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Abstract

Truncated convex models (TCM) are a special case of

pairwise random fields that have been widely used in com-

puter vision. However, by restricting the order of the po-

tentials to be at most two, they fail to capture useful im-

age statistics. We propose a natural generalization of TCM

to high-order random fields, which we call truncated max-

of-convex models (TMCM). The energy function of TMCM

consists of two types of potentials: (i) unary potential,

which has no restriction on its form; and (ii) clique po-

tential, which is the sum of the m largest truncated con-

vex distances over all label pairs in a clique. The use of

a convex distance function encourages smoothness, while

truncation permits discontinuities in the labeling. By us-

ing m > 1, TMCM provides robustness towards errors in

the definition of the cliques. To minimize the energy func-

tion of a TMCM over all possible labelings, we design an

efficient st-MINCUT based range expansion algorithm. We

prove the accuracy of our algorithm by establishing strong

multiplicative bounds for several special cases of interest.

Using standard real data sets, we demonstrate the benefit

of our high-order TMCM over pairwise TCM, as well as

the benefit of our range expansion algorithm over other st-
MINCUT based approaches.

1. Introduction

Truncated convex models (TCM) are a special case of

pairwise random fields that have been widely used for low-

level vision applications. A TCM is defined over a set of

random variables, each of which can be assigned a value

from a finite, discrete and ordered label set. In addition,

a TCM also specifies a neighborhood relationship over the

random variables. An assignment of values to all the vari-

ables is referred to as a labeling. In order to quantitatively

distinguish the labelings, a TCM specifies an energy func-

tion that consists of unary and pairwise potentials.

Given an input, the output is obtained by minimizing the

energy function of a TCM over all possible labelings. While

this is an NP-hard problem, several approximate algorithms

have been proposed in the literature [3, 4, 12, 17, 20, 22, 24,

(a) Truncated convex model

(b) Truncated max-of-convex model

Figure 1: TMCM as generalization of TCM. In (a), given an image,

TCM considers pairwise 4-neighborhood relationships and uses truncated

convex distance function for pairwise potential. In (b), TMCM considers

superpixels as cliques. The clique potential for m =2 is the sum of the

first and second maximum over all the pairwise truncated convex distances

such that no variable is used more than once.

27, 30], which provide accurate solutions in practice [28].

Since we cannot reasonably expect to improve the opti-

mization of TCM, any failure cases must be addressed by

modifying the model itself to better capture image statis-

tics. To this end, we propose to address one of the main

deficiencies of TCM, namely, the restriction to potentials of

order at most two. Specifically, we propose a natural gen-

eralization of TCM to high-order random fields, which we

refer to as truncated max-of-convex models (TMCM). Sim-

ilar to TCM, our model places no restrictions on the unary

potentials. Furthermore, unlike TCM, it allows us to define

clique potentials over an arbitrary number of random vari-

ables. The value of the clique potential is proportional to

the sum of the m largest truncated convex distances com-

puted over disjoint pairs of random variables in the clique.

Here, disjoint pairs imply that the label of no random vari-

able is used more than once to compute the value of the

clique potential. Figure 1 demonstrates how TMCM differs

from TCM. The exact mathematical form of the TMCM en-

ergy function will be presented in section 4. The term m is

a positive integer that is less than or equal to half the number

of variables in the smallest clique. Importantly, the constant
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of proportionality for each clique potential can depend on

the input corresponding to all the random variables in the

clique. This can help capture more interesting image statis-

tics, which in turn can lead to a more desirable output. For

example, in image denoising, the clique weights can depend

on the variance of intensity over a superpixel (group of pix-

els with similar semantic and perceptual characteristics).

In order to enable the use of TMCMs in practice, we

require an efficient and accurate energy minimization algo-

rithm that can compute the output for a given input. To

this end, we extend the range expansion algorithm for TCM

to deal with arbitrary sized clique potentials. Our algo-

rithm retains the desirable property of iteratively solving

an st-MINCUT problem over an appropriate directed graph

(where the number of vertices and arcs grows linearly with

the number of random variables and cliques, and quadrati-

cally with the number of labels). As the st-MINCUT prob-

lem lends itself to several fast algorithms [2], this makes our

overall approach computationally efficient. Furthermore,

we provide strong theoretical guarantees on the quality of

the solution for several special cases of interest, which es-

tablishes its accuracy. Our multiplicative bounds are bet-

ter than the baselines for cases where comparison is pos-

sible. Using standard real data sets, we show the bene-

fit of high-order TMCM over pairwise TCM, as well as

the advantage of our range expansion algorithm over other

st-MINCUT based approaches. The supplementary mate-

rial as well as the latest version of the paper is available at

https://arxiv.org/abs/1512.07815.

2. Related Work
Pairwise TCM offer a natural framework to capture low-

level cues for vision problems such as image denoising,

stereo correspondence, segmentation and optical flow [28].

However, the restriction to pairwise potentials limits their

representational power.

For the past few years, there has been a growing interest

in high-order models. Though other inference algorithms

such as message passing are possible [9, 18, 21, 26, 29, 31],

in this work our focus is on models that admit efficient

st-MINCUT based solutions and provide strong theoretical

guarantees on the quality of the solution. One early work

was the Pn Potts model [15], which encourages label con-

sistency over a set of random variables. This work was ex-

tended in [16], which introduced robustness in the Pn Potts

model by taking into account the number of random vari-

ables that disagreed with the majority label of a clique. Both

the Pn Potts model and its robust version lend themselves

to efficient optimization via the expansion algorithm [3],

which solves one st-MINCUT problem at each iteration. The

expansion algorithm provides multiplicative bounds [11],

which measure the quality of the estimated labeling with

respect to the optimal one. Our work generalizes both the

models, as well as the corresponding expansion algorithm.

Specifically, when the truncation factor of our models is set

to 1, we recover the robust Pn model. Furthermore, a suit-

able setting of the range expansion algorithm (setting the

interval length to 1) recovers the expansion algorithm.

Jegelka and Bilmes [14] introduced a nonsubmodular

high-order model which is based on edge cooperation and is

optimizable using st-MINCUT, but the algorithm has weak

approximation bounds. Delong et al. [6, 7] proposed a

clique potential based on label costs that can also be handled

via the expansion algorithm. However, unlike the robust Pn

Potts model, their model provides additive bounds that are

not invariant to reparameterizations of the energy function.

This theoretical limitation is addressed by the recent work

of Dokania and Kumar [8] on parsimonious labeling. Here,

the clique potentials are defined as being proportional to a

diversity function of the set of unique labels present in the

clique labeling. Our work can be thought of as being com-

plementary to parsimonious labeling. Specifically, while

parsimonious labeling is an extension of pairwise metric la-

beling to high-order models, our work is an extension of

TCM. The only metric that also results in a TCM is the trun-

cated linear distance. As our experiments will demonstrate,

our specialized range expansion algorithm provides signif-

icantly better results for truncated max-of-linear models

compared to the hierarchical st-MINCUT approach of [8].

We note that there have been several works that deal with

more general high-order potentials and design st-MINCUT

style solutions for them. For example, Fix et al. [10] use the

submodular max-flow algorithm [19], while Arora et al. [1]

use generic cuts. However, the resulting algorithms are ex-

ponential in the size of the cliques, which prevents their use

in applications that require very high-order cliques (with

hundreds or even thousands of random variables). A notable

exception to this is the work of Ladicky et al. [25], who pro-

posed a co-occurrence based clique potential whose only re-

quirement is that it should increase monotonically with the

set of unique labels present in the clique labeling. However,

the use of such a general clique potential still results in an

inaccurate energy minimization algorithm, as will be seen

in our experimental comparison.

3. Truncated Convex Models
A TCM is a random field defined by a set of discrete

random variables X = {Xa, a ∈ �}, and a neighborhood

relationship ℰ over them (that is, Xa and Xb are neighbor-

ing random variables if (a, b) ∈ ℰ). Each random variable

can take a value from a finite label set L, which is assumed

to be ordered to enable the use of convex distance functions.

Without loss of generality, we define � = {1, 2, · · · , n} and

L = {1, 2, · · · , h}.

An assignment of values to all the random variables

x ∈ Ln is referred to as a labeling. To quantitatively dis-

tinguish the hn possible labelings, a TCM defines an en-

ergy function that consists of two types of potentials. First,
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the unary potential θa(xa) that depends on the label xa of

one random variable Xa. Second, the pairwise potential

θab(xa, xb) that depends on the labels xa and xb of a pair

of neighboring random variables (Xa, Xb). There are no

restrictions on the form of the unary potentials. However,

the pairwise potentials are defined using a truncated convex

distance function over the label set.

To provide a formal specification of the pairwise poten-

tials, we require some definitions. We denote a convex dis-

tance function by d : Z → R (where Z is the set of inte-

gers and R is the set of real numbers). Recall that a con-

vex distance function satisfies the following properties: (i)

d(y) ≥ 0 for all y ∈ Z and d(0) = 0; (ii) d(y) = d(−y)
for all y ∈ Z; and (iii) d(y + 1) − 2d(y) + d(y − 1) ≥ 0
for all y ∈ Z. Note that the above properties also imply

that d(y) ≥ d(z) if |y| ≥ |z|, for all y, z ∈ Z. Exam-

ples of convex distance functions include the linear (that

is, d(y) = |y|) and the quadratic distance function (that is,

d(y) = y2) distance.

Given two labels li, lj ∈ L, we use a convex function

d(·) to measure the distance between them as d(li − lj),
thereby encouraging smooth labelings. In order to prevent

the overpenalization of the discontinuities in an image, it

is common practice to truncate the convex distance func-

tion [3, 23, 30]. Formally, a truncated convex function is

defined as min{d(·),M}, where M is the truncation fac-

tor. We now define the pairwise potential as θab(xa, xb) =
ωab min{d(xa − xb),M}, where ωab is a (data-dependent)

non-negative constant of proportionality.

Hence, a TCM specifies an energy function E(·) over the

labelings x ∈ Ln as follows:

E(x) =
︁

a∈�

θa(xa) +
︁

(a,b)∈ℰ

ωab min{d(xa − xb),M}. (1)

Given an input (which provides the values of the unary

potentials and the edge weights), the desired output is

obtained by solving the following optimization problem:

minx∈Ln E(x). While this optimization problem is NP-

hard, we can obtain an accurate approximate solution by

using the efficient range expansion algorithm [23], as well

as several other approaches based on st-MINCUT [3, 12, 22,

30] and linear programming [4, 17, 20].

4. Truncated Max-of-Convex Models

We now present a natural generalization of TCM to high-

order random fields, which define potentials over random

variables that form a clique (where all the random variables

in a clique are neighbors of each other). Importantly, we do

not place any restriction on the size of the clique.

Truncated Max-of-Convex Potentials. Consider a high-

order clique consisting of the random variables Xc =
{Xa, a ∈ c ⊆ �}. We denote a labeling of the clique as

xc ∈ Lc, where we have used the shorthand c = |c| to de-

note the size of the clique. In order to specify the value of

the clique potential for the labeling xc we require a sorted

list of the (not necessarily unique) labels present in xc. We

denote this sorted list by p(xc) and access its i-th element

as pi(xc). For example, consider a clique consisting of ran-

dom variables Xc = {X1, X2, X3, X4, X5, X6}. If the

number of labels is h = 10, then one of the putative la-

belings of the clique is xc = {3, 2, 1, 4, 1, 3} (that is, X1

takes the value 3, X2 takes the value 2 and so on). For this

labeling, p(xc) = {1, 1, 2, 3, 3, 4}. The value of p1(xc)
and p2(xc) is 1, the value of p3(xc) is 2 and so on. Given a

convex function d(·), a truncation factor M and an integer

m ∈ [0, ⌊c/2⌋], the clique potential θc(·) is defined as

θc(xc) = ωc

m
︁

i=1

min{d(pi(xc)− pc−i+1(xc)),M}. (2)

Here, ωc ≥ 0 is the clique weight that does not depend

on the labeling. However, it can be chosen based on the

observed data - for instance, we may want to assign small

weights to cliques with large variance of intensity or dispar-

ity. The term inside the summation is the truncated value

of the i-th largest distance between the labels of all pairs of

random variables within the clique, subject to the constraint

that the label of no random variable is used more than once

in the computation of the clique potential value. In other

words, our clique potential is proportional to the sum of the

truncation of the m largest convex distance functions over

disjoint pairs of random variables.

As an example, consider a clique of size 6 assigned the

labeling {1, 2, 3, 4, 5, 6} and M = 3, m = 3, ωc = 1. Ac-

cording to equation ( 2), θc(xc) = min(6 - 1, 3) + min(5 - 2,

3) + min(4 - 3, 3) = 3 + 3 + 1 = 7. Using this and other in-

stances, table 1 demonstrates how TMCM ensures smooth

labelings, prevents overpenalization of discontinuities (de-

sirable at object boundaries) and provides robustness to er-

roneous clique definitions that may happen if division of

image into superpixels is not perfect.

Given an input, the desired output is obtained by solving

the following optimization problem: minx∈Ln E(x). Note

that TMCM is a generalization of the Pn Potts model [15]

(m = 1, M = 1) as well as its robust version [16] (m > 1,

M = 1). Furthermore, it is complementary to the recently

proposed parsimonious labeling, which generalizes metric

labeling. Henceforth, we assume the unary potentials are

non-negative. This assumption is not restrictive as we can

always add a constant to the unary potentials of a random

variable. This modification would only result in the energy

of all labelings changing by the same constant. As we shall

see, our algorithm as well as its theoretical guarantees are

invariant to such changes in the energy function.
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Labeling m = 1 m = 2 m = 3
(a) {1,1,1,1,2,2} 1 2 2

{1,2,3,4,5,6} 3 6 7

(b) {1,1,1,9,9,9} 3 6 9

{1,1,1,8,8,9} 3 6 9

(c) {1,1,1,1,1,7} 3 3 3

{1,1,1,2,3,4} 3 5 6

Table 1: Clique potential value θc(xc) defined by a linear function

with M = 3 and ωc = 1 for various values of m. Since clique size is

6, 0 ≤ m ≤ 3. In pair (a), the first labeling is smoother than the second.

Use of the largest convex distances assigns lower penalty to the smooth

labeling. In the labelings of (b), one group of variables has low label and

another high. In both cases, truncation ensures that the discontinuity is

not overpenalized. The first labeling of (c) has a random variable with a

very high label, possibly due to incorrect clique definition. When m > 1
is used, the presence of the erroneous variable is not heavily penalized.

5. Optimization via Range Expansion

As TMCM is a generalization of TCM, it follows that the

corresponding energy minimization problem is NP-hard.

However, we show that the efficient and accurate range ex-

pansion algorithm can be extended to handle this more gen-

eral class of energy functions.

Algorithm 1 shows the main steps of range expansion.

The algorithm starts by assigning the random variables to an

initial label (step 1). For example, all the random variables

could be assigned to the label 1. Next, it selects an interval

of consecutive labels of size at most h′ (steps 3-4), where

h′ is specified as an input to the algorithm. We will see later

in the section that the value of h′ can be chosen to obtain

the optimal worst case bound for specific instances of the

TMCM. Next, it minimizes the energy over all the labelings

that either allow a random variable to retain its current label,

or choose a new label in the selected interval (step 5). If the

energy of the new labeling is lower than that of the current

labeling, then the solution is updated (steps 6-8). This pro-

cess is repeated for all the intervals of consecutive labels of

size at most h′. The entire algorithm stops when the energy

cannot be reduced further for any choice of the interval.

The crux of the range expansion algorithm is prob-

lem (3), which needs to be solved for any given interval I

and current labeling x̂. Unfortunately, this problem itself is

NP-hard for TMCM. Indeed, when h′ = h, problem (3) is

equivalent to the original energy minimization problem. In

order to operationalize the range expansion algorithm, we

need to devise an approximate algorithm for problem (3).

We achieve this in two steps. First, we obtain an overes-

timate of the energy function E(·), which we denote by

E′(·). The energy function E′(·) is restricted to the labels

in the interval I together with the labels specified by the

current labeling x̂. Second, we minimize the overestimated

energy E′(·) over all of its putative labelings by solving an

equivalent st-MINCUT problem. We describe our two-step

algorithm in the next two subsections in detail. Specifically,

subsection 5.1 describes the exact form of the energy func-

Algorithm 1 The range expansion algorithm.

input Energy function E(·), initial labeling x0, interval

length h′.

1: Initialize the output labeling x̂ = x0.

2: repeat

3: for all im ∈ [−h′ + 2, h] do

4: Define an interval of labels I = {f, · · · , l} where

f = max{im, 1} and l = min{im + h′ − 1, h}.

5: Obtain a new labeling x′ by solving the following

optimization problem:

x′ = argmin
x

E(x),

s.t. xa ∈ I ∪ {x̂a}, ∀a ∈ �. (3)

6: if E(x̂) > E(x′) then

7: Update x̂ = x′.

8: end if

9: end for

10: until The labeling does not change for any value of im.

output The labeling x̂.

tion E′(·), while subsection 5.2 describes the construction

of the directed graph over which we solve the st-MINCUT

problem to obtain the labeling x′.

5.1. Overestimation of the Energy Function

Given an interval I = {f, · · · , l} of consecutive la-

bels, and the current labeling x̂, we define the new en-

ergy function E′(·) over the set of random variables X.

Unlike the original energy function, the label set corre-

sponding to E′(·) is equal to L′ = {0, 1, · · · , h′}, where

h′ = l − f + 1. The label 0 in the set L′ corresponds

to a random variable retaining its current label, while any

other label i ≥ 1 corresponds to a random variables taking

the label f + i− 1 ∈ I. A labeling of the energy function

E′(·) is denoted by y ∈ (L′)n in order to distinguish it from

the labeling corresponding to the original energy function.

We say that a labeling x ∈ Ln corresponds to the labeling

y ∈ (L′)n if

xa =

︃

x̂a if ya = 0,

ya + f − 1 otherwise.
(4)

We define the unary potentials and the clique potentials

of the energy function E′(·) as follows.

Unary Potentials. The unary potential of a random vari-

able Xa (where a ∈ �) being assigned a label ya ∈ L′ is

given by the following equation:

θ′a(ya) =

︂

θa(x̂a) + κa if ya = 0
θa(ya + f − 1) + κa otherwise.

(5)

In other words, if ya = 0 then the unary potential corre-

sponds to the random variable Xa retaining its current label
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x̂a, and if ya ̸= 0 then the unary potential corresponds to the

random variable Xa being assigned the label ya+f−1 ∈ I.

The constant κa is added to the unary potentials to ensure

that they are non-negative, which makes the description of

the graph construction in the next subsection simpler.

Clique Potentials. In order to describe the high-order

clique potentials of the new energy function we require a

function δa,b : L′ × L′ → R for each (a, b) ∈ ℰ , which is

defined as follows:

δa,b(ya, yb) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min{d(x̂a − x̂b),M} if ya = yb = 0,
M + d(yb − 1) if ya = 0, yb ̸= 0,
M + d(ya − 1) if ya ̸= 0, yb = 0,
d(ya − yb) if ya ̸= 0, yb ̸= 0.

(6)

Here, d(·) is the convex function and M is the truncation

factor associated with the original energy function E(·).

Proposition 1 δa,b(ya, yb) is submodular in the sense of

label-set encoding used in [13] and is an overestimate of

the truncated convex distance min{d(ya − yb),M}.

The proof of proposition 1 can be found in the supple-

mentary. Note that this submodular upper bound is not tight

and has been chosen to facilitate the analysis of multiplica-

tive bounds later. Given a labeling yc ∈ (L′)c of a clique

c of size c, we denote a sorted list of the labels in yc as

p(yc). Furthermore, we denote the indices of the sorted

list as q(yc). In other words, the random variable corre-

sponding to the i-th smallest label (that is, the i-th element

of the list p(yc), which is denoted by pi(yc)) is given by

Xa where a = qi(yc). To avoid clutter, we will drop the ar-

gument yc from p and q whenever it is clear from context.

Using the above definitions, the high-order clique poten-

tial for the new energy E′(·) can be concisely specified as

θ′
c
(yc) = ωc

m︁

i=1

δqi,qc−i+1
(pi, pc−i+1). (7)

Hence, the clique potentials in the energy function E′(·)
are the sum of the m maximum submodular functions over

disjoint pairs of random variables in the clique.

5.2. Graph Construction

Our problem is to minimize the energy function E′(·)
over all possible labelings y ∈ (L′)n. To this end, we

convert it into an equivalent st-MINCUT problem over a di-

rected graph, which can be solved efficiently if all arc ca-

pacities are non-negative [2].

We construct a directed graph over the set of vertices

{s, t} ∪ V ∪ U ∪ W. The set of vertices V model the

random variables X. Specifically, for each random vari-

able Xa we define h′ = l − f + 1 vertices V a
i where

i ∈ {1, · · · , h′}. The sets U and W represent auxiliary

vertices, whose role in the graph construction will be ex-

plained later when we consider representing the high-order

clique potentials. We also define a set of arcs over the ver-

tices, where each arc has a non-negative capacity. We would

like to assign arc capacities such that the st-cuts of the di-

rected graph satisfy two properties. First, all the st-cuts

with a finite capacity should include exactly one arc from

the set (s, V a
1 )∪ {(V a

i , V
a
i+1), i = 1, · · · , h′ − 1} ∪ (V a

h′ , t)
for each random variable Xa. This property would allow us

to define a labeling y such that

ya =

⎧

⎨

⎩

0 if the cut includes the arc (s, V a
1 )

i if the cut includes the arc (V a
i , V a

i+1)
h′ if the cut includes the arc (V a

h′ , t).
(8)

Second, we would like the energy of the labeling y defined

above to be as close as possible to the capacity of the st-cut.

This will allow us to obtain an optimal labeling with respect

to the energy function E′() by finding the st-MINCUT. We

now specify the arcs and their capacities such that they sat-

isfy the above two properties. We consider two cases: (i)

arcs that represent the unary potentials; and (ii) arcs that

represent the high-order clique potentials.

Representing Unary Potentials. We will represent the

unary potential of Xa using the arcs specified in Figure 2.

Since all the unary potentials are non-negative, it follows

that the arc capacities in Figure 2 are also non-negative.

Representing Clique Potentials. Consider a set of ran-

dom variables Xc that are used to define a high-order clique

potential. Without loss of generality, we assume Xc =
{X1, X2, · · · , Xc}. In order to represent the potential value

for a putative labeling xc of the clique, we introduce two

types of arcs, which are depicted in Figure 3. For the arcs

shown in Figure 3 (left), the capacities are specified using

the term rij that is defined as follows:

rij =

⎧

⎪

⎨

⎪

⎩

ωc

d(i,j)
2

if i = j ̸= 1

ωcd(i, j) if i > j

0 otherwise.

(9)

Here, the term d(i, j) = d(i−j+1)+d(i−j−1)−2d(i−
j) ≥ 0 since d(·) is convex, and ωc ≥ 0 by definition. It

follows that rij ≥ 0 for all i, j ∈ {1, · · · , h′}. For the arcs

shown in Figure 3 (right), the capacities are specified using

the terms A and B that are defined as follows:

A = ωcM,B =

︂

ωcM −
θc(x̂c)

m

︂

. (10)

Since M ≥ 0, and θc(x̂c) ≤ ωcmM due to truncation, it

follows that A,B ≥ 0.

While it is not immediately obvious that the above arcs

allow us to represent the clique potential values as the ca-

pacities of the correspondings cuts, the following proposi-

tion establishes this desired property.
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Figure 2: Arcs and their capacities for representing the unary potentials for the random variable Xa. According to the labeling defined in equation (8), if

xa = x̂a, then the arc (s, V a
1 ) will be cut, which will contribute exactly θa(x̂a) to the capacity of the cut. If xa = s+ i− 1 where i ∈ {1, · · · , h′ − 1},

then the arc (V a
i , V a

i+1) will be cut, which will contribute exactly θa(s + i − 1) to the capacity of the cut. If xa = l, then the arc (V a
h′ , t) will

be cut, which will contribute exactly θa(l) to the capacity of the cut. The arcs with infinite capacity ensure that exactly one of the arcs from the set

(s, V a
1 )∪{(V a

i , V a
i+1), i = 1, · · · , h′−1}∪ (V a

h′ , t) is part of an st-cut with finite capacity, which guarantees that we are able to obtain a valid labeling.

Figure 3: Arcs used to represent the high-order potentials for the clique Xc = {X1, X2, · · · , Xc}. Left. The term rij is defined in equation (9). The

arcs represent the sum of the m maximum convex distance functions over disjoint pairs of random variables when no random variable retains its old label.

These arcs are specified only for i ≤ j and when either one or both of i and j are not equal to 1. Right. The terms A and B are defined in equation (10).

The arcs represent an overestimation of the clique potential for the case where some or all the random variables retain their old label.

Proposition 2 Given a cut that partitions the vertices V

into two disjoint sets Vs and Vt, and the corresponding

labeling y as defined in equation (8), the capacity of the cut

is equal to the energy E′(y) up to a constant.

The proof of the above proposition is provided in the sup-

plementary material. The following corollary may be of

interest to the reader as it shows that our graph construction

generalizes that of [13] for pairwise convex potentials.

Corollary 1 The above graph construction can be used to

exactly minimize an energy function that consists of arbi-

trary unary potentials and clique potentials that are pro-

portional to the sum of m maximum convex distances over

all disjoint pairs of random variables present in the clique.

Energy Minimization. The above proposition implies

that the labeling y′ corresponding to the st-MINCUT min-

imizes the energy E′(·) over all possible labelings y ∈
(L′)n. Since all the arc capacities in the graph are non-

negative, the labeling y′ can be computed efficiently by

solving the st-MINCUT problem on the directed graph de-

fined above. Once the labeling y′ is computed, we find an

approximate solution x′ to problem (3) using equation (4).

5.3. Multiplicative Bounds

We conclude our technical description by establishing its

strong theoretical guarantees for special cases of interest.

We give multiplicative bound on our final solutions, which

also serve to identify the best value of the interval length

parameter h′.

Proposition 3 The range expansion algorithm with h′ =
M has a multiplicative bound of O(m · C) for truncated

max-of-linear model for any general value of m. The term

C equals the size of the largest clique. Hence, if x* is a la-

beling with minimum energy and x̂ is the labeling estimated

by range expansion algorithm then
︁

a∈�

θa(x̂a)+
︁

c∈�

θc(x̂c) ≤
︁

a∈�

θa(x
*
a)+O(m·C)

︁

c∈�

θc(x
*
c
).

The above inequality holds for arbitrary set of unary poten-

tials and non-negative clique weights.

Note that for m = 1, the bound of the move making algo-

rithm for parsimonious labeling (baseline) is
︁

r
r−1

︁

(C −
1) ·min(C, h) · O(log h) where C is the size of the largest

clique, h is the number of labels, and r is a parameter in the

algorithm [8]. Our algorithm gives a better bound of O(C)
and does not depend on the number of labels.
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(a) Penguin input (b) Cooccurrence (c) Parsimonious (d) m = 1, h′ = 20 (e) m = 3, h′ = 20

(Energy, Time (s)) (14735411, 237) (12585846, 456) (12301899, 3962) (12404499*, 5018)

(f) House input (g) Cooccurrence (h) Parsimonious (i) m = 1, h′ = 20 (j) m = 3, h′ = 20

(Energy, Time (s)) (42018464, 486) (37349032, 12024) (36903599, 22751) (37093699*, 23260)

Figure 4: Image inpainting results: Figures (a) and (f) are input images of ‘penguin’ and ‘house’ respectively with noise and obscured regions. Our

results for m = 1 (d) and (i) are significantly better than those of [25] (b) and (g) and of [8] (c) and (h) in terms of energy. We use super-pixels obtained

using mean-shift as cliques. Our results preserve details better and look more natural. The baseline results exhibit significant blocking effect. *Note that m

= 3 uses a different energy function from other cases.

Proposition 4 The range expansion algorithm with h′ =√
M has a multiplicative bound of O(C

√
M) for the trun-

cated max-of-quadratic model when m = 1.

The proofs for the above two propositions are provided

in the supplementary material. The proofs for these proceed

by establishing a lower bound on the energy improvement at

each iteration. This lower bound is obtained by the energy

difference between the current labeling and a new labeling

obtained by assigning all random variables either their opti-

mum labels if the optimum labels lie in the current interval,

else retaining their old labels. The energy of the latter label-

ing is an upper bound on the true energy of the new labeling

obtained by solving the st-MINCUT problem.

6. Experiments
To demonstrate the efficacy of our algorithm, we test it

on the two problems of image inpainting and denoising, and

stereo matching. The final labeling energy and convergence

time are used as evaluation criteria. We used the parsimo-

nious labeling algorithm of Dokania et al. [8] and the move-

making algorithm for the co-occurrence based energy func-

tion of Ladicky et al. [25] as baselines. For comparison, we

restrict ourselves to max-of-linear models and m = 1, as the

available code for the baselines can only handle this special

case. For completeness, we report the results of our range

expansion algorithm for other cases of TMCM and on syn-

thetic data (in supplementary) as well. Note that the energy

values for different m are not comparable since they make

use of different models.

6.1. Image Inpainting and Denoising
Data. Given an image with noise and obscured/inpainted

regions (regions with missing pixels), the task is to denoise

it and fill the obscured regions in a way that is consistent

with the surrounding regions. The images ‘house’ and ‘pen-

guin’ from the Middlebury data set were used for the ex-

periments. Since the images are grayscale, they have 256

labels in the interval [0, 255], each representing an inten-

sity value. The unary potential for each pixel corresponding

to a particular label equals the squared difference between

the label and the intensity value at the pixel. We use high-

order cliques as the super-pixels obtained using the mean-

shift method [5]. The parameters ωc, M and m are varied

to give different truncated max-of-linear energy functions.

Method. For each parameter setting of ωc, M and m, we

vary h′ for our algorithm and compare with the baselines.

Results. Results for ωc = 50, M = 50, and m = 1 and

3 for ‘house’ and ωc = 40, M = 40, and m = 1 and 3 for

‘penguin’ are shown in Figure 4. Other results are shown in

the supplementary material. In both cases, we used interval

length h′ = 20. The value of h′ giving best results in prac-

tice differs from that suggested in Proposition 3 for optimal

bound. Our algorithm consistently gives lower energy la-

beling as compared to both [8] and [25]. For ‘penguin’, our

algorithm gives cleaner denoised image, preserving edges

and details. On the other hand, both [8] and [25] exhibit

significant blocking effect. Moreover, the output is more

natural for m = 3 as compared to m = 1. Even for ‘house’,

our output looks more visually appealing than the baselines.

6.2. Stereo Matching
Data. In the stereo matching problem, we have two recti-

fied images of the same scene from two cameras set slightly

apart. We need to estimate the horizontal disparity between

a pixel in the right camera image from the corresponding
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(a) Ground truth (b) Cooccurrence (c) Parsimonious (d) m = 1, h′ = 4 (e) m = 3, h′ = 4

(Energy, Time (s)) (2098800, 101) (1364200, 225) (1257249, 256) (1267449*, 335)

(f) Ground truth (g) Cooccurrence (h) Parsimonious (i) m = 1, h′ = 2 (j) m = 3, h′ = 2

(Energy, Time (s)) (3259900, 495) (3201300, 484) (3004059, 1304) (3211829*, 1139)

(k) Ground truth (l) Cooccurrence (m) Parsimonious (n) m = 1, h′ = 4 (o) m = 3, h′ = 4

(Energy, Time (s)) (2343200, 261) (2262600, 482) (2210629, 2700) (2235689*, 3032)

(p) Ground truth (q) Cooccurrence (r) Parsimonious (s) m = 1, h′ = 6 (t) m = 3, h′ = 6

(Energy, Time (s)) (8260100, 308) (4985639, 759) (5237919, 3711) (5258999, 4137)

Figure 5: Stereo matching results: Figures (a), (f) (k) and (p) are ground truth disparity for ‘tsukuba’, ‘teddy’, ‘venus’ and ‘cones’ respectively. Apart

from ‘cones’, our results for m = 1 (d), (i) and (n) are significantly better than those of [25] (b), (g) and (l) and of [8] (c), (h) and (m) in terms of energy. We

also show results for m = 3. We use super-pixels obtained using mean-shift as cliques. *Note that m = 3 uses a different energy function from other cases.

pixel in the left camera. We use ‘tsukuba’ and ‘teddy’ data

sets from the Middlebury stereo collection for our experi-

ments. In each case, we have a pair of RGB images and

ground truth disparities. We assume the unary potentials to

be the L1-norm of the difference in RGB values of the left

and right image pixels. There are 16 labels for ‘tsukuba’,

20 for ‘venus’, and 60 for ‘teddy’ and ‘cones’. The high-

order cliques are super-pixels obtained using mean-shift

method [5]. The parameters ωc, M and m are varied to

give different truncated max-of-linear energy functions.

Method. For each parameter setting of ωc, M and m, we

vary h′ for our algorithm and compare with the baselines.

Results. Results for ωc = 20, M = 5, and m = 1 and 3 for

‘tsukuba’, ‘venus’ and ‘cones’ and ωc = 20, M = 1, and m
= 1 and 3 for ‘teddy’ are shown in Figure 5. We used in-

terval length h′ as 4 for ‘tsukuba’ and ‘venus’, 6 for ‘cones’

and 2 for ‘teddy’. Apart from ‘cones’, our algorithm consis-

tently gives lower energy labeling as compared to both [8]

and [25]. For ‘tsukuba’, our algorithm captures the details

of the face better than [8] and [25]. For ‘venus’, we get

smoother labeling for the front plane. Moreover, our results

for m = 3 exhibit robustness to inaccurate clique definitions.

7. Discussion

We proposed a novel family of high-order random fields

called truncated max-of-convex models (TMCM) which are

generalization of truncated convex models (TCM). To per-

form inference in TMCM, we developed a novel range ex-

pansion algorithm for energy minimization that retains the

efficiency of st-MINCUT and provides provably accurate so-

lutions. The algorithm relies on an exact graph representa-

tion of max-of-convex models, a submodular overestimate

of the energy function for any interval length and a graph

construction that represents this overestimate, allowing the

inference problem to be solved using st-MINCUT. Theo-

retically, our work can be thought of as a step towards the

identification of graph representable submodular functions

and automated construction of graphs for such functions.
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