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Abstract

We propose a method for multi-person detection and 2-

D pose estimation that achieves state-of-art results on the

challenging COCO keypoints task. It is a simple, yet pow-

erful, top-down approach consisting of two stages.

In the first stage, we predict the location and scale of

boxes which are likely to contain people; for this we use

the Faster RCNN detector. In the second stage, we estimate

the keypoints of the person potentially contained in each

proposed bounding box. For each keypoint type we pre-

dict dense heatmaps and offsets using a fully convolutional

ResNet. To combine these outputs we introduce a novel ag-

gregation procedure to obtain highly localized keypoint pre-

dictions. We also use a novel form of keypoint-based Non-

Maximum-Suppression (NMS), instead of the cruder box-

level NMS, and a novel form of keypoint-based confidence

score estimation, instead of box-level scoring.

Trained on COCO data alone, our final system achieves

average precision of 0.649 on the COCO test-dev set and

the 0.643 test-standard sets, outperforming the winner of

the 2016 COCO keypoints challenge and other recent state-

of-art. Further, by using additional in-house labeled data

we obtain an even higher average precision of 0.685 on the

test-dev set and 0.673 on the test-standard set, more than

5% absolute improvement compared to the previous best

performing method on the same dataset.

1. Introduction

Visual interpretation of people plays a central role in the

quest for comprehensive image understanding. We want to

localize people, understand the activities they are involved

in, understand how people move for the purpose of Vir-

tual/Augmented Reality, and learn from them to teach au-

tonomous systems. A major cornerstone in achieving these

goals is the problem of human pose estimation, defined as

2-D localization of human joints on the arms, legs, and key-

points on torso and the face.

Recently, there has been significant progress on this

problem, mostly by leveraging deep Convolutional Neural

Networks (CNNs) trained on large labeled datasets [45, 27,

44, 10, 33, 2, 7, 6, 20, 25, 8]. However, most prior work

has focused on the simpler setting of predicting the pose of

a single person assuming the location and scale of the per-

son is provided in the form of a ground truth bounding box

or torso keypoint position, as in the popular MPII [2] and

FLIC [40] datasets.

In this paper, we tackle the more challenging setting of

pose detection ‘in the wild’, in which we are not provided

with the ground truth location or scale of the person in-

stances. This is harder because it combines the problem

of person detection with the problem of pose estimation. In

crowded scenes, where people are close to each other, it can

be quite difficult to solve the association problem of deter-

mining which body part belongs to which person.

The recently released COCO person keypoints detection

dataset and associated challenge [31] provide an excellent

vehicle to encourage research, establish metrics, and mea-

sure progress on this task. It extends the COCO dataset

[32] with additional annotations of 17 keypoints (12 body

joints and 5 face landmarks) for every medium and large

sized person in each image. A large number of persons in

the dataset are only partially visible. The degree of match

between ground truth and predicted poses in the COCO key-

points task is measured in terms of object keypoint similar-

ity (OKS), which ranges from 0 (poor match) to 1 (perfect

match). The overall quality of the combined person detec-

tion and pose estimation system in the benchmark is mea-

sured in terms of an OKS-induced average precision (AP)

metric. In this paper, we describe a system that achieves

state-of-the-art results on this challenging task.

There are two broad approaches for tackling the multi-

person pose estimation problem: bottom-up, in which key-

point proposals are grouped together into person instances,

and top-down, in which a pose estimator is applied to the

output of a bounding-box person detector. Recent work

[35, 25, 8, 24] has advocated the bottom-up approach; in

their experiments, their proposed bottom-up methods out-

performed the top-down baselines they compared with.
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In contrast, in this work we revisit the top-down ap-

proach and show that it can be surprisingly effective. The

proposed system is a two stage pipeline with state-of-art

constituent components carefully adapted to our task. In the

first stage, we predict the location and scale of boxes which

are likely to contain people. For this we use the Faster-

RCNN method [37] on top of a ResNet-101 CNN [22], as

implemented by [23]. In the second stage, we predict the

locations of each keypoint for each of the proposed person

boxes. For this we use a ResNet [22] applied in a fully con-

volutional fashion to predict activation heatmaps and off-

sets for each keypoint, similar to the works of Pishchulin et

al. [35] and Insafutdinov et al. [25], followed by combining

their predictions using a novel form of heatmap-offset ag-

gregation. We avoid duplicate pose detections by means of a

novel keypoint-based Non-Maximum-Suppression (NMS)

mechanism building directly on the OKS metric (which we

call OKS-NMS), instead of the cruder box-level IOU NMS.

We also propose a novel keypoint-based confidence score

estimator, which we show leads to greatly improved AP

compared to using the Faster-RCNN box scores for ranking

our final pose proposals. The system described in this paper

is an improved version of our G-RMI entry to the COCO

2016 keypoints detection challenge.

Using only publicly available data for training, our final

system achieves average precision of 0.649 on the COCO

test-dev set and 0.643 on the COCO test-standard set, out-

performing the winner of the 2016 COCO keypoints chal-

lenge [8], which gets 0.618 on test-dev and 0.611 on test-

standard, as well as the very recent Mask-RCNN [21] meth-

ods which gets 0.631 on test-dev. Using additional in-house

labeled data we obtain an even higher average precision of

0.685 on the test-dev set and 0.673 on the test-standard set,

more than 5% absolute performance improvement over the

best previous methods. These results have been attained

with single-scale evaluation and using a single CNN for

box detection and a single CNN for pose estimation. Multi-

scale evaluation and CNN model ensembling might give ad-

ditional gains.

In the rest of the paper, we discuss related work and then

describe our method in more detail. We then perform an

experimental study, comparing our system to recent state-

of-the-art, and we measure the effects of the different parts

of our system on the AP metric.

2. Related Work

For most of its history, the research in human pose es-

timation has been heavily based on the idea of part-based

models, as pioneered by the Pictorial Structures (PS) model

of Fischler and Elschlager [16]. One of the first practi-

cal and well performing methods based on this idea is De-

formable Part Model (DPM) by Felzenswalb et al. [15],

which spurred a large body of work on probabilistic graph-

ical models for 2-D human pose inference [3, 12, 39, 47,

11, 28, 34, 40, 18]. The majority of these methods focus on

developing tractable inference procedures for highly articu-

lated models, while at the same time capturing rich depen-

dencies among body parts and properties.

Single-Person Pose With the development of Deep Con-

volutional Neural Networks (CNN) for vision tasks, state-

of-art performance on pose estimation is achieved using

CNNs [45, 27, 44, 10, 33, 2, 7, 6, 20, 25, 8]. The problem

can be formulated as a regression task, as done by Toshev

and Szegedy [45], using a cascade of detectors for top-down

pose refinement from cropped input patches. Alternatively,

Jain et al. [27] trained a CNN on image patches, which was

applied convolutionally at inference time to infer heatmaps

(or activity-maps) for each keypoint independently. In ad-

dition, they used a “DPM-like” graphical-model post pro-

cessing step to filter heatmap potentials and to impose inter-

joint consistency. Following this work, Tompson et al. [44]

used a multi-scale fully-convolutional architecture trained

on whole images (rather than image crops) to infer the

heatmap potentials, and they reformulated the graphical

model from [27] - simplifying the tree structure to a star-

graph and re-writing the belief propagation messages - so

that the entire system could be trained end-to-end.

Chen et al. [10] added image-dependent priors to im-

prove CNN performance. By learning a lower-dimensional

image representation, they clustered the input image into a

mixture of configurations of each pair of consecutive joints.

Depending on which mixture is active for a given input im-

age, a separate pairwise displacement prior was used for

graphical model inference, resulting in stronger pairwise

priors and improved overall performance.

Bulat et al. [7] use a cascaded network to explicitly infer

part relationships to improve inter-joint consistency, which

the authors claim effectively encodes part constraints and

inter-joint context. Similarly, Belagiannis & Zisserman [6]

also propose a cascaded architecture to infer pairwise joint

(or part) locations, which is then used to iteratively refine

unary joint predictions, where unlike [7], they propose iter-

ative refinement using a recursive neural network.

Inspired by recent work in sequence-to-sequence mod-

eling, Gkioxari et al. [20] propose a novel network struc-

ture where body part locations are predicted sequentially

rather than independently, as per traditional feed-forward

networks. Body part locations are conditioned on the in-

put image and all other predicted parts, yielding a model

which promotes sequential reasoning and learns complex

inter-joint relationships.

The state-of-the-art approach for single-person pose on

the MPII human pose [2] and FLIC [40] datasets is the

CNN model of Newell et al. [33]. They propose a novel

CNN architecture that uses skip-connections to promote

multi-scale feature learning, as well as a repeated pooling-

4904



upsampling (“hourglass”) structure that results in improved

iterative pose refinement. They claim that their network is

able to more efficiently learn various spatial relationship as-

sociated with the body, even over large pixel displacements,

and with a small number of total network parameters.

Top-Down Multi-Person Pose The problem of multi-

person pose estimation presents different challenges, un-

adressed by the above work. Most of the approaches for

multi-person pose aim at associating person part detections

with person instances. The top down way to establish these

associations, which is closest to our approach, is to first per-

form person detection followed by pose estimation. For ex-

ample, Pishchulin et al. [36] follow this paradigm by using

PS-based pose estimation. A more robust to occlusions per-

son detector, modeled after poselets, is used by Gkioxari

et al. [19]. Further, Yang and Ramanan [47] fuse detection

and pose in one model by using a PS model. The infer-

ence procedure allows for pose estimation of multiple per-

son instances per image analogous to PS-based object de-

tection. A similar multi-person PS with additional explicit

occlusion modeling is proposed by Eichner and Ferrari [13].

The very recent Mask-RCNN method [21] extends Faster-

RCNN [37] to also support keypoint estimation, obtaining

very competitive results. On a related note, 2-D person de-

tection is used as a first step in several 3D pose estimation

works [41, 4, 5].

Bottom-Up Multi-Person Pose A different line of work

is to detect body parts instead of full persons, and to subse-

quently associate these parts to human instances, thus per-

forming pose estimation in a bottom up fashion. Such ap-

proaches employ part detectors and differ in how associ-

ations among parts are expressed, and the inference proce-

dure used to obtain full part groupings into person instances.

Pishchulin et al. [35] and later Insafutdinov et al. [25, 24]

formulate the problem of pose estimation as part grouping

and labeling via a Linear Program. A similar formulation

is proposed by Iqbal et al. [26]. A probabilistic approach

to part grouping and labeling is also proposed by Ladicky

et al. [29], leveraging a HOG-based system for part detec-

tions.

Cao et al. [8] winning entry to the 2016 COCO person

keypoints challenge [32] combines a variation of the unary

joint detector architecture from [46] with a part affinity field

regression to enforce inter-joint consistency. They employ

a greedy algorithm to generate person instance proposals in

a bottom-up fashion. Their best results are obtained in an

additional top-down refinement process in which they run

a standard single-person pose estimator [46] on the person

instance box proposals generated by the bottom-up stage.

3. Methods

Our multi-person pose estimation system is a two step

cascade, as illustrated in Figure 1.

Confidential & Proprietary

(1) Person detection + Crop (2) Pose estimation

photo credit: Moreseth
Figure 1: Overview of our two stage cascade model. In

the first stage, we employ a Faster-RCNN person detector

to produce a bounding box around each candidate person

instance. In the second stage, we apply a pose estimator

to the image crop extracted around each candidate person

instance in order to localize its keypoints and re-score the

corresponding proposal.

Our approach is inspired by recent state-of-art object de-

tection systems such as [17, 43], which propose objects in

a class agnostic fashion as a first stage and refine their la-

bel and location in a second stage. We can think of the first

stage of our method as a proposal mechanism, however of

only one type of object – person. Our second stage serves

as a refinement where we (i) go beyond bounding boxes and

predict keypoints and (ii) rescore the detection based on the

estimated keypoints. For computational efficiency, we only

forward to the second stage person box detection proposals

with score higher than 0.3, resulting in only 3.5 proposals

per image on average. In the following, we describe in more

detail the two stages of our system.

3.1. Person Box Detection

Our person detector is a Faster-RCNN system [37]. In all

experiments reported in this paper we use a ResNet-101 net-

work backbone [22], modified by atrous convolution [9, 30]

to generate denser feature maps with output stride equal to

8 pixels instead of the default 32 pixels. We have also ex-

perimented with an Inception-ResNet CNN backbone [42],

which is an architecture integrating Inception layers [43]

with residual connections [22], which performs slightly bet-

ter at the cost of increased computation.

The CNN backbone has been pre-trained for image clas-

sification on Imagenet. In all reported experiments, both the

region proposal and box classifier components of the Faster-

RCNN detector have been trained using only the person cat-

egory in the COCO dataset and the box annotations for the

remaining 79 COCO categories have been ignored. We use

the Faster-RCNN implementation of [23] written in Tensor-

flow [1]. For simplicity and to facilitate reproducibility we

do not utilize multi-scale evaluation or model ensembling
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in the Faster-RCNN person box detection stage. Using such

enhancements can further improve our results at the cost of

significantly increased computation time.

3.2. Person Pose Estimation

The pose estimation component of our system predicts

the location of all K = 17 person keypoints, given each

person bounding box proposal delivered by the first stage.

One approach would be to use a single regressor per key-

point, as in [45], but this is problematic when there is more

than one person in the image patch (in which case a key-

point can occur in multiple places). A different approach

addressing this issue would be to predict activation maps,

as in [27], which allow for multiple predictions of the same

keypoint. However, the size of the activation maps, and thus

the localization precision, is limited by the size of the net’s

output feature maps, which is a fraction of the input image

size, due to the use of max-pooling with decimation.

In order to address the above limitations, we adopt a

combined classification and regression approach. For each

spatial position, we first classify whether it is in the vicin-

ity of each of the K keypoints or not (which we call a

“heatmap”), then predict a 2-D local offset vector to get a

more precise estimate of the corresponding keypoint loca-

tion. Note that this approach is inspired by work on object

detection, where a similar setup is used to predict bounding

boxes, e.g. [14, 37]. Figure 2 illustrates these three output

channels per keypoint.

Figure 2: Network target outputs. Left & Middle: Heatmap

target for the left-elbow keypoint (red indicates heatmap of

1). Right: Offset field L2 magnitude (shown in grayscale)

and 2-D offset vector shown in red).

Image Cropping We first make all boxes have the same

fixed aspect ratio by extending either the height or the width

of the boxes returned by the person detector without distort-

ing the image aspect ratio. After that, we further enlarge the

boxes to include additional image context: we use a rescal-

ing factor equal to 1.25 during evaluation and a random

rescaling factor between 1.0 and 1.5 during training (for

data augmentation). We then crop from the resulting box

the image and resize to a fixed crop of height 353 and width

257 pixels. We set the aspect ratio value to 353/257 = 1.37.

Heatmap and Offset Prediction with CNN We apply a

ResNet with 101 layers [22] on the cropped image in a fully

convolutional fashion to produce heatmaps (one channel per

keypoint) and offsets (two channels per keypoint for the x-

and y- directions) for a total of 3 ·K output channels, where

K = 17 is the number of keypoints. We initialize our model

from the publicly available Imagenet pretrained ResNet-101

model of [22], replacing its last layer with 1x1 convolution

with 3 · K outputs. We follow the approach of [9]: we

employ atrous convolution to generate the 3 ·K predictions

with an output stride of 8 pixels and bilinearly upsample

them to the 353x257 crop size.

In more detail, given the image crop, let fk(xi) = 1 if

the k-th keypoint is located at position xi and 0 otherwise.

Here k ∈ {1, . . . ,K} is indexing the keypoint type and i ∈
{1, . . . , N} is indexing the pixel locations on the 353x257

image crop grid. Training a CNN to produce directly the

highly localized activations fk (ideally delta functions) on a

fine resolution spatial grid is hard.

Instead, we decompose the problem into two stages.

First, for each position xi and each keypoint k, we com-

pute the probability hk(xi) = 1 if ||xi − lk|| ≤ R that the

point xi is within a disk of radius R from the location lk of

the k-th keypoint. We generate K such heatmaps, solving a

binary classification problem for each position and keypoint

independently.

In addition to the heatmaps, we also predict at each po-

sition i and each keypoint k the 2-D offset vector Fk(xi) =
lk − xi from the pixel to the corresponding keypoint. We

generate K such vector fields, solving a 2-D regression

problem for each position and keypoint independently.

After generating the heatmaps and offsets, we aggregate

them to produce highly localized activation maps fk(xi) as

follows:

fk(xi) =
∑

j

1

πR2
G(xj + Fk(xj)− xi)hk(xj) , (1)

where G(·) is the bilinear interpolation kernel. This is a

form of Hough voting: each point j in the image crop grid

casts a vote with its estimate for the position of every key-

point, with the vote being weighted by the probability that

it is in the disk of influence of the corresponding keypoint.

The normalizing factor equals the area of the disk and en-

sures that if the heatmaps and offsets were perfect, then

fk(xi) would be a unit-mass delta function centered at the

position of the k-th keypoint.

The process is illustrated in Figure 3. We see that pre-

dicting separate heatmap and offset channels and fusing

them by the proposed voting process results into highly lo-

calized activation maps which precisely pinpoint the posi-

tion of the keypoints.
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Figure 3: Our fully convolutional network predicts two tar-

gets: (1) Disk-shaped heatmaps around each keypoint and

(2) magnitude of the offset fields towards the exact keypoint

position within the disk. Aggregating them in a weighted

voting process results in highly localized activation maps.

The figure shows the heatmaps and the pointwise magni-

tude of the offset field on a validation image. Note that in

this illustration we super-impose the channels from the dif-

ferent keypoints.

Model Training We use a single ResNet model with

two convolutional output heads. The output of the first

head passes through a sigmoid function to yield the heatmap

probabilities hk(xi) for each position xi and each keypoint

k. The training target h̄k(xi) is a map of zeros and ones,

with h̄k(xi) = 1 if ||xi − lk|| ≤ R and 0 otherwise. The

corresponding loss function Lh(θ) is the sum of logistic

losses for each position and keypoint separately. To ac-

celerate training, we follow [25] and add an extra heatmap

prediction layer at intermediate layer 50 of ResNet, which

contributes a corresponding auxiliary loss term.

For training the offset regression head, we penalize the

difference between the predicted and ground truth offsets.

The corresponding loss is

Lo(θ) =
∑

k=1:K

∑

i:||lk−xi||≤R

H(||Fk(xi)−(lk−xi)||) , (2)

where H(u) is the Huber robust loss, lk is the position of the

k-th keypoint, and we only compute the loss for positions

xi within a disk of radius R from each keypoint [37].

The final loss function has the form

L(θ) = λhLh(θ) + λoLo(θ) , (3)

where λh = 4 and λo = 1 is a scalar factor to balance the

loss function terms. We sum this loss over all the images in

a minibatch, and then apply stochastic gradient descent.

An important consideration in model training is how to

treat cases where multiple people exist in the image crop

in the computation of heatmap loss. When computing the

heatmap loss at the intermediate layer, we exclude contri-

butions from within the disks around the keypoints of back-

ground people. When computing the heatmap loss at the

final layer, we treat as positives only the disks around the

keypoints of the foreground person and as negatives every-

thing else, forcing the model to predict correctly the key-

points of the person in the center of the box.

Pose Rescoring At test time, we apply the model to each

image crop. Rather than just relying on the confidence from

the person detector, we compute a refined confidence esti-

mate, which takes into account the confidence of each key-

point. In particular, we maximize over locations and av-

erage over keypoints, yielding our final instance-level pose

detection score:

score(I) =
1

K

K∑

k=1

max
xi

fk(xi) (4)

We have found that ranking our system’s pose estimation

proposals using 4 significantly improves AP compared to

using the score delivered by the Faster-RCNN box detector.

OKS-Based Non Maximum Suppression Following

standard practice, we use non maximal suppression (NMS)

to eliminate multiple detections in the person-detector

stage. The standard approach measures overlap using inter-

section over union (IoU) of the boxes. We propose a more

refined variant which takes the keypoints into account. In

particular, we measure overlap using the object keypoint

similarity (OKS) for two candidate pose detections. Typ-

ically, we use a relatively high IOU-NMS threshold (0.6 in

our experiments) at the output of the person box detector

to filter highly overlapping boxes. The subtler OKS-NMS

at the output of the pose estimator is better suited to deter-

mine if two candidate detections correspond to false posi-

tives (double detection of the same person) or are true posi-

tives (two people in close proximity to each other).

4. Experimental Evaluation

4.1. Experimental Setup

We have implemented out system in Tensorflow [1]. We

use distributed training across several machines equipped

with Tesla K40 GPUs.

For person detector training we use 9 GPUs. We opti-

mize with asynchronous SGD with momentum set to 0.9.

The learning rate starts at 0.0003 and is decreased by a fac-

tor of 10 at 800k steps. We train for 1M steps.
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Figure 4: Detection and pose estimation results using our system on a random selection from the COCO test-dev set. For

each detected person, we display the detected bounding box together with the estimated keypoints. All detections for one

person are colored the same way. It is worth noting that our system works in heavily cluttered scenes (third row, rightmost

and last row, right); it deals well with occlusions (last row, left) and hallucinates occluded joints. Last but not least, some of

the false positive detections are in reality correct as they represent pictures of people (first row, middle) or toys (fourth row,

middle). Figure best viewed zoomed in on a monitor.
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Table 1: Performance on COCO keypoint test-dev split.

AP AP .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)

CMU-Pose [8] 0.618 0.849 0.675 0.571 0.682 0.665 0.872 0.718 0.606 0.746

Mask-RCNN [21] 0.631 0.873 0.687 0.578 0.714

G-RMI (ours): COCO-only 0.649 0.855 0.713 0.623 0.700 0.697 0.887 0.755 0.644 0.771

G-RMI (ours): COCO+int 0.685 0.871 0.755 0.658 0.733 0.733 0.901 0.795 0.681 0.804

Table 2: Performance on COCO keypoint test-standard split.

AP AP .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)

CMU-Pose[8] 0.611 0.844 0.667 0.558 0.684 0.665 0.872 0.718 0.602 0.749

G-RMI (ours): COCO-only 0.643 0.846 0.704 0.614 0.696 0.698 0.885 0.755 0.644 0.771

G-RMI (ours): COCO+int 0.673 0.854 0.735 0.642 0.726 0.730 0.898 0.789 0.675 0.805

For pose estimator training we use two machines

equipped with 8 GPUs each and batch size equal to 24 (3

crops per GPU times 8 GPUs). We use a fixed learning rate

of 0.005 and Polyak-Ruppert parameter averaging, which

amounts to using during evaluation a running average of the

parameters during training. We train for 800k steps.

All our networks are pre-trained on the Imagenet clas-

sification dataset [38]. To train our system we use two

dataset variants; one that uses only COCO data (COCO-

only), and one that appends to this dataset samples from an

internal dataset (COCO+int). For the COCO-only dataset

we use the COCO keypoint annotations [32]: From the

66,808 images (273,469 person instances) in the COCO

train+val splits, we use 62,174 images (105,698 person in-

stances) in COCO-only model training and use the remain-

ing 4,301 annotated images as mini-val evaluation set. Our

COCO+int training set is the union of COCO-only with

an additional 73,024 images randomly selected from Flickr.

This in-house dataset contains an additional 227,029 person

instances annotated with keypoints following a procedure

similar to that described by Lin et al. [31]. The additional

training images have been verified to have no overlap with

the COCO training, validation or test sets.

We have trained our Faster-RCNN person box detec-

tion module exclusively on the COCO-only dataset. We

have experimented training our ResNet-based pose esti-

mation module either on the COCO-only or on the aug-

mented COCO+int datasets and present results for both.

For COCO+int pose training we use mini-batches that con-

tain COCO and in-house annotation instances in 1:1 ratio.

4.2. COCO Keypoints Detection State­of­the­Art

Table 1 shows the COCO keypoint test-dev split perfor-

mance of our system trained on COCO-only or trained on

COCO+int datasets. A random selection of test-dev infer-

ence samples are shown in Figure 4.

Table 2 shows the COCO keypoint test-standard split re-

sults of our model with the pose estimator trained on either

COCO-only or COCO+int training set.

Even with COCO-only training, we achieve state-of-the-

art results on the COCO test-dev and test-standard splits,

outperforming the COCO 2016 challenge winning CMU-

Pose team [8] and the very recent Mask-RCNN method

[21]. Our best results are achieved with the pose estimator

trained on COCO+int data, yielding an AP score of 0.673

on test-standard, an absolute 6.2% improvement over the

0.611 test-standard score of CMU-Pose [8].

4.3. Ablation Study: Box Detection Module

An important question for our two-stage system is its

sensitivity to the quality of its box detection and pose es-

timator constituent modules. We examine two variants of

the ResNet-101 based Faster-RCNN person box detector,

(a) a fast 600x900 variant that uses input images with small

side 600 pixels and large side 900 pixels and (b) an accurate

800x1200 variant that uses input images with small side 800

pixels and large side 1200 pixels. Their box detection AP

on our COCO person mini-val is 0.466 and 0.500, respec-

tively. Their box detection AP on COCO test-dev is 0.456

and 0.487, respectively. For reference, the person box de-

tection AP on COCO test-dev of the top-performing multi-

crop/ensemble entry of [23] is 0.539. We have also tried

feeding our pose estimator module with the ground truth

person boxes to examine its oracle performance limit in iso-

lation from the box detection module. We report our COCO

mini-val results in Table 3 for pose estimators trained on ei-

ther COCO-only or COCO+int. We use the accurate Faster-

RCNN (800x1200) box detector for all results in the rest of

the paper.

4.4. Ablation Study: Pose Estimation Module

We have experimented with alternative CNN setups for

our pose estimation module. We have explored CNN net-

work backbones based on either the faster ResNet-50 or the

more accurate ResNet-101, while keeping ResNet-101 as

CNN backbone for the Faster-RCNN box detection mod-

ule. We have also experimented with two sizes for the

image crops that are fed as input to the pose estimator:
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Table 3: Ablation on the box detection module: Performance on COCO keypoint mini-val when using alternative box detec-

tion modules trained on COCO-only or ground truth boxes. We use the default ResNet-101 pose estimation module trained on

either COCO-only or COCO+int. We mark with an asterisk our default box detection module used in all other experiments.

Box Module Poser Train AP AP .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)

Faster-RCNN (600x900) COCO-only 0.657 0.831 0.721 0.617 0.725 0.699 0.856 0.754 0.634 0.788

Faster-RCNN (800x1200)∗ COCO-only 0.667 0.851 0.730 0.633 0.726 0.708 0.874 0.763 0.652 0.786

Ground-truth boxes COCO-only 0.704 0.904 0.771 0.684 0.746 0.736 0.911 0.794 0.693 0.796

Faster-RCNN (600x900) COCO+int 0.693 0.854 0.757 0.650 0.762 0.730 0.871 0.786 0.665 0.819

Faster-RCNN (800x1200)∗ COCO+int 0.700 0.860 0.764 0.665 0.760 0.742 0.888 0.800 0.686 0.820

Ground-truth boxes COCO+int 0.745 0.925 0.815 0.725 0.783 0.774 0.930 0.835 0.735 0.831

Table 4: Ablation on the pose estimation module: Performance on COCO keypoint test-dev when using alternative pose

estimation modules trained on COCO+int. We use the default ResNet-101 box detection module trained on COCO-only. We

mark with an asterisk our default pose estimation module used in all other experiments.

Pose Module Poser Train AP AP .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)

ResNet-50 (257x185) COCO+int 0.649 0.853 0.722 0.627 0.693 0.699 0.890 0.763 0.650 0.766

ResNet-50 (353x257) COCO+int 0.666 0.862 0.734 0.638 0.717 0.714 0.894 0.774 0.661 0.787

ResNet-101 (257x185) COCO+int 0.661 0.862 0.734 0.641 0.708 0.712 0.895 0.777 0.662 0.782

ResNet-101 (353x257)∗ COCO+int 0.685 0.871 0.755 0.658 0.733 0.733 0.901 0.795 0.681 0.804

Table 5: Performance (AP) on COCO keypoint mini-val

with varying values for the OKS-NMS threshold. The

pose estimator has been trained with either COCO-only or

COCO+int data.

Threshold 0.1 0.3 0.5∗ 0.7 0.9

AP (COCO-only) 0.638 0.664 0.667 0.665 0.658

AP (COCO+int) 0.672 0.699 0.700 0.701 0.694

Smaller (257x185) for faster inference or larger (353x257)

for higher accuracy. We report in Table 4 COCO test-dev

results for the four CNN backbone/ crop size combinations,

using COCO+int for pose estimator training. We see that

ResNet-101 performs about 2% better but in computation-

constrained environments ResNet-50 remains a competitive

alternative. We use the accurate ResNet-101 (353x257)

pose estimator with disk radius R = 25 pixels in the rest

of the paper.

4.5. OKS­Based Non Maximum Suppression

We examine the effect of the proposed OKS-based non-

maximum suppression method at the output of the pose esti-

mator for different values of the OKS-NMS threshold. In all

experiments the value of the IOU-NMS threshold at the out-

put of the person box detector remains fixed at 0.6. We re-

port in Table 5 COCO mini-val results using either COCO-

only or COCO+int for pose estimator training. We fix the

OKS-NMS threshold to 0.5 in the rest of the paper.

5. Conclusion

In this work we address the problem of person detection

and pose estimation in cluttered images ‘in the wild’. We

present a simple two stage system, consisting of a person

detection stage followed by a keypoint estimation stage for

each person. Despite its simplicity it achieves state-of-art

results as measured on the challenging COCO benchmark.
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