
Weighted-Entropy-based Quantization for Deep Neural Networks

Eunhyeok Park, Junwhan Ahn§, and Sungjoo Yoo
canusglow@gmail.com, junwhan@snu.ac.kr, sungjoo.yoo@gmail.com

Seoul National University

Computing and Memory Architecture Laboratory §Design Automation Laboratory

Abstract

Quantization is considered as one of the most effective

methods to optimize the inference cost of neural network

models for their deployment to mobile and embedded sys-

tems, which have tight resource constraints. In such ap-

proaches, it is critical to provide low-cost quantization un-

der a tight accuracy loss constraint (e.g., 1%). In this pa-

per, we propose a novel method for quantizing weights and

activations based on the concept of weighted entropy. Un-

like recent work on binary-weight neural networks, our ap-

proach is multi-bit quantization, in which weights and ac-

tivations can be quantized by any number of bits depend-

ing on the target accuracy. This facilitates much more

flexible exploitation of accuracy-performance trade-off pro-

vided by different levels of quantization. Moreover, our

scheme provides an automated quantization flow based on

conventional training algorithms, which greatly reduces the

design-time effort to quantize the network. According to

our extensive evaluations based on practical neural network

models for image classification (AlexNet, GoogLeNet and

ResNet-50/101), object detection (R-FCN with ResNet-50),

and language modeling (an LSTM network), our method

achieves significant reductions in both the model size and

the amount of computation with minimal accuracy loss.

Also, compared to existing quantization schemes, ours pro-

vides higher accuracy with a similar resource constraint

and requires much lower design effort.

1. Introduction

Deep neural networks (DNNs) are becoming more and

more popular in mobile and embedded systems [1, 7, 23].

Those systems are characterized by tight resource con-

straints in terms of performance, energy consumption, and

memory capacity. Due to this, today’s typical scenario for

deploying DNNs to mobile systems is to train such DNNs

in servers and perform only the inference in such systems.

Therefore, it is imperative to reduce the inference cost of

neural networks for widespread application of DNNs to mo-

bile and embedded systems.

One of the most effective methods for reducing the in-

ference cost of neural networks is to reduce the precision

of computation. Recent research has demonstrated that in-

ference of DNNs can be accurately done by using 8-bit or

even narrower bitwidth representations for weights and ac-

tivations, rather than conventional 32-/64-bit floating-point

numbers [22]. In addition, there have been active studies

that aim at further reducing the precision of both compu-

tation and values by aggressively quantizing the weights

and/or activations for inference [4, 12, 17, 19, 25]. Such ag-

gressive quantization methods are promising in that they

can achieve significant reductions in the execution time,

energy consumption, and memory capacity requirements

of neural networks during the inference by exploiting the

benefits of dedicated hardware accelerators, e.g. NVIDIA

P40 and P4 [2] which support 8-bit integer arithmetic or

Stripes [14] which provides execution time and energy con-

sumption proportional to the bitwidth.

However, existing quantization techniques have two lim-

itations that can hinder practical application of such tech-

niques into mobile and embedded systems. First, exist-

ing methods lack in supporting flexible trade-off between

output quality and inference performance. Mobile and em-

bedded systems often have stringent constraints in both re-

source and inference accuracy, which requires design space

exploration for trade-off between output quality and in-

ference performance. However, some of the existing ap-

proaches are not flexible enough to exploit such trade-

off relationship. For example, techniques that binarize

weights [4, 19, 25] suffer from a significant loss of output

quality for deep networks, which cannot be applied if the

target system allows a very small accuracy loss, e.g. 1%.

Second, even if existing quantization techniques sup-

port such trade-off, they require modifications to the tar-

get network to achieve good quantization quality and/or

apply quantization to only part of the network. Due to

this, such techniques may require significant effort at de-

sign time, which may eventually prevent widespread adop-

tion of them. In addition, existing methods such as XNOR-

5456

Net [19] and DoReFa-Net [25] do not apply quantization to

the first and the last layer to avoid excessive accuracy loss,

which may limit the benefits of reduced precision.

In order to address these two limitations, we propose a

new quantization scheme based on the concept of weighted

entropy. Our approach addresses both of the aforemen-

tioned limitations while quantizing weights and activia-

tions. Our contributions can be summarized as follows:

1. We propose a new multi-bit quantization method for

both weights and activations. Unlike binary quantiza-

tion approaches, our scheme is able to produce quan-

tization results for any number of bits per weight/

activation, thereby realizing much more flexibility for

exploiting accuracy-performance trade-off.

2. Our scheme facilitates automated quantization of the

entire neural network. It does not require any modifi-

cations to the network except for activation quantiza-

tion, and thus, it can be easily integrated into conven-

tional training algorithms for neural networks.

3. We demonstrate the effectiveness of our method based

on various practical neural network designs, including

AlexNet [15], GoogLeNet [21], ResNet50/101 [11],

R-FCN [5], and an LSTM for language modeling [24].

2. Related Work

In this section, we briefly review previous work on quan-

tization methods for DNN inference. Vanhoucke et al. [22]

presented a comparison between 8-bit and 32-bit implemen-

tations of neural networks. Miyashita et al. [17] proposed to

quantize weights and activations in base-2 logarithm repre-

sentation (called LogQuant) and showed that 4-bit weights

and 5-bit activations achieve around 1.7% accuracy loss for

AlexNet. LogQuant shows its potential in bit widths nar-

rower than 8 bits, but it significantly degrades the accuracy

under 4 bits for AlexNet.

There have been several approaches that try to quantize

weights and/or activations into only two (i.e., binary) or

three (i.e., ternary) levels. Hwang and Sung [12] showed

that ternary weights (i.e., −1, 0, and +1) and 3-bit acti-

vations can preserve accuracy in character and phoneme

recognition tasks. Courbariaux et al. [4] presented a binary-

weight network called BinaryConnect and demonstrated its

good accuracy on small-scale models such as CIFAR-10

and SVHN. Rastegari et al. [19] proposed a binary network

(a binary-weight version of XNOR-Net), which does not

experience accuracy loss on AlexNet.

Zhou et al. [25] proposed DoReFa-Net, which applies

linear quantization to normalized weights and bounded ac-

tivations, and showed 6% top-1 accuracy loss in AlexNet

with 1-bit weights and 2-bit activations. They also reported

results with 1-bit weights and k-bit activations, which al-

lows us to exploit the trade-off relationship between accu-

racy loss and performance/energy/model size.

As explained in the previous section, the key benefits of

our approach over previously proposed quantization meth-

ods are (1) flexibility of exploiting accuracy-performance

trade-off via multi-bit quantization and (2) quantization of

the full network without modifications to the existing net-

works. In this regard, most of the binary-/ternary-weight

approaches fail to provide even the former. While XNOR-

Net and DoReFa-Net provide the former, they still fail to

achieve the latter. XNOR-Net requires channel-wise scal-

ing and layer reordering by placing normalization and ac-

tivation layers in front of a convolution layer. DoReFa-

Net adds bounded activation functions to existing networks.

Both XNOR-Net and DoReFa-Net do not apply their quan-

tization scheme to the first and the last layers of the network

to avoid noticeable accuracy loss. Such limitations induce

additional effort to modify the network at design time, high

performance/energy overhead of those full-precision layers,

and extra hardware cost to support large-scale full-precision

hardware units for fast execution of those layers.

3. Motivation

Recent studies have shown that most of the weights in

convolutional or fully-connected layers are concentrated

near zero, resulting in a bell-shaped distribution [10]. The

distribution of activation values are similar, except that acti-

vation values are always non-negative due to a ReLU layer.

Existing quantization schemes are based on such character-

istics to judiciously assign quantization levels. For example,

logarithm-based quantization (or LogQuant) exploits denser

distribution of weights near zero by assigning more quanti-

zation levels to near-zero values.

In addition to the distribution of weight/activation val-

ues, we make a key observation that the impact of each

weight/activation value on the final result should also be

considered during the quantization. Since the objective of

a quantization method is to minimize the accuracy degra-

dation with the fewest quantization levels, taking the ac-

tual impact of quantizing each value into account allows us

to develop a new scheme that uses each quantization level

more effectively. More specifically, our insight can be sum-

marized as follows:

1. Near-zero values dominate the total frequency of val-

ues in both weight and activation distribution; how-

ever, their impact on the output is small (e.g., errors

in a very small weight may not affect much to the re-

sult of convolution). Thus, it is desirable to assign

fewer quantization levels (in short, levels throughout

this paper) to near-zero values than in a typical linear

or logarithm-based quantization.

5457

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Value of weight

R
e
la
ti
v
e
 s
c
a
le
 [
lo
g
(c
o
u
n
t)
] Original weight distribution

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Value of weight

R
e
la
ti
v
e
 s
c
a
le
 [
lo
g
(c
o
u
n
t)
] Linear quantization

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Value of weight

R
e
la
ti
v
e
 s
c
a
le
 [
lo
g
(c
o
u
n
t)
] Log quantization

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Value of weight

R
e
la
ti
v
e
 s
c
a
le
 [
lo
g
(c
o
u
n
t)
] Weighted quantization

Figure 1. Comparison of various quantization schemes. The weights are extracted from the second 3 × 3 convolution layer of

GoogLeNet [21]. Each quantization scheme is given to assign 24 levels. We use 20.5 as the base of LogQuant and optimize both lin-

ear quantization and LogQuant towards minimizing the L2 norm of overall activations.

2. Large weights and activations have significant im-

pact on the quality of output, but they are infrequent.

Thus, it is also desirable to assign a small number of

levels to those values in order to maximize the utility

of each quantization level.

3. Values that do not belong to neither of the two

aforementioned categories have a relatively large

number of population with noticeable impacts on the

output quality. Thus, it makes sense to assign more

levels to those values than in conventional quantization

methods.

Figure 1 illustrates how existing and proposed methods

assign levels to the given weight distribution. While the lin-

ear quantization does not consider the weight distribution at

all and LogQuant assigns too many levels to near-zero val-

ues, our approach shows distribution that is more concen-

trated on the values that are neither too small nor too large.

Through quantitative evaluations, we will show later that

this style of quantization achieves higher efficiency than

conventional schemes.

4. Quantization based on Weighted Entropy

4.1. Weight Quantization

The high-level idea of our weight quantization approach

is to group weights into N clusters in a way to have more

clusters for important ranges of weights, assign a represen-

tative value to each cluster, and quantize all weights in each

cluster into the representative value of the cluster. For this

purpose, we have to be able to evaluate the clustering qual-

ity and find a set of clusters optimizing such quality metric.

As the first step, we define a quantitative metric for eval-

uating the importance of a single weight (or the impact of

a weight on output quality). Since larger weights have a

higher impact on the output quality, we empirically define

the importance i(n,m) of m-th weight in n-th cluster, i.e.,

w(n,m) to be quadratically proportional to the magnitude of

the weight, i.e., i(n,m) = w(n,m)
2.

Based on this importance value of each weight, we de-

rive a metric for evaluating the quality of a clustering result

(i.e., quantization result) based on weighted entropy [8, 9].

Weighted entropy is originated from the concept of entropy

in physics and is designed to take the importance of data

into account. For a set of clusters C0, ..., CN−1, weighted

entropy S is defined as

S =−∑
n

InPn logPn (1)

where

Pn =
|Cn|

∑k |Ck|
(relative frequency) (2)

In =
∑m i(n,m)

|Cn|
(representative importance) (3)

In this equation, Pn represents how many weights are in the

range of values for cluster Cn, while In is the average impor-

tance of all weights in cluster Cn. Roughly speaking, clus-

ters for large weights will generally have high In but low

Pn (i.e., high importance but low frequency), while clusters

for small weights will have high Pn but low In (i.e., high fre-

quency but low importance). According to our experiments,

finding a clustering result that maximizes S yields quantiza-

tion whose levels are assigned sparsely for too small or too

large values, just as we showed in Figure 1. Therefore, we

define our weight quantization problem as follows:

Problem 1 (Weight Quantization). Given the training data

(i.e., mini-batch input) and the desired logN-bit precision

(i.e., the number of clusters N), our method aims at finding

5458

Algorithm 1 Weight Quantization

1: function OPTSEARCH(N,w)

2: for k = 0 to Nw−1 do

3: ik← fi(wk)

4: s← sort([i0, · · · , iNw−1])
5: c0, · · · ,cN ← initial cluster boundary

6: while S is increased do

7: for k = 1 to N−1 do

8: for c′k ∈ [ck−1,ck+1] do

9: S′← S with c0, · · · ,c
′
k, · · · ,cN

10: if S′ > S then

11: ck← c′k

12: for k = 0 to N−1 do

13: Ik← ∑
ck+1−1

i=ck
s[i]/(ck+1− ck)

14: rk← f−1
i (Ik)

15: bk← f−1
i (s[ck])

16: bN ← ∞

17: return [r0 : rN−1], [b0 : bN]

18: function QUANTIZE(wn, [r0 : rN−1], [b0 : bN])
19: return rk for k s.t. bk ≤ wn < bk+1

• N: The number of levels

• Nw: The number of weights

• wn: Value of n-th weight

• in: Importance of n-th weight

• fi: Importance mapping function

• ci: Cluster boundary index

• S: Overall weighted entropy

N weight clusters that maximize the weighted entropy. The

representative value of a cluster corresponds to a level in

the weight quantization.

Our solution to this problem is shown in Algorithm 1.

Note that the algorithm shows the weighted quantization

for non-negative weights only. This is because, due to the

limitation of the weighted entropy theory, we cannot obtain

a clustering result that has both negative and non-negative

representative values. Thus, we separate the weights into

two negative and non-negative groups, and apply our algo-

rithm to each group with N/2 levels each.

At the beginning of the algorithm, we calculate the im-

portance of each weight (lines 2 and 3). This is done by an

importance mapping function fi, which calculates the im-

portance ik from weight wk. In this work, we empirically

choose a square function fi(w) = w2 to compute the impor-

tance of each weight. After obtaining the importance values

of all weights, they are sorted in the increasing order of their

magnitude (line 4).

Based on the sorted importance values, the algorithm ini-

tializes cluster boundary indexes c0 to cN
1 (line 5) such

1Cluster boundary indexes determine which weights belong to which

that (1) each cluster has the same number of weights and

(2) weights in Ci+1 have higher importance than weights in

Ci. This is achieved simply by partitioning the sorted array

s into N pieces and assign each piece to each cluster. For

example, if s = [1,2,3,4] and N = 2, we set c0 = 0, c1 = 2,

and c2 = 4 so that C0 = {1,2} and C1 = {3,4}.
Starting from the initial cluster boundaries, we iteratively

perform incremental search on the new cluster boundaries

(lines 6–11). At each iteration, for each cluster Ci and its

boundaries ci and ci+1, we sweep ci from ci−1 to ci+1 by

using bisection method. For each cluster boundary candi-

date c′i, we recalculate the weighted entropy of cluster Ci−1

and Ci, which are the only ones affected by the new bound-

ary, and update the boundary to c′i only if the new overall

weighted entropy S′ is higher than the current one.

After obtaining the new cluster boundaries, we calcu-

late the representative importance Ik of each cluster Ck (line

13). We obtain the representative weight value rk for clus-

ter Ck (line 14). In order to identify which weights belong

to which cluster, weight values at cluster boundaries, bk,

are identified as well for weight quantization (line 15), i.e.,

cluster Ci contains weights w that satisfy bk ≤ w < bk+1.

Function QUANTIZE implements this quantization method.

That is, given a weight wn, it produces the representative

weight value rk of the associated cluster ck.

The weighted-entropy-based clustering can provide lev-

els that satisfy our requirements on quantization in Sec-

tion 3. Maximizing the weighted entropy optimizes the

quantization result towards maximizing entropy while con-

sidering the importance of data. Thus, our method groups

many near-zero values into a large cluster by considering

their lower importance. Large, but infrequent values are

also grouped into a cluster that covers a wide range of

weight values.

4.2. Activation Quantization

Activation quantization needs a different approach from

weight quantization. While weights are fixed after the train-

ing, activations change at inference time according to the

input data. This makes activations less suitable to be quan-

tized by clustering-based approaches, which require a stable

distribution of values.

According to our investigation, logarithm-based quanti-

zation (LogQuant) can be effective for activation quantiza-

tion. LogQuant is also beneficial to minimize the cost of

implementation (e.g., dedicated hardware accelerators) as it

can transform multiplications into inexpensive bitwise shift

operations (i.e., w× 2x = w≪ x). However, the original

LogQuant method does not provide an effective search strat-

egy for exploring the best LogQuant parameters (i.e., base

and offset) for each layer of the network.

clusters. Precisely, cluster Ci is defined as containing ci-th weight to

(ci+1−1)-th weight (zero-based indexing) in array s.

5459

Algorithm 2 Activation Quantization

function BINARYTOLOGQUANT(an)

return round
(

16×log2 an−fsr

step

)

+1

function LOGQUANTTOBINARY(index)

if index = 0 then

return 0

else

return 2
1

16×(fsr+step·(index−1))

function WEIGHTEDLOGQUANTRELU(an)

if an < 0 then

return 0

level idx← BINARYTOLOGQUANT(an)
if level idx≤ 0 then

return 0

else if level idx≥ N−1 then

return LOGQUANTTOBINARY(N−1)

else

return LOGQUANTTOBINARY(level idx)

function REPRIMPORTANCE(index)

return LOGQUANTTOBINARY(index)

function RELATIVEFREQUENCY(index, a)

for k = 0 to Na−1 do

level idxk← BINARYTOLOGQUANT(an)

if index = 0 then

return |{an | level idxn ≤ 0}|
else if index = N−1 then

return |{an | level idxn ≥ N−1}|
else

return |{an | level idxn = index}|

• N: The number of levels

• Na: Total number of activations

• an: Value of n-th activation

• fsr: Optimal fsr value (integer)

• step: Optimal step value (a multiple of 2)

Our approach to activation quantization consists of two

parts: a modified version of LogQuant and a fast search

strategy for LogQuant parameters. Algorithm 2 shows key

functions used in our modified LogQuant method.

First, we modify the the original LogQuant method to

improve overall accuracy and stability. Unlike the conven-

tional LogQuant, we adopt smaller log bases (1/8 and its

multiples) and offsets (1/16 and its multiples), which corre-

spond to ‘step’ and ‘fsr’ in Algorithm 2, respectively. We

assign the first quantization level to zero activation and the

other levels to the corresponding log scale. For example,

when we perform 3-bit quantization of activations, the first

level is assigned to value 0, the second one to 2
fsr
16 , the third

one to 2
fsr+step

16 , and so on. For simplicity, we integrate our

activation quantization as part of the rectified linear unit

(ReLU) activation function, which is described as Function

WEIGHTEDLOGQUANTRELU in Algorithm 2.

Second, we propose a novel parameter search method

for our LogQuant variant, which determines the base and

the offset in a way to minimize the loss of output quality.

Our idea is to take advantage of the concept of weighted

entropy maximization in our weight quantization. Algo-

rithm 2 shows functions that calculate the representative im-

portance I (REPRIMPORTANCE) and the relative frequency

P (RELATIVEFREQUENCY), which are the two ingredients

for computing the weighted entropy. During training, in or-

der to maximize the weighted entropy of the given per-layer

activations under LogQuant, we apply an exhaustive search

for ‘fsr’ and ‘step’ since the numbers of possible bases and

offsets are usually small (e.g., 16 for bases and around 500

for offsets in our experiments).

4.3. Integrating Weight/Activation Quantization
into the Training Algorithm

We integrate the proposed weight/activation quantiza-

tion into the conventional training algorithm for neural net-

works. Since weights do not change during each mini-

batch, weight quantization can be simply applied by quan-

tizing the weights at the end of each mini-batch after the

weight update. Note that we use full-precision weights dur-

ing the weight update as in other previous work [19, 25].

On the other hand, activation quantization has to be ap-

plied to every forward/backward pass as each pass has its

own set of activations. For each layer, we first perform

the forward pass and apply the ordinary ReLU (without

LogQuant). The resulting activations are fed into our algo-

rithm for LogQuant parameter search. The best base/offset

combination from the algorithm is then used to quantize the

activations by using WEIGHTEDLOGQUANTRELU. The

quantized activations are passed to the next layer to perform

the same process for the rest of the layers in the network.

Under our training framework, any network can auto-

matically benefit from our quantization schemes without

modifications to the network. This makes it much easier to

apply aggressive quantization to the entire neural network,

which contributes to greatly reducing the inference cost of

the network. Existing approaches are less practical in this

regard, considering that they require network modification

and/or significant manual effort at design time.

5. Experiment

We evaluate our approach in three representative do-

mains of neural network applications: image classifica-

tion, object detection, and language modeling. We modify

Caffe [13] to implement our technique on top of all net-

5460

works2, except for language modeling, in which we use

TensorFlow [3] to implement an LSTM. We constrain the

accuracy loss to 1% and aim at finding the quantization con-

figuration that gives the minimum bitwidth while satisfying

the accuracy constraint. For brevity, we introduce a notation

(x,y) to represent the bitwidth of weights x and that of ac-

tivations y in a quantization configuration. In this notation,

‘f’ represents full precision. For example, (1,f) indicates

1-bit weights and full-precision activations.

5.1. Image Classification: AlexNet, GoogLeNet and
ResNet50/101

For image classification tasks, we evaluate the proposed

method by quantizing two widely used CNNs for ImageNet

tasks [6]: AlexNet [15] GoogLeNet [21] (both from Caffe

framework [13]) and ResNet3 [11]. In order to apply our

quantization scheme into these networks, we perform fine-

tuning combined with our weight/activation quantization

schemes under the batch size of 256 (for AlexNet), 64 (for

GoogLeNet), or 16 (for ResNet-50/101). In the cases of

GoogLeNet and ResNet, the batch size is limited due to in-

sufficient GPU memory capacity; this may increase overall

accuracy loss. We use ILSVRC2012 data set, which con-

tains 1.28M images for training and 50K images for testing.

During the six epochs of fine-tuning, we first set the initial

learning rate to 0.001 and decrease it by 10 times every two

epochs.

In the following subsections, we present two styles of

evaluation results. First, we demonstrate the effectiveness

of our approach by quantizing the entire networks (whole

network quantization), which was not possible in prior

work. Second, we apply our scheme to all layers except

the first and the last one (partial network comparison) and

compare ours against previous quantization approaches that

use the full precision at the first/last layer of a network.

5.1.1 Whole Network Quantization

Figure 2 compares the test accuracy of CNNs quan-

tized by our techniques. As shown in the figure, the quan-

tized CNNs achieve higher accuracy under less restrictive

bitwidth constraint.

For AlexNet, the best quantization configurations that

use the fewest bits while satisfying the 1% top-5 accuracy

loss constraint are (3,6), (4,4), (4,5) and (4,6). For exam-

ple, (4,4) reduces the bitwidths of both weights and activa-

tions by 87.5% (= 1−4/32) with less than 1% loss of top-

5 accuracy. Moreover, our approach provides much lower

iso-accuracy bitwidth compared to previous work. For ex-

ample, LogQuant [17] achieves 75.1% top-5 accuracy with

2Modified caffe code is available at https://github.com/EunhyeokP

ark/script_for_WQ
3Base models are available at https://github.com/KaimingHe/dee

p-residual-networks

40

45

50

55

60

60

65

70

75

80

(1
,f

)

(2
,f

)

(3
,f

)

(4
,f

)

(5
,f

)

(f
,2

)

(f
,3

)

(f
,4

)

(f
,5

)

(f
,6

)

(1
,2

)

(1
,3

)

(1
,4

)

(2
,2

)

(2
,3

)

(2
,4

)

(3
,2

)

(3
,3

)

(3
,4

)

(3
,5

)

(3
,6

)

(4
,2

)

(4
,3

)

(4
,4

)

(4
,5

)

(4
,6

)

(5
,2

)

(5
,3

)

(5
,4

)

(5
,5

)

(5
,6

)

AlexNet

T
o

p
-1

 A
c
c
u

ra
c
y
 [

%
]

T
o

p
-

]
%[

y
c

ar
u

c
c

A
5

Top-5 Top-1

Top-1 57.1 %

Top-5 80.2 %

40

50

60

70

80

50

60

70

80

90

(2
,f

)

(3
,f

)

(4
,f

)

(5
,f

)

(f
,2

)

(f
,3

)

(f
,4

)

(f
,5

)

(f
,6

)

(2
,2

)

(2
,3

)

(2
,4

)

(2
,5

)

(2
,6

)

(3
,2

)

(3
,3

)

(3
,4

)

(3
,5

)

(3
,6

)

(4
,2

)

(4
,3

)

(4
,4

)

(4
,5

)

(4
,6

)

(5
,2

)

(5
,3

)

(5
,4

)

(5
,5

)

(5
,6

)

GoogLeNet

T
o

p
-1

 A
c
c
u

ra
c
y
 [

%
]

T
o

p
-

]
%[

y
c

ar
u

c
c

A
5

Top-5 Top-1

Top-1 68.7 %

40

50

60

70

80

90

50

60

70

80

90

100

(f
,2

)

(f
,3

)

(f
,4

)

(f
,5

)

(f
,6

)

(2
,f

)

(3
,f

)

(4
,f

)

(5
,f

)

(3
,3

)

(3
,4

)

(3
,5

)

(3
,6

)

(4
,3

)

(4
,4

)

(4
,5

)

(4
,6

)

(5
,3

)

(5
,4

)

(5
,5

)

(5
,6

)

(f
,4

)

(f
,5

)

(f
,6

)

(2
,f

)

(3
,f

)

(4
,f

)

(5
,f

)

(3
,6

)

(4
,6

)

(5
,6

)

ResNet50 ResNet101

T
o

p
-1

 A
c
c
u

ra
c
y
 [

%
]

T
o

p
-

]
%[

y
c

ar
u

c
c

A
5

Top-5 Top-1

Top-5 88.9 %

Top-1 75.3 %

Top-5 92.2 %

Top-1 76.4 %

Top-5 92.9 %

Figure 2. Top-1 and top-5 accuracy of quantized CNNs after fine-

tuning. The dashed lines represent the accuracy of the baseline

networks, which use full-precision arithmetic.

4-bit weights and 5-bit activations; Qiu et al. [18] used 8-bit

weights and activations and showed 76.6% (53.0%) of top-

5 (top-1) accuracy. Our approach achieves a similar level of

top-5/top-1 accuracy (i.e., 75.49%/51.37%) with only 2-bit

weights and 3-bit activations.

For GoogLeNet, under the 1% accuracy loss constraint,

our approach can quantize weights and activations down to

only 4–5 bits and 6 bits, respectively, as shown in Figure 2.

We also observe that GoogLeNet suffers more from accu-

racy loss than AlexNet under the same level of bitwidth

constraint. We believe that this is because the model size of

GoogLeNet is more compact than AlexNet, yet the former

performs more computation than the latter. In other words,

GoogLeNet reuses each weight more frequently during the

computation than AlexNet, which makes the impact of re-

duced weight precision more pronounced in GoogLeNet.

Even so, our approach still achieves a significant (more than

5x) reduction in both the model size and the amount of com-

putation (in bits) compared to the full-precision implemen-

tation.

For ResNet, to the best of our knowledge, this paper is

the first to report the result of quantizing the entire net-

works whose depth is as much as 50 and 101 layers. Both

networks maintain similar levels of accuracy even after ag-

gressive quantization of weights, e.g., 3 bits. However, we

observe that the deeper network demands more bits for acti-

vations, e.g., 6 bits, possibly because quantization errors of

activations get accumulated over deeper layers.

5461

https://github.com/EunhyeokPark/script_for_WQ
https://github.com/EunhyeokPark/script_for_WQ
https://github.com/KaimingHe/deep-residual-networks
https://github.com/KaimingHe/deep-residual-networks

40

45

50

55

60

65

60

65

70

75

80

85
(1

,f
)

(2
,f

)

(3
,f

)

(4
,f

)

(1
,2

)

(1
,3

)

(1
,4

)

(1
,5

)

(2
,2

)

(2
,3

)

(2
,4

)

(2
,5

)

(3
,2

)

(3
,3

)

(3
,4

)

(3
,5

)

(4
,2

)

(4
,3

)

(4
,4

)

(4
,5

)

(1
,f

)

(1
,1

)

(1
,1

)

(1
,2

)

(1
,4

)

Weighted Quantization X D

T
o

p
-1

 A
c
c
u

ra
c
y
 [

%
]

T
o

p
-

]
%[

y
c

ar
u

c
c

A
5

Top-5 Top-1

Top-5 80.2 %

Top-1 57.1 %

Figure 3. Accuracy comparison of quantization methods applied

to AlexNet. ‘Weighted Quantization’ represents our approach,

while ‘X’ and ‘D’ are for XNOR-Net and DoReFa-Net, respec-

tively. The dashed lines indicate the accuracy of the baseline full-

precision network.

5.1.2 Partial Network Quantization

In this subsection, we compare the performance of

our quantization method against two state-of-the-art ap-

proaches: XNOR-Net [19] and DoReFa-Net [25]. For fair

comparison, we apply our quantization scheme to all layers

but the first and last ones, just as in our comparison tar-

gets. Note that the comparison is still not apple-to-apple in

that (1) the (best available) results from previous work are

limited to 1-bit weights and k-bit activations, while ours in-

clude k-bit weights and activations, and (2) both XNOR-Net

and DoReFa-Net modify the network, whereas ours does

not except ReLU layers (in activation quantization).

Figure 3 shows the comparison of our approach against

XNOR-Net and DoReFa-Net. While XNOR-Net with bi-

nary weights, i.e., (1,f), shows very small accuracy drop

with 1-bit weights, it is limited to binary quantization and

full-precision activation, which is not flexible enough to ex-

ploit accuracy-performance trade-off under a stringent ac-

curacy loss constraint. XNOR-Net with binary weight and

activation quantization, i.e., (1,1), degrades the accuracy

too much, whereas our method provides multi-bit quanti-

zation meeting the accuracy constraint. DoReFa-Net allevi-

ates some of such limitations by allowing multi-bit quanti-

zation of activations. However, under the similar configu-

rations, our scheme with 2-bit weights and 3-bit activations

outperforms DoReFa-Net with 1-bit weights and 4-bit acti-

vations by 0.69% in terms of top-1 accuracy. In summary,

our method facilitates more flexible choice of quantization

configurations with smaller iso-accuracy bitwidth than pre-

vious work, which is extremely useful for systems that re-

quire efficient inference under a tight accuracy constraint.

5.1.3 Compression Analysis

Table 1 compares existing methods and ours in the con-

text of compression. From this, we observe the followings.

First, both XNOR-Net [19] and DoReFa-Net [25] show

larger weights than our method (WQ) since they do not

quantize the first and the last layers. Moreover, Huffman en-

Weights Activations Top-1

P [%] Q [MB] +H Q [MB] [%]

WQ(4,4) - 30.5 18.1 0.47 55.8

WQ(2,3) - 15.3 12.5 0.35 53.7

XNOR-Net [19] - 23.7 - 0.72 44.2

DoReFa-Net [25] - 23.6 - 0.47 53.0

Deep Compression [10] 11 8.9 6.9 3.75 57.2

[10] + WQ(4,6) 11 8.3 6.5 0.70 56.3

Table 1. Memory requirement comparison with AlexNet (P: Prun-

ing ratio, Q: Quantization, H: Huffman encoding).

coding is not helpful since they use binary and full-precision

weights, respectively.

Second, when WQ is applied on top of pruning [10],

it achieves 5.4x smaller activations and slightly smaller

weights (8.9 MB vs. 8.3 MB) at an additional accuracy loss

of 0.9%. Ours achieves larger bitwidth reductions in acti-

vations than in weights because [10] utilizes full-precision

activations while ours uses 6-bit activations.

5.1.4 Layer-wise Quantization: A Feasibility Study

In the previous subsections, we use the same bitwidth

constraint for all layers in the network. However, according

to our observation, different layers have different levels of

sensitivity to the quantization bitwidth. Thus, we perform

a feasibility study of the potential of layer-wise quantiza-

tion, where different layers may have different bitwidths. In

this study, we evaluate the following four styles of per-layer

bitwidth assignment based on AlexNet: monotonically de-

creasing (DEC), monotonically increasing (INC), concave

(CONCAVE), and convex (CONVEX). All four schemes are

designed to have the same number of bitwidth in total. For

example, DEC assigns 6 bits to each weight/activation in the

first convolution layer, while it uses only 2 bits for weights/

activations in the last fully-connected layer.

DEC INC CONCAVE CONVEX

Top-1 [%] 53.79 50.35 54.45 54.33

Top-5 [%] 77.59 74.89 76.43 78.20

Table 2. Accuracy comparison of our approach under different

styles of layer-wise quantization.

As shown in Table 2, we observe that using less bits

in intermediate layers (i.e., CONVEX) achieves the high-

est accuracy, while assigning fewer bits to near-input lay-

ers (i.e., INC) shows the lowest. A similar phenomenon

to this was observed by Zhou et al. [25]. We believe that

even more aggressive bitwidth optimization could be pos-

sible by taking this layer-wise sensitivity to bitwidths into

account during quantization. Exhaustive search of all possi-

ble combinations of bitwidths is impractical as there are too

many of them even for small networks (e.g., AlexNet has

5462

65

70

75

80
(2

,f
)

(3
,f

)

(4
,f

)

(5
,f

)

(f
,3

)

(f
,4

)

(f
,5

)

(f
,6

)

(2
,3

)

(2
,4

)

(2
,5

)

(2
,6

)

(3
,3

)

(3
,4

)

(3
,5

)

(3
,6

)

(4
,3

)

(4
,4

)

(4
,5

)

(4
,6

)

(5
,3

)

(5
,4

)

(5
,5

)

(5
,6

)

m
A

P
 [

%
]

1
2
.7
0

Full Precision - 77.61 %

Figure 4. mAP results of R-FCN. The dashed line represents the

accuracy of the baseline full-precision network.

515 ≈ 3× 1010 possible configurations that use two to six

bits for each layer). Algorithms for fast design space explo-

ration of layer-wise quantization are left for future work.

5.2. Object Detection: RFCN with ResNet50

In order to evaluate the effectiveness of our quantization

method on more complex vision tasks, we use a state-of-

the-art 50-layer R-FCN model for object detection [5]. The

R-FCN model combines a residual network (ResNet) [11]

(for representation) and Faster R-CNN [20] (for region pro-

posal, object classification, and box localization). On top

of the existing full-precision model, we perform fine-tuning

with our quantization method.

Even though deep models are known to be difficult to

quantize since quantization errors are accumulated over

deep layers, our method successfully quantizes the 50-layer

model for object detection with very small accuracy loss.

Figure 4 shows that the configuration of 5-bit weights and

6-bit activations loses only 0.51% of mAP, while reducing

the model size and the amount of computation by more than

5x. We also observe that activations typically require more

bits than weights in our quantization method (e.g., 6-bit ac-

tivations or 4-/5-bit weights are needed for stable and satis-

factory results, as shown in Figure 4). We believe that this is

because the bounding box regression mechanism of R-FCN

is simple (obtaining boxes directly from the region proposal

network), and thus, is sensitive to activation accuracy. We

will perform further investigation on this in our future work.

In our future work, we will also study the feasibility of

our method with deeper models. According to our prelim-

inary study with R-FCN based on ResNet-101, we failed

to obtain quantization with reasonable accuracy when fine-

tuning the model with the PASCAL VOC data set. We be-

lieve that this problem is due to the mixed effects of transfer

learning and quantization on a very deep network, which

requires further investigation into quantization on the very

deep networks.

5.3. Language Modeling: An LSTM

In order to evaluate our scheme on recurrent neural net-

works, we perform a preliminary analysis by applying our

method to an LSTM network for language modeling [24],

provided along with the Tensorflow framework [3]. We

evaluate three sizes of RNNs, small (200 hidden units and

20 time steps), medium (650 hidden unuts and 35 time

steps), and large (1500 hidden units and 35 time steps),

all of which have two layers each. We measure the word-

level perplexity of these three RNNs before/after quantiza-

tion with the Penn Tree Bank dataset [16]. We apply only

the weight quantization to the LSTM network since our acti-

vation quantization is currently incompatible with bounded

gates and linear outputs in RNNs.

Large Medium Small

Valid Test Valid Test Valid Test

float 82.77 78.63 87.69 83.54 119.19 114.46

1-bit 92.20 88.48 104.0 100.7 147.19 141.07

2-bit 86.73 82.90 92.49 89.24 137.34 131.15

3-bit 85.59 81.57 86.73 83.50 121.21 117.00

4-bit 81.83 78.09 88.01 83.84 121.84 114.95

Table 3. Impact of quantization on word-level perplexity of an

LSTM for language modeling.

Table 3 compares the word-level perplexity of the LSTM

network between full-precision (float) and quantization

cases. The result shows that 4-bit weights achieve compa-

rable results to the full-precision implementation. Also, our

scheme provides options to further reduce the model size

and the amount of computation by using fewer bits at a cost

of lower output quality (i.e., higher perplexity).

6. Conclusion

In this paper, we proposed a novel weight/activation

quantization method based on the concept of weighted

entropy. The key benefits of our approach are twofold:

(1) flexible multi-bit quantization, which allows us to op-

timize the neural network design under the tight accuracy

loss constraint and (2) automated quantization, which does

not require modifications to the input networks. Accord-

ing to our extensive evaluation results based on practical

neural networks including AlexNet, GoogLeNet, ResNet-

50/101, R-FCN, and an LSTM, our approach achieves

1% accuracy loss (top-5 or mAP) with 4-bit weights/

activations (AlexNet), 4/5-bit weights and 6-bit activations

(GoogLeNet, ResNet and R-FCN). Our future work in-

cludes investigating the effectiveness of our method on very

deep neural network models (e.g., ResNet-152) and devis-

ing activation quantization for RNN models.

Acknowledgement

This work was supported by National Research Foun-

dation of Korea (NRF-2016R1A2B3009361) and Samsung

Electronics (SAIT and Samsung Research Funding Center

SRFC-TC1603-04).

5463

References

[1] Facebook Caffe2Go. https://code.facebook.com/posts/

196146247499076/. Accessed: 2016-11-15.

[2] Nvidia P40 and P4. https://devblogs.nvidia.com/pa

rallelforall/mixed-precision-programming-cuda-8/.

Accessed: 2016-11-15.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,

J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,

P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and

X. Zheng. TensorFlow: Large-scale machine learning on

heterogeneous distributed systems. In Proceedings of the

USENIX Symposium on Operating Systems Design and Im-

plementation, pages 265–283, 2016.

[4] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect:

Training deep neural networks with binary weights during

propagations. In Advances in Neural Information Processing

Systems, pages 3123–3131, 2015.

[5] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection via

region-based fully convolutional networks. arXiv preprint

arXiv:1605.06409, 2016.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. ImageNet: A large-scale hierarchical image database.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 248–255, 2009.

[7] M. Gottmer. Merging reality and virtuality with Microsoft

HoloLens, 2015.

[8] S. Guiaşu. Weighted entropy. Reports on Mathematical

Physics, 2(3):165–179, 1971.

[9] S. Guiasu. Grouping data by using the weighted entropy.

Journal of Statistical Planning and Inference, 15:63–69,

1986.

[10] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural network with pruning, trained quantiza-

tion and Huffman coding. CoRR, abs/1510.00149, 2, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. arXiv preprint arXiv:1512.03385,

2015.

[12] K. Hwang and W. Sung. Fixed-point feedforward deep neu-

ral network design using weights +1, 0, and -1. In Proceed-

ings of the IEEE Workshop on Signal Processing Systems,

pages 1–6, 2014.

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proceedings of

the International Conference on Multimedia, pages 675–678,

2014.

[14] P. Judd, J. Albericio, and A. Moshovos. Stripes: Bit-serial

deep neural network computing. IEEE Computer Architec-

ture Letters, 2016.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems, pages

1097–1105, 2012.

[16] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Build-

ing a large annotated corpus of English: The Penn Treebank.

Computational linguistics, 19(2):313–330, 1993.

[17] D. Miyashita, E. H. Lee, and B. Murmann. Convolutional

neural networks using logarithmic data representation. arXiv

preprint arXiv:1603.01025, 2016.

[18] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu,

T. Tang, N. Xu, S. Song, Y. Wang, and H. Yang. Go-

ing deeper with embedded FPGA platform for convolutional

neural network. In Proceedings of the International Sym-

posium on Field-Programmable Gate Arrays, pages 26–35,

2016.

[19] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.

XNOR-Net: ImageNet Classification Using Binary Convo-

lutional Neural Networks, pages 525–542. 2016.

[20] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In Advances in Neural Information Processing Sys-

tems, pages 91–99, 2015.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–9, 2015.

[22] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the

speed of neural networks on CPUs. In the Deep Learning and

Unsupervised Feature Learning Workshop at NIPS, 2011.

[23] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,

W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,

J. Klingner, A. Shah, M. Johnson, X. Liu, ukasz Kaiser,

S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,

G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,

A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and

J. Dean. Google’s neural machine translation system: Bridg-

ing the gap between human and machine translation. arXiv

preprint arXiv:1609.08144, 2016.

[24] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neu-

ral network regularization. arXiv preprint arXiv:1409.2329,

2014.

[25] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou.

DoReFa-Net: Training low bitwidth convolutional neu-

ral networks with low bitwidth gradients. arXiv preprint

arXiv:1606.06160, 2016.

5464

https://code.facebook.com/posts/196146247499076/
https://code.facebook.com/posts/196146247499076/
https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/
https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/

