additional human
annotations (MicroAnno, CheckMask). Compared to a
fully supervised DeepLabv1 model, our results reach 80%
of the fully supervised quality.

7. Conclusion

We have addressed the problem of training a semantic seg-
mentation convnet from image labels. Image labels alone
can provide high quality seeds, or discriminative object re-
gions, but learning the full object extents is a hard problem.
We have shown that saliency is a viable option for feeding
the object extent information.

The proposed Guided Segmentation architecture (§3),
where the “guide labeller” combines cues from the seeds
and saliency, can successfully train a segmentation convnet
to achieve the state of the art performance. Our weakly su-
pervised results reach 80% of the fully supervised case.

We expect that a deeper understanding of the seeder
methods and improvements on the saliency model can lead
to further improvements.

Acknowledgements

This research was supported by the German Research
Foundation (DFG CRC 1223).

Input image

Seeds

Saliency

Go
(Seeds+Saliency)

output

Segmenter

+CRF

Ground truth

Figure 7: Qualitative examples of the different stages of our
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