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Abstract

Several works have shown that relationships between

data points (i.e., context) in structured data can be exploited

to obtain better recognition performance. In this paper, we

explore a different, but related, problem: how can these inter-

relationships be used to efficiently learn and continuously

update a recognition model, with minimal human labeling

effort. Towards this goal, we propose an active learning

framework to select an optimal subset of data points for man-

ual labeling by exploiting the relationships between them.

We construct a graph from the unlabeled data to represent

the underlying structure, such that each node represents a

data point, and edges represent the inter-relationships be-

tween them. Thereafter, considering the flow of beliefs in this

graph, we choose those samples for labeling which minimize

the joint entropy of the nodes of the graph. This results in

significant reduction in manual labeling effort without com-

promising recognition performance. Our method chooses

non-uniform number of samples from each batch of stream-

ing data depending on its information content. Also, the

submodular property of our objective function makes it com-

putationally efficient to optimize. The proposed framework

is demonstrated in various applications, including document

analysis, scene-object recognition, and activity recognition.

1. Introduction

Over the years, due to advances in technology, huge

amount of unlabeled visual and text data is generated daily.

Also, machine learning algorithms are becoming more com-

monplace in human life. A large proportion of these algo-

rithms are based on supervised learning which requires a

large quantity of data to be labeled. Moreover, these models

need to be updated over time as new data becomes available

in order to dynamically adapt to the concepts of different

classes which may drift with time. Manually labeling this

continuous flow of data is not only a tedious task for humans

but also prone to wrong labeling. Active Learning [39] can

be a solution to this problem to reduce the amount of manual

labeling, without compromising recognition performance.

The ability of active learning to reduce manual labeling

effort is due to the fact that not all training samples are valu-

able for building the recognition model [28]. Most active

learning approaches formulate a utility score for each unla-

beled sample, based on which they are chosen for manual

labeling. Classifier uncertainty [31], information density

[30], expected change in gradient [39], expected error rate

[11, 30], expected model output change [23] and their combi-

nations are some popular techniques for designing the utility

score. But, most of these techniques fail to consider the

inter-relationships that may occur in data points belonging

to the same or different recognition tasks.

Several works have shown that in many applications such

as activity recognition [49, 46], object recognition [16, 9],

text classification [36, 40], etc, that relationships between

data points can be exploited to get better recognition per-

formance. These relationships may also be exploited in

active learning to significantly reduce the effort of manual

labeling. Although there have been some works which con-

sider relationships between data points in active learning

[4, 32, 18, 20], they do not consider flow of beliefs between

samples to have a better joint understanding of the samples,

which may be helpful for choosing the most informative

ones. Moreover, most of them are problem-specific algo-

rithms and deal with active learning of a single recognition

task. A general approach for active learning that consid-

ers the inter-relationships between data samples, and which

can be used across a variety of application domains, is lack-

ing. Joint learning of tasks such as scene-object [50, 45] or

activity-object [21, 24] classification can be actively learned

to reduce the manual labeling effort. In such scenarios, it is

challenging to choose the informative samples for manual

labeling as they may belong to different recognition tasks.

In this paper, we propose a generalized active learning

framework, which has the ability to determine the optimal

number of informative samples and thus choose them for

both single, as well as multiple, recognition tasks learned

jointly, by exploiting the structure of the data, i.e., the rela-

tionships between the samples. The relationship information

can not only help to update the beliefs of the classifier for
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Figure 1: This figure presents the flow of the proposed framework. 1. A small set of labeled data is used to obtain the

initial relationship (R) and classification model (C). 2. As new unlabeled batch of data becomes available sequentially over

time, we first extract features from the raw data. Then the current C and R models are used to construct a graph from the

data to represent the relationships between the data points. Then inference on the graph is used to obtain the node and edge

probabilities, which are used to choose the informative samples for manual labeling. The newly labeled instances are then

used to update the models C andR.

each data point, but also plays an important role in selecting

a small subset of informative samples, which when labeled

can help the other unlabeled samples to have a better under-

standing of their labels.

Framework Overview. The flow of the proposed

method is pictorially presented in Fig.1. The proposed

method starts with a small set of labeled data and uses it

to build the classification (C) and relationship (R) models.

R represents the underlying structure in the data. It may be

noted that the classification models may contain multiple

classifiers for multiple recognition tasks. After learning the

initial models, given a batch of unlabeled samples, the goal is

to select a subset of informative samples for manual labeling

which can be used to update the current classification and

relationship models.

As new batch of data becomes available, they are sep-

arated into different sets based on the recognition task to

which they belong and their features are extracted. Using

the current classifiers, a probability mass function over the

possible classes is obtained for each unlabeled sample. It

is used along withR to construct a graph whose nodes rep-

resent the samples. A message passing algorithm is used

to infer on the graph to obtain the beliefs of each node and

the edges of the graphs. An informative theoretic objective

function is derived, which utilizes the beliefs to select the in-

formative nodes for manual labeling. The submodular nature

of this optimization function allows us to achieve this in a

computationally efficient manner. The newly labeled nodes

are used to update the models C andR. It may be noted that

the number of samples selected per batch is non-uniform,

dependent on the information content of each batch.

Main Contributions. The main contributions are the

following.

• We propose a novel generalized active learning framework

which exploits the relationships in data to reduce the man-

ual labeling effort. It can be used for both single as well

as multiple inter-related recognition tasks jointly.

• Our framework chooses non-uniform number of samples

for manual labeling from each batch of data, which is

helpful as the amount of information contained in a batch

of data varies and it may not be useful to select the same

number of samples from each batch.

• Unlike other batch mode subset selection algorithms

which exploit relationships in data points, the optimization

problem in our framework can be proved to be submod-

ular minimization which makes it easy to obtain optimal

solutions in polynomial time.

2. Related Works

An overview of the approaches which form the core of

most active learning (AL) algorithms may be found at [38].

Most AL algorithms involve the uncertainty of the classifier

for choosing the informative samples, best vs. second best

[29], entropy [30], classifier margin [44] being commonly

used measures for classifier uncertainty. Along with clas-

sifier uncertainty, diversification in the chosen samples is

introduced by using k-means [29] or sparse representative

subset selection [13]. The scalability issue in terms of the

number of classes was addressed in [22] by asking binary

questions to the human. They selected samples from the

unlabeled set based on expected misclassification risk and

extracted a probabilistically similar image from the labeled

set to ask whether they match. Another important concept

used in AL is expected model change [6, 43, 23].

Most of the above mentioned works do not consider the

relationships between the data points which may be exploited

to reduce the amount of manual labeling. In [5], an AL algo-

rithm was proposed which involves uncertainty, committee-

based ensembles and community based clustering of net-

worked data. A network based utility score for each sample

was proposed in [27] involving neighborhood information
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of the networked data. In [41], maximum uncertainty as

well as maximum impact on other unlabeled instances was

used, where the link information enhances the feature based

similarity measure used to capture the impact of a sample.

In [31], a hierarchical model for AL was proposed for scene

classification where they also query the objects whenever

there is a mismatch between the scene label provided by

the classifier and human. An AL algorithm for scene and

object classification is presented in [2]. Relationship in the

feature space was exploited in [32] for AL. The concept of

typicality in information theory is exploited in [3] to choose

the optimal subset of samples.

Recently, in [7], an algorithm for batch mode AL was pro-

posed which uses entropy and Kullback Leibler divergence

to select informative and diverse samples. However, these

algorithms do not incorporate the propagation of confidence

from one sample to the other. Recently, an AL algorithm is

presented in [18] for activity recognition. They proposed an

objective function based on intuition and provided a greedy

solution to optimize it. Our algorithm on the other hand

is not only mathematically validated, but also experimen-

tally supported on different applications (beyond activity

recognition), including multiple inter-related tasks. More-

over, our AL algorithm is computationally efficient due to

the submodularity property and can be applied in scenar-

ios involving joint learning of multiple recognition models.

Also, unlike this method, we do not select a fixed number of

samples from each batch; rather the number of samples is

non-uniform based on the information content of each batch.

3. Data Representation

The proposed method for informative sample selection

is based on the assumption that the unlabeled data points

have an underlying structure, i.e., have relationships among

them. We build a graph whose nodes represent the unlabeled

samples in order to exploit the relationships between them.

The two important measures which represent the graph are

node and edge potentials.

Our active learning framework can select samples for

single as well as multiple joint classification tasks simultane-

ously if the instances share relationship, e.g., scene-object,

object-object, activity-object classification, etc. In order to

generalize, let us consider that we have m tasks in hand

which share relationships in data. Let us consider that we

have a set of baseline classifiers C = {C1, . . . , Cm} for these

m interrelated tasks. The node and edge potentials in the

format we use are discussed below.

Node Potential. We represent each data point as a

node. Consider that we have total n classes {c1, . . . , cn}
for these m classification problems. Consider an indi-

cator function I(.) which takes as input a class name c

and provides as output a unit standard basis vector, i.e.,

I(c = c1) = [1, 0 . . . , 0]T . If F j is the feature of node j,

then its node (unary) potential can be expressed as,

φj =
m
∑

p=1

n
∑

i=1

Cp(F j , ci)I(c = ci) (1)

where Cp(F j , ci) represents the probability of node j to

belong to class ci. Thus, Cp(F j , ci) = 0 if the training data

of Cp does not contain data of class ci.

Edge Potential. The edge (pair-wise) potential repre-

sents the relationships between the classes. The relationship

model R contains the edge potential matrix ψ whose i,j

location is the co-occurence frequency [16] of data point

of class ci with data point of class cj . Co-occurrence, and

thus edge potential, depends on the application and will be

discussed in Section 5.

The node and edge potentials play an important role in

our framework as we use it to construct a graph to represent

the relationships between the data points. It may be noted

that our framework can be applied to any dataset containing

relationships which can be modeled as edge potentials.

Graph Construction. Let us consider that we have a

set of labeled data instances L. We learn the baseline clas-

sification model C and a relationship model R with these

labeled data L. Now, consider that a new unlabeled set U
of data becomes available with features {F j}

N
j=1, N being

the size of the set U . Instead of manually labeling this entire

unlabeled set, our goal is to reduce the labeling effort by

choosing an informative subset of U for manual labeling,

such that it helps to improve the current models C andR.

We start by constructing a graph G = (V,E) with the

instances in U using the current models C andR. Each node

in V = {v1, . . . , vN} represents each data point. The edges

E = {(i, j)|vi and vj are linked} represent the relationships

between the data points. The link information between the

nodes depends on the application and is discussed in Section

5. The nodes are assigned the corresponding node potentials

φi and the edges are assigned the edge potential ψ. A mes-

sage passing algorithm can be used to obtain the node and

edge beliefs. In this paper, we use Loopy Belief Propagation

(LBP) [35] to accomplish this task. After inference, we ob-

tain the marginal node probabilities and the pair-wise joint

distribution of the edges.

4. Selection of Informative Samples

In this section, we discuss how we choose the informative

samples based on the graphical model constructed from a

batch of data. Using the node and edge probabilities, the

goal is to choose a small set V l∗ ⊂ V for manual labeling,

which will improve the current models C and R. We wish

to select a subset of the nodes such that the joint entropy

of all the nodes H(V ) is minimized. Below we derive an

expression for the joint entropy of the graph G.
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Joint Entropy of Nodes. The entropy of each node

and the mutual information between a pair of nodes can

be expressed as H(vi) = E[− log2 pi] and I(vi, vj) =
E[log2 pij

/

pipj ] and pi, pj and pij are the node and edge

probabilities respectively. The joint entropy of the nodes of

the graph G can be expressed as follows,

H(V )
(a)
= H(v1) +

N
∑

i=2

H(vi|v1, . . . , vi−1)

(b)
=H(v1) +

N
∑

i=2

[

H(vi)− I(v1, . . . , vi−1; vi)
]

(c)
=H(v1) +

N
∑

i=2

[

H(vi)−
i

∑

j=1

I(vj ; vi|v1, . . . , vj−1)
]

=
N
∑

i=1

H(vi)−
N
∑

i=2

i
∑

j=1

I(vj ; vi|v1, . . . , vj−1)

(d)
≈

∑

vi∈V

H(vi)−
∑

(i,j)∈E

I(vj ; vi) (2)

(a) Joint entropy chain rule [10]

(b) Using I(v1, . . . , vj−1; vj) = H(vj) −
H(vj |v1, . . . , vj−1), where, I(.; .) represents the mu-

tual information between the set of random variables

separated by ’;’.

(c) Mutual information chain rule [10]

(d)Computing the conditional mutual information

I(vj ; vi|v1, . . . , vj−1) becomes computationally intractable

as the number of nodes on which it is conditioned

increases. Moreover, in this paper, we construct our

graph using just unary (node) and pair-wise (edge)

potentials and ignoring higher order potentials. Thus,

we approximate the conditional mutual information as

I(vj ; vi|v1, . . . , vj−1) ≈ I(vj ; vi). Furthermore, we

consider two nodes to be independent if there exist no

link between them. It is also known that the mutual

information between two random variables is zero, if they

are independent.

The expression in Eqn 2 is similar to the expression of joint

entropy using Bethe Approximation [47]. Moreover, this

expression is exact for an acyclic graph but an approximation

in case of graphs containing cycles. We use this expression

to derive an objective function to be optimized in order to

obtain the most informative nodes for manual labeling.

Objective Function Derivation. Our goal is to choose a

subset of nodes from V , the size of which may vary across

each batch of data, such that the joint entropy H(V ) in Eqn.

2 is minimized after inferring on the graph G conditioned

on the obtained labels of the chosen nodes. The set V can

be partitioned into two sets, V l which will be selected for

manual labeling and V nl which will not be manually labeled.

We need to find the optimal partition of V into these two sets

by optimizing an objective function. The main motivation is

that the classifier is either confident or will become confident

about the set V nl if we gain information about the subset V l.

Here l means Labeled and nl means Not Labeled.

Let us define the two subgraphs of G as follows: Gl =
(V l, El) be the subgraph whose nodes will be labeled and

Gnl = (V nl, Enl) be the subgraph which will not be labeled.

For the sake of clarity, the following are defined: El =
{(i, j)|(i, j) ∈ E, vi, vj ∈ V l}, Enl = {(i, j)|(i, j) ∈
E, vi, vj ∈ V

nl}. Following the above partition, the joint

entropy H(V ) can be partitioned as follows,

H(V ) =
[

∑

vi∈V l

H(vi)−
∑

(i,j)∈El

I(vj ; vi)
]

+

[

∑

vi∈V nl

H(vi)−
∑

(i,j)∈Enl

I(vj ; vi)
]

−
∑

(i,j)∈E

vi∈V l,vj∈V nl

I(vj ; vi)

= H(V l) +H(V nl)−
∑

(i,j)∈E

vi∈V l,vj∈V nl

I(vj ; vi) (3)

Once the nodes in V l are manually labeled and we run in-

ference on the graph conditioned on the acquired labels, the

first and last term of the above expression becomes zero (see

supplementary material). Most active learning algorithms

assume that for each batch of unlabeled data, there is a fixed

budget, i.e., number of samples for manual labeling. If the

budget for manual labeling is K(≤ N ), then the optimal

subset V l∗ which minimizes the joint entropy of the node

can be expressed as,

V l∗ = argmax
V l

s.t.|V l|=K

[

H(V l)−
∑

(i,j)∈E

vi∈V l,vj∈V nl

I(vj ; vi)
]

(4)

However, each batch of data may contain non-uniform

amount of information and choosing the same number of

budget constrained samples (i.e., K) from each batch may

not be a good idea. Instead, the number of samples could be

determined based on the information content of each batch.

This motivates us to modify the above objective function,

such that we choose non-uniform number of informative

samples from different batch of data. We rewrite Eqn. 4 as

an unconstrained minimization problem as follows:

V l∗ = argmin
V l

[

∑

(i,j)∈E

vi∈V l,vj∈V nl

I(vj ; vi)−H(V l) + λ|V l|
]

(5)

where λ is a positive trade-off parameter between maximiz-

ing the objective function in Eqn. 4 and minimizing the

number of nodes chosen for manual labeling. The choice of

λ is discussed at the end of this section.

The optimization problem can be represented in vector

and matrix notations. In order to do so, we define the follow-

ing. Consider a vector x of length N with elements being 1
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or 0, where 1 represents the node is selected to be in the set

V l and 0 represents the opposite. We need to find the opti-

mal x which solves the optimization problem in Eqn. 5. Let

us define a N × 1 vector h of node entropies and a N ×N
matrix M of pairwise mutual informations as follows,

h , [H(v1), H(v2) . . . H(vN )]T

M(i, j) ,

{

I(vi; vj), if (i, j) ∈ E

0, otherwise

where i, j ∈ {1, . . . , N}. The objective function in Eqn. 5

can be represented as (see supplementary material)

x∗ = argmin
x

1

2
xTQx+ xTf + λxT

1 (6)

where Q , −M and f , M1 − h and where 1 =
[1 1 . . . 1]T of size N × 1. The objective function in Eqn.

6 can be proved to be submodular which makes the optimiza-

tion problem simpler compared to Eqn. 4. Details of the

optimization is discussed next.

Proof of Submodularity. A submodular function is a set

function f : P(S) → R where P(S) is the power set of a

finite set S, if it satisfies the following,

f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y ) (7)

where X ⊆ Y ⊆ S and v ∈ S−Y . The sets are represented

in Fig. 2. Let us consider two vectors x and y representing

the two sets X and Y , i.e., if a node exists in a set, the cor-

responding element of the vector will be 1 else 0. Consider

a vector v which represents the node v of Eqn. 7, i.e., v

is a vector of all zeros and one at the vth element location.

Consider the objective function in Eqn. 6 be f . Then,

f(X ∪ {v})− f(X) =
[1

2
(x+ v)TQ(x+ v)+

(x+ v)Tf + λ(x+ v)T1
]

−
[1

2
xTQx+ xTf + λxT

1

]

=
1

2
vTQv + xTQv + vTf + λ (8)

Also, f(Y ∪{v})− f(Y ) = 1
2v

TQv+yTQv+vTf +λ

{f(X∪{v})−f(X)}−{f(Y ∪{v})−f(Y )} = (x−y)TQv

(9)

Now, as X ⊆ Y , y contains 1 at least in the positions

where x contains 1. Thus, the entries of the vector x − y

are either 0 or −1. Also, the entries of Q are non-positive as

Q = −M and mutual information is always non-negative.

Also, v is a vector of 1 at a single element and 0 otherwise.

Thus, (x − y)TQv ≥ 0 and Eqn. 7 is satisfied, which

makes the objective function in Eqn. 6 submodular and the

optimization problem is submodular minimization.

Optimization Procedure. Submodular Function Mini-

mization (SFM) often arises in fields of machine learning,

v
2

v
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v
3

v
4

v
5

v
6

v
7v

8

S
Y

X

v

Figure 2: This figure is an example illustration of the sets

S,X, Y and the element v involved in proving that the pro-

posed objective function is submodular.

Algorithm 1 Proposed Framework

Input: Sequential Batch of Unlabeled Data {U1,U2, . . . }.
Output: Classification C and RelationshipRmodels after

processing every batch of data.

Variable L: Labeled Set, k: batch number

1. L ← U1: Ask human to label the first batch U1.

2. Construct the models C andR using L.

k ← 2
while New batch of data

(

Uk
)

available do

3. Construct graph G = (V,E) based on Uk
4. Use the current model C andR to assign the node

and edge potentials to the graph

5. Run inference on the graph to obtain the node (pi)

and edge (pij) probabilities

6. Compute the entropy and mutual information and

construct the vector h and matrix M respectively.

7. Find λ using Eqn. 10

8. Obtain x∗ Eqn. 6 using Fujishige-Wolfe Min Norm

Point algorithm

9. Use x∗ to select the samples for query to human

lets denote it by V l∗. Then, L ← L ∪ V l∗

10. Inference conditioned on the acquired labels and

L ← L ∪ {Highly confident instances} (weak teacher)

11. Use L to update the models C andR
k ← k + 1

end while

game theory, information theory, etc. Detailed description

may be found here [33]. There exists some algorithms which

can be used to solve SFM in polynomial time. We use the

Fujishige-Wolfe Min Norm Point algorithm [15] in the Sub-

modular Function Optimization (SFO) [25] toolbox to solve

the submodular minimization problem in Eqn. 6. It is one of

the most well-known algorithms to solve SFM.

Parameter. The parameter λ in Eqn. 6 is a trade-off

between the two objectives as discussed previously. If f(x)
is the objective function in Eqn. 6, then λ can be expressed

as,

λ = α
minx f(x)|λ=0 − 0

0−maxx xT1
(10)

where α is a scalar parameter. In Eqn. 10, a fraction is
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obtained using the range of values of the two objective func-

tions, such that the scaling between the two objective func-

tions using λ is appropriate. λ now depends on α, which can

be kept close to 1 for all applications due to the scaling done

in Eqn. 10 between the two objective functions.

Model Update After the chosen samples are labeled by

a human, we perform inference on the graph conditioned

on the acquired labels to update the beliefs of the nodes

and then we apply the concept of weak teacher [51], which

does not involve the human. We choose those nodes having

confidence of classification > ǫ, with the corresponding

label, to be in the labeled set L. ǫ should be high enough to

avoid wrong labeling. The classification model C is updated

by retraining the classifier using L. ModelR is comprised

of only the co-occurrence matrix ψ and it is incremented

using the new labeled instances. An overview of the entire

framework is presented in Algorithm 1.

Special Case of Archived Data. The proposed method

can also be used in cases where the entire dataset is available

at the outset (see supplementary material). A small set of

samples is randomly selected from the unlabeled dataset and

their labels are obtained. These labeled samples are used

to construct the initial models C and R. These models are

used to choose the informative samples from the rest of the

unlabeled pool of samples and then the models are updated

after acquiring the labels. This process continues until the

joint entropy of the remaining subset < threshold.

5. Experiments

In this section, we present experimental analysis of our

proposed active learning framework for three distinct applica-

tions - joint scene-object classification, activity recognition,

and document classification. These applications are chosen

as they have data which share relationships among them. For

each application, we perform the following experiments.

• We compare the proposed method with commonly used

and state-of-the-art active learning methods namely -

Batch Rank [7], BvSB [29], Entropy [39, 19], Density

Based Sampling (DENS) [39], Expected Gradient Length

(GRL) [40] and Random Sampling. We also compare with

CAAL [18] for activity recognition.

• We compare the results of our algorithm with other state-

of-the-art methods which use the entire dataset for training,

details of which is mentioned subsequently.

• We perform sensitivity analysis of the proposed method

on the parameter α in Eqn. 10.

We use Support Vector Machine (SVM) [8] as a baseline

classifier for our proposed method as well as for all the active

learning methods with which we compare, to have a fair

comparison. We use the Undirected Graphical Model (UGM)

toolbox [35] to perform inference on the graph. We will use

the following short-notations. “ALL” represents the accuracy

obtained by using the entire dataset for training.“ALL Batch”

denotes that the classifier is updated using ALL the instances

of the current batch.

5.1. Scene­Object Classification

Scene and objects tend to co-occur in images. Although,

scene and objects classifiers are separate, their joint under-

standing can be beneficial [50], which can be exploited in

our active learning framework to reduce manual labeling.

Dataset. We have used the SUN dataset [9, 48] for our ex-

periments on scene-object classification. We use the portion

of the dataset which has both scene and object annotations

as we aim to exploit their relationship. In order to represent

the scene nodes, we extract CNN features (∈ R
4096×1) from

fc-7 layer of VGG-net [52] pre-trained on the places-205

dataset. We use the pipeline of R-CNN [17] to detect the

objects and then extract CNN features from fc-7 layer of

Alex-net [26], pre-trained on ImageNet [12].

Experimental Set-up. We perform 5 Fold Cross Valida-

tio0 (FCV)n for this dataset. The training data of 4 folds

is divided into 6 batches and fed sequentially to our active

learning framework. We consider that the first batch is man-

ually labeled and use it to construct the initial models C and

R. We assume that the other batch of data are unlabeled

and we choose only the informative samples for manual la-

beling, which is then used to update the models. It may be

noted that this application is an example which depicts that

our algorithm can be applied for active learning of different

recognition tasks jointly. Each image is represented by a

single scene node and multiple object nodes as detected by

the detector. The graph for this application is considered to

be fully connected and the i, j position of the edge potential

matrix is a count of the number of times an object of class i

appears in a scene of class j.

Results. Fig. 3a and 3d presents the comparison of the

proposed method with other state-of-the-art active learning

methods. The proposed method performs better than the

other methods and reaches the “ALL” mark with only 41%
and 62% manual labeling for scene and objects respectively.

Fig. 3b and 3e presents the results of the proposed method

along with methods which consider that the entire dataset

is manually labeled and available for training. We compare

with SUN-CNN [52] for scene classification and with R-

CNN [17] and DPM [14] for object classification. As may

be observed, the proposed method requires much lesser num-

ber of samples to be manually labeled to obtain the same

accuracy as“ALL Batch”.

Fig. 3c and 3f present the results of the proposed method

for different values of the parameter α in Eqn. 10. It may

be noted that α = 1.1 have been used for all the results

corresponding to the SUN dataset.
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Figure 3: This figure presents the results on the SUN dataset for joint scene object classification. The top and bottom row

presents plots for scene and object respectively. (a), (d) presents the comparison of the proposed method with other active

learning methods. (b), (e) presents the comparison with other methods which use the entire dataset for training. (c), (f) presents

the sensitivity of the proposed method to the parameter α.
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Figure 4: This figure presents the results on the CORA dataset for document classification. (a) presents the comparison of the

proposed method with other active learning methods. (b) presents the comparison with other methods which use the entire

dataset for training. (c) presents the sensitivity of the proposed method to the parameter α.

5.2. Document Classification

Documents are generally inter-linked by citations and

hyperlinks, which may be exploited using our active learning

approach to reduce manual labeling effort.

Dataset. We use the CORA dataset [37] for our experi-

ments on document classification. It is a dataset containing

2708 scientific publications divided into seven classes. There

are a total of 5429 links (citations) between the publications.

The publications are represented using a dictionary of 1433

unique words and the feature vectors F i ∈ {0, 1}
1433 indi-

cate the absence or presence of these words.

Experimental Set-up. We perform 10 FCV for this

dataset following [37] and follow a similar set-up as dis-

cussed previously for scene-object. We construct the graph

such that each node is connected to its five nearest neighbor

in the feature space. The i, j position of the edge poten-

tial matrix is a count of the number of times a publication

belonging to class i is related to class j via a citation link.

Results. The results of the proposed AL method along

with other state-of-the art AL methods is presented in Fig.

4a. It may be observed that the proposed method performs

much better than the other algorithms and requires only 42%

manual labeling to reach “ALL”.
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Figure 5: This figure presents the results on the VIRAT dataset for activity classification. (a) presents the comparison of the

proposed method with other active learning methods. (b) presents the comparison with other methods which use the entire

dataset for training. (c) presents the sensitivity of the proposed method to the parameter α.

We also compare our proposed method with other meth-

ods which consider that the entire dataset is manually labeled

and use it for training. Fig. 4b presents the comparison with

two such methods namely CCND [37] and LBC [36] 1. The

proposed method performs much better than “ALL Batch”,

which signifies that the proposed method extracts maximum

possible information from the unlabeled set, but using much

lesser manual labeling.

We also present analysis of the parameter α in Eqn. 10

and the plots are presented in Fig. 4c. The results in Fig. 4a

and 4b is with α = 1.1. Lower the value of α, lesser will be

the penalty for the number of samples chosen per batch (Eqn.

6), thus more samples will be chosen. This is also evident

from Fig. 4c. Although, the performance with α = 0.5 is

similar to α = 1.1 at the end, the later chooses much lesser

number of samples for manual labeling.

5.3. Activity Classification

Activities are generally spatially-temporally related

which can be exploited to reduce the number of instances

chosen for manual labeling.

Dataset. We use the VIRAT dataset [34] on human activ-

ity for our experiments on activity classification. The dataset

consists of 11 videos segmented into 329 activity sequences.

We extracted features using the pre-trained model of 3D

convolutional networks [42]. We extract the features from

16 frames with a temporal stride of 8 and then apply max

pooling to obtain a single vector ∈ R
4096 for each activity.

Experimental Set-up. We have used the first 176 se-

quence (761 activities) for training and 153 sequence (661

activities) for testing. We have divided the training set into

20 batches and fed them sequentially to our active learn-

ing algorithm. We consider that there exists a link between

two activities if they have occurred within a certain spatio-

temporal distance. We consider the edge potential to be the

spatio-temporal co-occurrence between the two activities.

1Please note that the horizontal lines should be points at 100% manual

labeling, but for the sake of clarity, we have presented them as it is.

Results. The results of the proposed active learning al-

gorithm with other state-of-the-art active learning methods

is presented in Fig. 5a. It may be observed that the pro-

posed method not only reaches the accuracy of “ALL” in

only 18% manual labeling, but also performs better than

“ALL”. The fact that an algorithm can perform better than

“ALL”, i.e. using the entire dataset for training is discussed

in [28]. Although Batch Rank reaches “ALL”, it requires

much more manual labeling than required by the proposed

method. ”CAAL” remains close to the proposed algorithm

initially, but the latter peaks up thereafter.

We compare the proposed method in in Fig. 5b with other

learning algorithms which consider the entire dataset to be

manually labeled and use it for training namely - Context

Aware Activity Recognition (CAAR) [53] and Sum Product

Network (SPN) [1]. It may be observed that the proposed

method peaks much faster than “ALL Batch” which indi-

cates that the former requires lesser manual labeling in each

batch to obtain the same accuracy as when the entire batch

is manually labeled and used for training. The plots for sen-

sitivity analysis of the parameter α for the VIRAT dataset is

presented in Fig. 5c.

6. Conclusions and Future Work

In this paper, we proposed a novel generalized active

learning framework for inter-related data. Our framework

can be applied for active learning of both single as well as

multiple recognition tasks simultaneously by exploiting the

inter-relationships in data. Our proposed method selects non-

uniform number of samples from each batch depending on

the information content. The proposed informative subset

selection methodology is not only fast due to its submodular

property, but also performs well on a wide range of appli-

cations. Future work will consider the scenario where the

labels provided by human is not always correct.
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