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Abstract

Given two action sequences, we are interested in

spotting/co-segmenting all pairs of sub-sequences that rep-

resent the same action. We propose a totally unsupervised

solution to this problem. No a-priori model of the ac-

tions is assumed to be available. The number of common

sub-sequences may be unknown. The sub-sequences can

be located anywhere in the original sequences, may dif-

fer in duration and the corresponding actions may be per-

formed by a different person, in different style. We treat

this type of temporal action co-segmentation as a stochas-

tic optimization problem that is solved by employing Parti-

cle Swarm Optimization (PSO). The objective function that

is minimized by PSO capitalizes on Dynamic Time Warp-

ing (DTW) to compare two action sub-sequences. Due to

the generic problem formulation and solution, the proposed

method can be applied to motion capture (i.e., 3D skeletal)

data or to conventional RGB videos acquired in the wild.

We present extensive quantitative experiments on standard

data sets as well as on data sets we introduced in this paper.

The obtained results demonstrate that the proposed method

achieves a remarkable increase in co-segmentation quality

compared to all tested state of the art methods.

1. Introduction

The unsupervised discovery of common patterns in im-

ages and videos is considered an important and unsolved

problem in computer vision. We are interested in the tem-

poral aspect of the problem and focus on action sequences

(sequences of 3D motion capture data or video data) that

contain multiple common actions. The problem was intro-

duced in [10] as Temporal Commonality Discovery (TCD).

Our motivation and interest to the problem stems from the

fact that the discovery of common action patterns in two

or more sequences provides an intuitive as well as efficient

Sequence A

Sequence B

Common actions

Throwing a ball Punching Jumping jacks Clapping Sit down Jumping in place

Non-common actions

Figure 1: Given two image sequences that share common

actions, our goal is to automatically co-segment them in a

totally unsupervised manner. In this example, there are four

common actions and two non-common actions. Notice that

there are two instances of the 1st action of sequence A in se-

quence B. Each point of the grayscale background encodes

the pairwise distance of the corresponding sequence frames.

way to segment them, to identify a set of elementary actions

performed in the sequences and, at a higher level, to build

models of the performed actions in an unsupervised manner.

We propose a novel method for solving this problem

that operates on multivariate time-series (i.e., a feature vec-

tor of fixed dimensionality per frame), representing action-

relevant information. Assuming that two sequences/time-

series contain a number of common action sub-sequences,

we aim at identifying those pairs in a unsupervised man-

ner, in the sense that no prior models, no information on

the lengths and no labels of the actions are available. As

illustrated graphically in Fig. 1, a shared (common) sub-

sequence may appear anywhere in both sequences and may
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differ in duration as well as in the style of execution. Such a

commonality is defined by four values: the start positions of

the co-segmented sub-sequences and their possibly different

lengths, in both sequences. We cast the search for a single

such commonality as a stochastic optimization problem that

is solved based on Particle Swarm Optimization (PSO) [20].

Essentially, PSO searches for a commonality that minimizes

the dissimilarity between the co-segmented sub-sequences.

This is quantified by the cost of their non-linear alignment

through Dynamic Time Warping (DTW) [35]. Iterative in-

vocations of this optimization process identify all common-

alities. Their number can either be known a-priori, or can

be automatically identified, leading to a supervised or unsu-

pervised variant of our method, respectively.

Experiments were carried out on several datasets that

contain sequences of human or animal actions in lab settings

or in-the-wild. The datasets involve either motion capture

data or conventional RGB videos. The quantitative analy-

sis of the obtained results reveals that the proposed strat-

egy improves the co-segmentation overlap metric by a great

margin over the best competing state of the art methods.

2. Related work

The term co-segmentation was originally introduced in

computer vision by Rother et al. [38], as the task of joint

segmentation of “something similar” given a set of images.

This idea aspires to eliminate the need for tedious super-

vised training, enabling unsupervised or weakly supervised

solutions to a number of interesting problems, such as auto-

matic annotation of human actions in videos [11, 4].

Image/object co-segmentation: Several state-of-art meth-

ods have been proposed for co-segmenting similar image

regions in images [27, 30, 5] and for object co-segmentation

by extracting one or multiple prominent object(s) given an

image pair [45, 18] or a single image [13]. The method

proposed in [40] performs unsupervised co-segmentation of

multiple common regions of objects in multiple images.

Video co-segmentation: Recently, the idea was ex-

tended to video segmentation towards common fore/back-

ground segmentation [39] and single or multiple object co-

segmentation [6, 44]. In [8], multi-class video object co-

segmentation is performed even when the number of ob-

ject classes and object class instances are unknown. These

works assume that all frames of videos contain the target ob-

ject(s). This assumption is relaxed in [49], where the target

objects are jointly discovered and co-segmented in multiple

videos even if they do not appear in some frames.

Unsupervised segmentation of time-series: Several meth-

ods deal with the problem of finding one or multiple com-

mon temporal patterns in a single or multiple sequences [29,

7]. A solution to this problem is useful in various broad

domains ranging from bioinformatics and economics to

computer science and engineering. Various methods deal

with the problem using temporal clustering [54], segmenta-

tion [21], temporal alignment [53], etc. In a recent work,

Wang et al. [50] proposed a method for unsupervised tem-

poral segmentation of human repetitive actions based on

motion capture data. This is achieved by analyzing frequen-

cies of kinematic parameters, detecting zero-velocity cross-

ings and clustering of sequential data. Recently, the method

in [2] studied the use of convolutional auto-encoders for

unsupervised mining recurrent temporal patterns mixed in

multivariate time series. The approach presented in [26]

also uses CNNs to analyze sequentially blocks of 20 non-

consecutive frames in an input video sequence in order to

finally count the repetitions of approximately the same ac-

tion in an online manner. The method in [12] is able to

automatically determine the number of motifs shared by

one or more video or audio sequences, find where they ap-

pear in each sequence and determine their lengths. Dy-

namic Time Warping (DTW) [35] is widely-used for tem-

poral non-linear alignment of two sequences of different

lengths for temporal alignment of human motion [53] or

unsupervised speech processing [33]. In [33], a segmen-

tal variant of DTW was proposed to discover an inventory

of lexical speech units in an unsupervised manner.

Action co-segmentation: The method in [15] performs

common action extraction in a pair of videos by segmenting

the frames of both videos that contain the common action.

The method relies on measuring the co-saliency of dense

trajectories on spatio-temporal features. The method pro-

posed in [54] can discover facial units in video sequences

of one or more persons in an unsupervised manner us-

ing temporal segmentation and clustering of facial features.

Another recent work [9] tackles the problem of video co-

summarization, by exploiting visual co-occurrence of the

same topic across multiple videos, using a Maximal Bi-

clique Finding (MBF) algorithm to discover one or mul-

tiple commonalities between and within two long action

sequences. The work in [52] introduces an unsupervised

learning algorithm using absorbing Markov chain in order

to detect a common activity of variable length from a set

of videos or multiple instances of it in a single video. Our

work is most relevant to the Temporal Commonality Dis-

covery (TCD) method [10] that discovers common seman-

tic temporal patterns in a pair of videos or time-series, in

an unsupervised manner. This is treated as an integer op-

timization problem that uses the branch-and-bound (B&B)

algorithm [25] for searching for an optimal solution over all

possible segments in each video sequence.

Our contribution: We present a novel solution to the prob-

lem of temporal action co-segmentation. The proposed

method is totally unsupervised and assumes a very general

representation of its input. Moreover, it is shown to outper-

form TCD and other state of the art methods by a large mar-

gin, while achieving a better computational performance.
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3. Method description

Our approach consists of four components that address

(a) feature extraction and representation of the data (Sec-

tion 3.1), (b) DTW-based comparison of sequences of ac-

tions (Section 3.2) (c) an objective function that quanti-

fies a potential sub-sequence commonality (Section 3.3) and

(d) the use of (c) in an evolutionary optimization framework

for spotting one common sub-sequence (Section 3.4) and all

common sub-sequences (Section 3.5) in a pair of sequences.

3.1. Features and representation

The proposed framework treats sequences of actions as

multivariate time-series. More specifically, it is assumed

that the input consists of two action sequences SA and SB

of lengths lA and lB , respectively. Each “frame” of such

a sequence is encoded as a feature vector f ∈ R
d. The

generality of this formulation enables the consideration of a

very wide set of features. For example, vectors f can stand

for motion-capture data representing the joints of a human

skeleton or a Bag-of-Features representation of appearance

and motion features based on dense trajectories [47, 43] ex-

tracted from conventional RGB videos. Section 4 presents

experiments performed on four datasets, each of which con-

siders a different representation of human motion capture or

image sequence features. This demonstrates the generality

and the wide applicability of the proposed solution.

3.2. Comparing action sequences based on DTW

A key component of our approach is a method that as-

sesses quantitatively the similarity between two action se-

quences being treated as time-series, based on the notion of

their temporal alignment. In a recent study, Wang et al. [51]

performed an extended study on comparing 9 alignment

methods across 38 data sets from various scientific domains.

It was shown that the DTW algorithm [3, 35, 42], originally

developed for the task of spoken word recognition [41], was

consistently superior to the other studied methods. Thus, we

adopt DTW as an alignment and comparison tool for pairs

of sub-sequences within two sequences.

More specifically, given two action sequences SA and

SB of lengths lA and lB , we first calculate the distance ma-

trix WA,B of the pair-wise distances of all frames of the two

sequences, as shown in Fig.2a. Depending on the nature

of the sequences, different distance functions can be em-

ployed (e.g., Euclidean norm for motion capture data, χ2

distance for histograms). The matrix W1,2 represents the

replacement costs, that is the input to the DTW method [3].

The algorithm calculates a cost matrix with a minimum

distance/cost warp path traced through it, providing pair-

wise correspondences that establish a non-linear matching

among all frames of the two sequences. The cumulative cost

of all values across the path provides the alignment cost of

(a) Distance matrix (b) F (p)

Figure 2: (a) The pairwise distance matrix for all frames

of sequences SA, SB . (b) Illustrating the scores of the ob-

jective function F (p) (Eq. 1) for all possible starting points

and sub-sequence lengths (see Sec.3.3 for details).

the two sequences, noted as D. The resulting minimum dis-

tance path contains a number np of diagonal elements that

identify matches of frames between the two sequences. If

the input sequences were identical time series of length l,

the warp path through the cost matrix would be its diago-

nal, with D = 0 and np = l.

3.3. Evaluating a candidate commonality

Having a method for measuring the alignment cost of

two sequences, our goal is now to define an effective objec-

tive function to evaluate candidate commonalities. A can-

didate commonality p is fully represented by the quadruple

p = (sa, la, sb, lb), where sa, sb are the starting frames and

la, lb are the lengths of two sub-sequences of SA and SB ,

respectively. A commonality p can be viewed as a rectangle

R(p) whose top-left corner is located at point (sa, sb) and

whose side lengths are la, lb (e.g., see any colored rectangle

in Fig. 1). We are interested in promoting commonalities p

of low alignment cost (or equivalently, of high similarity)

that also correspond to as many temporally matched frames

as possible. To this end, we define an objective function

F (p) quantifying the quality of a possible commonality p:

F (p) =
D(p) + c

np(p) + 1
. (1)

The quadruple p represents two sub-sequences of the orig-

inal sequences, D(p) is their DTW-based alignment cost

and np(p) is the number of matched frames of these sub-

sequences. Essentially, F (p) calculates the average align-

ment cost across the alignment path calculated using the

DTW, by dividing the temporal alignment cost D(p) with

the number of matched frames np(p). c is a small constant

that guarantees that longer commonalities are favored over

small ones, even in the unlikely case that D(p) = 0.

Figures 2a, 2b provide some intuition regarding the ob-

jective function and its 4D domain, based on a given pair of

sequences. We assume that the two sequences SA, SB con-
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tain a single common action across frames [200..350] and

[400..600], respectively. Figure 2a illustrates the pairwise

distance matrix WA,B of all their frames, calculated based

on the Euclidean distance of the feature vectors represent-

ing the frames. Each cell (i, j) in the map of Fig. 2b repre-

sents the minimum objective function score F for two sub-

sequences starting at frame i in SA and j in SB over all pos-

sible combinations of allowed lengths. Thus, the presented

map visualizes the 4D parametric space by a 2D map of

the responses of F (·). It can be verified that low scores are

concentrated near the area of the common sub-sequences.

3.4. Spotting a single commonality

Spotting a single commonality amounts to optimizing

Eq. (1) over all possible commonalities p. In notation, the

optimal commonality p∗ is defined as:

p∗ = argmin
p

F (p). (2)

Searching exhaustively all candidate solutions in the 4D pa-

rameter space spanned by possible commonalities is pro-

hibitively expensive. We choose to consider this as a

stochastic optimization problem that is solved based on

the canonical Particle Swarm Optimization (PSO) algo-

rithm [20, 19, 16], a powerful and versatile evolutionary

optimization method. PSO is a derivative-free optimization

method that handles multi-modal, discontinuous objective

functions with several local minima. Optimization is per-

formed through the evolution of particles (candidate solu-

tions) of a population (swarm). Particles lie in the parameter

space of the objective function to be optimized and evolve

through a limited number of generations (iterations) accord-

ing to a policy which emulates “social interaction”. The

main parameters of PSO are the number of particles and

generations, the product of which determines its computa-

tional budget (i.e., the number of objective function eval-

uations). PSO and other meta-heuristic methods such as

Simulated Annealing [22] and Differential Evolution [34]

are not guaranteed to convergence to a globally optimal so-

lution. However, in practice, PSO and its variants are ef-

ficient and achieve near-optimal solutions. Thus, PSO has

been applied with success in several challenging, multidi-

mensional optimization problems in computer vision such

as 3D pose estimation and tracking of hands [31, 32], hands

and objects [24] and humans [17].

For single action co-segmentation, PSO operates on the

4D space of all possible commonalities. Certain constraints

apply to the parameters sa, sb, la and lb. Specifically, it

holds that la, lb ≥ lmin la, lb ≤ lmax, sa ≤ lA − lmin,

sb ≤ lB − lmin, where lmin, lmax are user-defined min-

imum/maximum allowed commonality lengths. The 4D

search space of PSO is constrained accordingly. For each

run of PSO, the particles are initialized randomly (uniform

distribution) in valid positions of the search space. The

decision on the actual number of particles and generations

needed to come up with an accurate solution to the problem

is taken based on experimental evidence and is discussed in

Section 4. Finally, sequences do not necessarily contain a

commonality. Such situations can be identified by noting

that the minimization of Eq. 2 results in a large value.

3.5. Spotting multiple commonalities

A joint solution to the problem for identifying N com-

monalities in a single run of PSO would require to explore

a 4N -dimensional space. This can become intractable for

PSO when considering large values of N . Thus, we resort

to an iterative optimization procedure that identifies a single

commonality at a time.

It should be noted that the n-th commonality pn should

overlap as less as possible with the n − 1 previously iden-

tified commonalities pi, 1 ≤ i ≤ n − 1. There is a fairly

intuitive way of identifying this overlap. Given two com-

monalities pi and pj , their normalized intersection Ω(pi, pj)
with respect to pi is defined as:

Ω(pi, pj) =
|R(pi) ∩R(pj)|

|R(pi)|
, (3)

where R(p) is the region of a commonality p (see Sec-

tion 3.3) and | · | measures the area of a 2D region. Given

this, in order to identify the i-th commonality pi, we de-

fine a new objective function that considers the DTW-based

score of pi (as before), but also its normalized intersection

with the already identified commonalities. The optimal i-th

commonality is thus defined as:

p∗i = argmin
pi



F (pi) + λ

i−1
∑

j=1

Ω(pj , pi)



 , (4)

where λ > 0 tunes the contribution of the two terms in the

objective function. Large λ values exclude commonalities

that have even a slight overlap with the already identified

ones. In our implementation, we set λ = 1. Note that the

objective function of Eq.(4) penalizes commonalities whose

regions overlap but does not penalize non-overlaping com-

monalities that share rows (or columns) of the distance ma-

trix. Thus, an action in a sequence can be matched with

several instances of the same action in the second sequence.

Supervised vs unsupervised action co-segmentation:

The iterative co-segmentation method described so far can

be applied for a known number N of iterations, giving rise

to N retrieved commonalities. We denote this variant of the

algorithm as S-EVACO that stands for Supervised EVolu-

tionary Action CO-segmentation. S-EVACO is useful when

the number of the common action subsequences in a pair of
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videos is known a-priori. However, a totally unsupervised

method that does not assume this knowledge is definitely

preferable. We approach the problem of developing such an

unsupervised method as a model selection task. To this end,

we consider a user-defined parameter that is the maximum

possible number of common actions, noted as K. We run

the iterative PSO-based optimization process for K itera-

tions, retrieving K commonalities pi as well as their fitness

scores F (pi). We sort the commonalities in ascending or-

der of F (pi). Finally, we consider all possible K − 1 break

points between the consecutive, sorted commonalities. We

accept the break point j∗ that maximizes the absolute dif-

ference of the mean values of fitness scores to the left and to

the right of it. By doing so, we guarantee that the introduc-

tion of pj∗+1 into the commonalities solution set decreases

substantially the quality of the solution. In notation,

j∗ = argmax
j∈{1,...,K−1}

∣

∣

∣

∣

∣

∣

1

j

j
∑

i=1

F (pi)−
1

K − j

K
∑

i=j+1

F (pi)

∣

∣

∣

∣

∣

∣

.

(5)

The commonalities p1 to pj∗ constitute the sought solution.

We denote this variant of our method as U-EVACO.

4. Experimental evaluation

We assess the performance of the proposed action co-

segmentation method and compare it with state-of-the art

methods using various ground truthed datasets based on ei-

ther 3D motion capture data or conventional (RGB) videos.

In a first series of experiments we investigate the compu-

tational budget (number of particles and generations) that

is required by PSO to solve the co-segmentation problem.

Typically, more particles and/or generations help PSO to

better explore the parametric search space. However, be-

yond a certain point, the accuracy gains are disproportion-

ally low compared to the increase in the computational re-

quirements. These experiments lead to the selection of the

computational budget that constitutes the best compromise

between computational requirements and accuracy.

Then, we compare the resulting performance of the

method based on the selected and fixed PSO budget with

that of the state-of-the-art TCD method [10] the method

proposed by Guo et al. [15] and our own implementation

of two variants of the Segmental DTW [33]. In Segmental

DTW, a local alignment procedure produces multiple warp

paths having limited temporal variation and low distortion.

Each warping path is limited to a diagonal region of a given

width. The minimum length of each path is also given as

a parameter. Since the Segmental DTW in an unsupervised

method, we name our implementation of it as U-SDTW. We

also consider a supervised variant, namely S-SDTW, where

the number of common sub-sequences is known and identi-

fied by selecting the paths with the lower length-constrained

minimum average distortion fragment [33]. The parameters

of all competing methods were fine-tuned to optimize their

performance. We report the best of the obtained results.

4.1. Datasets and performance metrics

The experimental evaluation was conducted using a total

of 373 pairs of sequences, consisting of up to 2355 action

sub-sequences and 1286 pairs of common actions. All the

compiled datasets, the code for the proposed method and

detailed optimized parameter settings for all methods used

in the experiments are publicly available online1.

MHAD101-s dataset: The Berkeley Multimodal Human

Action Database (MHAD) [46] contains human motion

capture data acquired by an optical motion capture system

as well as conventional RGB video and depth data acquired

from multiple views and depth sensors, respectively. All

information streams are temporally synchronized and ge-

ometrically calibrated. The original dataset (see Fig. 3a)

contains 11 actions performed by 12 subjects (7 male, 5

female). Each action is repeated 5 times by each subject.

We considered all the available action categories except one

(the action labeled as sit down/stand up), as it is a composi-

tion of the actions No10-(sit down) and No11-(stand up).

This alleviates potential problems and ambiguities in the

definition of the ground truth. We selected only the first

(out of the five) execution of an action by each subject, thus

we collected a set of 120 action sequences. We use the mo-

tion capture (3D skeletal) data of the original dataset and

we downsampled it temporally by a factor of 16 to reach

the standard frame-rate of 30 fps. We then considered the

subset of human actions defined above, as building blocks

for synthesizing larger sequences of actions and defining

pairs of such sequences for which ground truth regarding

commonalities is available, by construction.

The resulting MHAD101-s dataset contains 101 pairs

of action sequences. In 50 of the paired sequences, each

sequence consists of 3 concatenated action clips and the

paired sequences have exactly 1 in common. In 17 pairs,

each sequence consists of 3-7 actions and the two sequences

have 2 in common. In 17 pairs, each sequence consists of

3-7 actions and the paired sequences have 3 actions in com-

mon. Finally, in 17 pairs, each sequence consists of 4-7
actions and paired sequences have 4 in common. It is also

guaranteed that (a) a sequence contains actions of the same

subject (b) to promote style and duration variability, for ev-

ery pair, the two sequences involve different subjects and

(c) the placement of the common actions in the sequences

is random. The lengths of a sequence and a common action

range between 300 - 2150 and 55 - 910 frames, respectively.

Representing 3D motion capture data in MHAD101-s: Sev-

eral representations of skeletal data have been proposed [23,

1http://www.ics.forth.gr/cvrl/evaco/
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(a) MHAD dataset (b) CMU dataset

(c) 80-pair dataset

Figure 3: (a) Snapshots from the Berkeley MHAD dataset.

(b) Snapshots from the CMU-Mocap dataset. (c) Pairs of

snapshots from the 80-pair dataset.

28, 14, 37]. We employ a variant of the representation pro-

posed in [37]. According to this, a human pose is repre-

sented as a 30 + 30 + 4 = 64D vector. The first 30 dimen-

sions encode angles of selected body parts with respect to a

body-centered coordinate system. The next 30 dimensions

encode the same angles but in a camera-centered coordinate

system. Finally, the representation is augmented with the 4

angles between the fore- and the back-arms as well as the

angles between the upper- and lower legs.

CMU86-91 dataset: We also employed the CMU-Mocap

database2, originally presented in [1] (Fig. 3b) of continu-

ous action sequences. We selected the set Subject 86 con-

sisting of 14 labeled, long action sequences of skeletal-

based human motion data, each consisting of up to 10 ac-

tions (between 4k-8k frames). In contrast to MHAD101-

s, the actions are not concatenated but rather executed in a

continuous manner. We utilize a variation of the original

dataset, presented in Chu et.al [9] that concerns, (a) group-

ing of action labels to 24 categories of similar action (the

original dataset consists of 48 pre-defined actions), (b) fea-

ture representation of human motion data based on the posi-

tion and orientation of the skeletal root and relative joint an-

gles that results in a 30-D feature vector per frame, (c) tem-

porally down-sampled sequences by a factor of 4 to reach

the standard frame-rate of 30 fps, (d) a set of 91 pairs of ac-

tion sequences, by combining all individual sequences. The

ground truth of each sequence is provided in [1]. We con-

sider the median value of the three frame numbers provided

as possible action boundaries for each action in a long se-

quence. We also note that the length of the sequences ranges

between 330 and 1570 frames, and the length of their com-

mon action ranges between 70 and 1000 frames at 30 fps.

MHAD101-v dataset: The MHAD101-v dataset is iden-

tical to MHAD101-s in terms of action composition and

co-segmentation-related ground truth. However, instead of

2http://mocap.cs.cmu.edu/

employing the motion capture data stream, we employ the

corresponding RGB video stream. Our motivation is to test

the performance of the proposed method when it is fed with

low-level video data. At the same time, the comparison of

the performance of the method for the same sequences un-

der completely different representations, provides interest-

ing insights for both the representations and the method.

Representing video data in MHAD101-v: The employed

representation is based on the Improved Dense Trajectories

(IDT) features [47]. Based on the IDT, we compute four

types of descriptors, namely trajectory shape, HOG, HOF,

and MBH [47], using publicly available code3, and the same

configuration and parameters, as presented in [48, 47]. To

encode features, we use a Bag-of-Features representation,

separately for each type of descriptor and for each pair of

videos in the dataset. More specifically, we built a code-

book for each type of descriptors using k-means over the

features extracted over the frames of the two videos of a

pair. Then, we calculate the Bag-of-Features representa-

tion for each frame, which results in a per frame feature

vector (histogram of frequencies of codewords) that cap-

tures information regarding the descriptors of the trajecto-

ries that were detected and tracked in a temporal window of

15 frames preceding that frame. We found that a codebook

of 25 codewords is sufficient for our purposes. Finally, we

concatenate all feature vectors calculated for each type of

descriptors per frame in a single 100-D feature vector.

80-pair dataset: We also employ the publicly available 4

80-pair dataset, specifically designed for the problem of

common action extraction in videos and presented in the

work of Guo et.al. [15]. Among the 80 pairs of the dataset,

50 are segmented clips of human actions from the UCF50

dataset [36] and 30 pairs are selected from BBC animal doc-

umentaries depicting animal actions in the wild. Thus, the

dataset contains videos of continuous actions executed in

unconstrained settings and environments.

Representing video data in the 80-pair: Dense point tra-

jectories [43] based on optical flow are employed and en-

coded using MBH descriptors [47], following the same ex-

perimental setup as in [15] based on the publicly available

code 5. Then, the per-frame features are computed based on

the publicly available code 4 of the method [15]. Indica-

tively, a motion based figure-ground segmentation is ap-

plied to each video to remove background trajectories and a

Bag-of-Features representation based on the MBH descrip-

tors of all frames for a pair of videos is employed using

25 codewords. Thus, each frame is represented by a 25D

feature vector that is the histogram of frequencies of the

codewords for the trajectories ending up in that frame.

3http://lear.inrialpes.fr/people/wang/
4www.lizhuwen.com/
5http://lmb.informatik.uni-freiburg.de
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Figure 4: The overlap score of the objective function

as a function of PSO particles and generations for the

MHAD101-s (left) and MHAD101-v (right) datasets.

Performance metrics: In order to assess the perfor-

mance of the evaluated methods we employed the stan-

dard metrics of precision P , recall R, F1 score and

overlap O (intersection-over-union) [10]. In our context,

precision quantifies how many of the frames of the co-

segmented sequences belong to the set of commonalities

in both sequences. Recall quantifies how many of the ac-

tual commonalities (common frames) are indeed discov-

ered/segmented by the method. For each dataset, we cal-

culate the average for each metric for all pairs.

4.2. Choosing the PSO budget

The effectiveness of the PSO optimization as well as its

running time is determined by its number of particles s (can-

didate solutions) and generations g (particle evolutions).

The product s · g equals the number of objective function

evaluations. g and s are experimentally defined, so that the

trade off between quality of solutions and running time is

appropriately set. In that direction, we applied our method

to the MHAD101-s and MHAD101-v datasets, running

over all combinations of s, g in {8, 16, 32, 64, 128, 256} i.e.,

from a lowest of 8 × 8 = 64 to a highest of 256 × 256 =
65536 objective function evaluations. For each combina-

tion, we considered the average overlap score of 5 runs.

Figure 4 summarizes the obtained results for the two

datasets. In both, the overlap score increases as the PSO

budget increases. Additionally, in both, the overlap score

increases faster when increasing the number of particles

than increasing the number of generations. Finally, while

best performances do not differ considerably, optimiza-

tion based on skeletal data appears easier that optimization

based on video data. An overview of the 3D maps, pro-

vides evidence that combinations of at least 32-32 genera-

tions and particles achieve good results. The (g, s) configu-

rations of (32, 128), (64, 128), (128, 32), (128, 64) achieve

approximately the 90%, 95%, 90%, 95% of the maximum

score achieved by the (256, 256) configuration, by using

only the 6.25%, 12.5%, 6.25%, 12.5% of the maximum

budget, respectively. We finally set (g, s) = (64, 128) in

all our experiments. The reason is that generations need to

be executed serially, while particles can be evaluated in par-

allel. Thus, the (64, 128) configuration can eventually be

two times faster than the (128, 64) one.

Table 1: Evaluation results on the MHAD-101s and the

CMU86-91 datasets involving 3D skeletal-based data.

MHAD101-s R(%) P(%) F1(%) O(%)

TCD [10] 16.7 18.1 13.8 8.5

S-SDTW [33] 61.6 47.1 48.5 35.9

U-SDTW [33] 65.8 45.5 47.7 35.1

S-EVACO 77.9 67.6 71.3 59.4

U-EVACO 71.3 63.9 63.3 50.3

CMU86-91 R(%) P(%) F1(%) O(%)

TCD [10] 30.9 51.3 38.0 24.1

S-SDTW [33] 44.9 20.9 27.6 16.1

U-SDTW [33] 44.9 20.9 27.6 16.1

S-EVACO 67.6 77.1 71.6 57.5

U-EVACO 71.3 67.4 65.2 51.0

4.3. Action co­segmentation on skeletal data

Results on MHAD101-s: We allow all methods to search

for common sub-sequences whose lengths varies in the

range [25..1370] (from half the length of the shortest ac-

tion to 1.5 times the length of the largest one). Results are

reported in Table 1. The scores of the methods are presented

as % average scores in the tables, computed over all individ-

ual scores per sample (pairs of sequences) of a dataset. The

scores of the proposed S-EVACO and U-EVACO methods

are the average scores over all samples of a dataset com-

puted after 10 repetitions of the experiment for each dataset.

S-EVACO achieves an overlap score of 59.4% and outper-

forms TCD by over 50% and both variants of Segmental

DTW (U-SDTW/S-SDTW) by over 20% for all the reported

metrics. The overlap metric of U-EVACO is 9% lower com-

pared to that of S-EVACO. Still, we stress that the unsuper-

vised version of the proposed method outperforms the state

of the art supervised methods by a very wide margin.

Results on CMU86-91: We allow all methods to search

for common sub-sequences whose lengths varies in the

range [70..1135] (from half the length of the shortest ac-

tion, to 1.5 times the length of the largest one). Results

for the CMU86-91 dataset are reported in Table 1. The

proposed approaches outperform TCD [10] in all reported

metrics (27 − 33% higher overlap). We also note the con-

siderably higher performance of our method compared to

S-SDTW and U-SDTW (36− 41% higher overlap).

4.4. Action co­segmentation on video data

Results on MHAD101-v: The results are summarized in

Table 2. Given the number of common actions to be dis-

covered in each pair of sequences, the proposed S-EVACO

method outperforms S-SDTW by over 20% and 10% with

respect to the overlap and the other metrics, respectively.

6833



Table 2: Evaluation results on the MHAD-101v and the 80-

pair datasets involving video data.

MHAD101-v R(%) P(%) F1(%) O(%)

TCD [10] 20.6 14.0 15.4 19.3

S-SDTW [33] 65.2 49.1 50.5 37.7

U-SDTW [33] 69.4 45.7 48.0 35.5

S-EVACO 76.6 66.8 69.8 56.2

U-EVACO 63.3 63.3 58.8 45.9

80-pair R(%) P(%) F1(%) O(%)

TCD [10] 22.9 65.4 31.2 21.5

S-SDTW [33] 27.8 52.2 31.4 21.6

U-SDTW [33] 34.6 60.6 37.3 25.6

S-EVACO 75.8 77.2 73.9 64.5

U-EVACO 61.0 69.7 62.0 54.2

Guo [15] 55.6 78.1 60.9 51.6

TCD has a less than 20% overlap score, and its performance

is lower by more than 30% with respect to recall, preci-

sion and F1 metrics. The unsupervised variant (U-EVACO)

results in 13% less overlap compared to S-EVACO. In ad-

dition, S-SDTW achieves lower overlap, precision and F1

scores by 8%, 14% and 10%, compared to S-EVACO.

Results on 80-pair dataset: Table 2 summarizes the find-

ings on this dataset. Besides TCD, S-SDTW and U-SDTW,

we compare our approach to the method of Guo et al. [15].

We employed the publicly available implementation of that

method and we run it with the parameters suggested in [15]

for that dataset. The TCD, S-SDTW and U-SDTW methods

achieve comparable scores, with TCD performing the lower

scores in all metrics except the precision that is 5% better

than that of U-SDTW. The proposed S-EVACO, U-EVACO

have similar scores, mainly due to the fact that all pairs of

videos in that dataset contain a single common action to be

discovered. Both variants of the proposed method outper-

form TCD, S-SDTW and U-SDTW methods with over 40%
improvements for the overlap and between 17% and 53%
for the other metrics. Both proposed variants also score

higher than Guo’s method [15] in overlap (12% improve-

ment), F1 score (12%) and recall (20%).

Figure 5 summarizes the findings in all datasets. The left

column shows the % of pairs where the overlap is above

a certain threshold. The right column shows plots of the

mean F1 score for all sequence pairs, after zeroing the F1
score of pairs below an overlap threshold. Plots are shown

for all pairs of the datasets (top), for those involving video

data only (middle) and skeletal data only (bottom). It can

be verified that the S-EVACO and U-EVACO outperform

the state of the art by a large margin. In general, the BoW-

based representation employed by TCD is orderless, so the

comparison of actions misses important temporal content.
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Figure 5: Summary of the obtained results in all datasets.

On the contrary, our DTW-based approach captures this im-

portant temporal dimension. Regarding execution time, U-

EVACO requires, on average, 10s for processing a pair of

videos of ∼ 1000 frames each, discovering 8− 10 common

action sub-sequences. This makes it slower but comparable

to U-SDTW and more than two times faster than TCD.

5. Summary and conclusions

We presented a novel method for the temporal co-

segmentation of all common actions in a pair of action se-

quences. We treated this as a stochastic optimization prob-

lem whose solution is the start positions and the lengths

of the sub-sequences of the input sequences that define ac-

tion segments of maximum similarity. Optimization was

performed based on iterative Particle Swarm Optimization

with an objective function defined based on the non-linear

DTW alignment cost of two sub-sequences. The proposed

approach operates on multivariate time series. As such,

it can assume a variety of image/video/motion representa-

tions. Two variants were presented, one that assumes that

the number of commonalities is known (S-EVACO) and one

that does not require that information (U-EVACO). Both

variants were extensively tested on challenging datasets of

motion capture and video data, with a variety of features

and representations and in comparison with state of the art

methods. The results demonstrated that the proposed ap-

proach outperforms all state of the art methods in all data

sets by a large margin.
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