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Abstract

Recently, zero-shot action recognition (ZSAR) has e-

merged with the explosive growth of action categories.

In this paper, we explore ZSAR from a novel perspective

by adopting the Error-Correcting Output Codes (dubbed

ZSECOC). Our ZSECOC equips the conventional ECOC

with the additional capability of ZSAR, by addressing the

domain shift problem. In particular, we learn discrimi-

native ZSECOC for seen categories from both category-

level semantics and intrinsic data structures. This proce-

dure deals with domain shift implicitly by transferring the

well-established correlations among seen categories to un-

seen ones. Moreover, a simple semantic transfer strategy

is developed for explicitly transforming the learned embed-

dings of seen categories to better fit the underlying structure

of unseen categories. As a consequence, our ZSECOC in-

herits the promising characteristics from ECOC as well as

overcomes domain shift, making it more discriminative for

ZSAR. We systematically evaluate ZSECOC on three realis-

tic action benchmarks, i.e. Olympic Sports, HMDB51 and

UCF101. The experimental results clearly show the superi-

ority of ZSECOC over the state-of-the-art methods.

1. Introduction

During the past decade, human action recognition [1, 27,

55, 52, 54, 6, 44, 7] has been extensively explored. Robust

action recognition usually relies on numerous labeled train-

ing examples. However, in many realistic scenarios, anno-

tating sufficient examples for ever-growing new categories

is exhausting and inapplicable, which inspires us to devel-

op a system that can automatically recognize actions from

novel/unseen categories.

∗ indicates equal contributions.
† indicates corresponding author.
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Figure 1. Attributes versus ZSECOC as the label embedding for

ZSAR. Semantic attributes are shared across visually similar ac-

tion categories and fail to distinguish such actions. Our ZSECOC

is partially derived from the text corpus that has well-defined class

hierarchy relationships, thus ‘high jump’ and ‘triple jump’ will

have different ZSECOC-based embeddings. Consequently, visu-

ally similar actions from different categories can still be separated.

Zero-shot learning (ZSL) [12, 61, 26, 46, 17, 5, 64] has

emerged as an effective paradigm for recognizing unseen

categories without any labeled examples. Usually, ZSL

can be fulfilled with the help of label embeddings (or so-

called intermediate representations), among which seman-

tic attributes have been widely utilized. Nevertheless, at-

tributes are often manually-specified and highly subjective,

since they are either heuristically defined [12] or provid-

ed by domain specialists [25]. Particularly, for zero-shot

action recognition (ZSAR), attribute-based methods suffer

from several specific drawbacks. First, actions are usually

defined by ‘verbs’, which are lack of well-defined class hi-

erarchy relationships. Second, dynamic actions are more

complex than objects, making it very difficult to specify

a suitable attribute pool for different actions. The above

difficulties significantly limit the capabilities of previous

attribute-based ZSL approaches.

To this end, word embeddings have been preferred in

recent works [23, 16, 5, 60] for addressing ZSAR. By us-

ing word vectors derived from a huge text corpus (e.g.
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Wikipedia), we only need category names to construc-

t the label embeddings, instead of time-consuming manu-

ally specified attributes. However, the dimensionality m of

the embedding space is usually high (typically m >1000),

thus word vectors are not scalable for large-scale ZSAR

that requires training m visual-semantic mapping functions

(i.e. projections from visual features to label embeddings).

Moreover, word vectors only take into account the textual

distributed representation of category names, without con-

sidering the original visual data structures. This will direct-

ly lead to poor discriminative capabilities for final ZSAR.

Therefore, it is highly desirable to seek a discriminative

and scalable label embedding that can bypass the aforemen-

tioned drawbacks. By carefully looking into the essence of

ZSAR, we find that our goal intuitively equals designing

category-level error-correcting output codes (ECOC). The

following superior properties of ECOC [63, 65] motivate us

to leverage it for tackling ZSAR:

• Error-correcting abilities. By using some redundant

bits, we can tolerate some level of error1. This property

can be leveraged to enhance the robustness of ZSAR.

• High efficiency. Only a small number of bits are re-

quired, and binary code matching is extremely fast,

which can make large-scale ZSAR feasible.

• Good diversity. This indicates that the codes are row-

wise uncorrelated and column-wise separable. These

properties share similar spirits with the principles for

designing category-level attributes as in [61].

• Accurate binary classification for each bit. This could

lead to reliable visual-semantic mappings.

However, previous ECOC studies mostly addressed multi-

class classifications and hardly any efforts have been made

to ZSL. This is probably because directly using classifiers

trained on seen categories to predict unseen instances will

result in poor performance (known as domain shift [23]).

In this paper, we aim to enhance the conventional ECOC

with the additional ability of zero-shot recognition (dubbed

zero-shot ECOC, ZSECOC). Specifically, we derive the dis-

criminative ZSECOC from category-level semantic correla-

tions which are captured from a large-scale text corpus, i.e.

Google News (≈ 100 billion words). The semantic correla-

tions among categories work as tunnels to implicitly trans-

fer crucial knowledge from seen to unseen categories, e.g.

the unknown ‘triple jump’ may learn from ‘high jump’ and

‘long jump’. This kind of knowledge transfer can thus ad-

dress the domain shift problem to some extent. In addition

to preserving semantics, the intrinsic local structure of visu-

al data is also considered when designing our discriminative

ZSECOC. Furthermore, in contrast to transductive method-

s [23, 59, 60] that require the access to visual data from

1If the minimum Hamming distance between any pair of codewords is

d, the ECOC can correct at least d−1
2

single bit errors.

unseen categories, a simple semantic transfer strategy with-

out using any unseen data is developed to generate effec-

tive ZSECOC for unseen categories. This strategy explicit-

ly transforms the learned embeddings of seen categories to

better fit the underlying semantic structure of unseen cate-

gories. In this way, we can further eliminate the influence

of domain shift. As shown in Fig. 1, ZSECOC is more

discriminative than attributes. Fig. 2 illustrates the whole

learning process of ZSECOC for seen/unseen action cate-

gories. Our main contributions are summarized as follows:

1) We address ZSAR by designing discriminative ZSEC-

OC. We equip the conventional ECOC with the capability

of ZSAR by discovering the semantic correlations among

seen categories, which are quantitatively measured using

word vectors of well-defined class hierarchy relationships.

The well-established semantic knowledge is further trans-

ferred to semantically related unseen categories. As a con-

sequence, the proposed ZSECOC inherits the intrinsic ad-

vantages of ECOC as well as overcomes domain shift. 2) In

addition to preserving category-level semantics, our ZSEC-

OC also incorporates instance-level visual data structures.

A joint optimization framework is proposed to solve the

resultant challenging problem. The high-quality ZSECOC

is directly learned via efficient discrete optimization with-

out any relaxations. 3) The proposed ZSECOC is system-

atically evaluated on three realistic video action datasets,

i.e. Olympic Sports [39], HMDB51 [24] and UCF101 [53].

The state-of-the-art performance in terms of ZSAR clearly

demonstrates the superiority of our approach.

2. Related Work

1) Zero-Shot Learning. ZSL aims to recognize unseen

categories without any labeled examples. As a common

practice, different label embeddings have been employed,

e.g. semantic attributes [12, 25, 62, 14, 26] and word vec-

tors [2, 58, 23, 15]. A mapping from visual features to

semantic embeddings is learned from seen categories and

applied to unseen categories for final recognition. A major-

ity of existing ZSL works focus on object/scene recognition

[12, 14, 25, 26, 61, 62, 20, 34, 35] and there are much few-

er works on ZSAR [16, 59, 23, 60] due to the challenges

previously mentioned. In ZSAR, word vectors have been

preferred since only category names are required for con-

structing the label embeddings.

In addition, previous works also attempted to address the

domain shift problem [23] existing in ZSL, since it signif-

icantly deteriorates the recognition accuracy. Several do-

main adaptation methods [13, 14, 23, 60] have been pro-

posed for ZSL, based on transductive learning [23] or data

augmentation [60]. However, most of their models were

trained using some unseen instances, which violate the fun-

damental assumption of the standard ZSL setting that no

unseen examples could be accessed during training. In this
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Figure 2. The flow chart of ZSECOC. We design discriminative ZSECOC for seen categories that is both semantics-preserving and data-

driven. A joint optimization framework is proposed to solve the resultant challenging problem. We learn the ZSECOC for unseen categories

through a simple yet effective semantic transfer strategy. Black and white entries of the code matrix indicate ‘1’ and ‘-1’, respectively.

paper, we develop a simple semantic transfer scheme with-

out any transductive dependency on unseen examples.

2) Error-Correcting Output Codes. ECOC [8, 3, 42, 63,

10] has been explored as an efficient and effective alterna-

tive to multi-class classification. Specifically, each class

has some pre-specified codeword, e.g. ‘1010100’. ECOC

methods train a set of binary classifiers in terms of each bit

of the codes. The final multi-class classification is fulfilled

through matching the class-level codewords with the binary

code of a test point predicted by binary classifiers.

Lots of efforts have been made for simultaneously opti-

mizing the code matrix and binary classifiers, e.g. random

ECOC [3] and discriminant ECOC [42]. However, there are

rarely any practices that explore ECOC for ZSL. The most

related work to ours is [40], where semantic output codes

(SOC) were designed for ZSL. SOC did share some similar

spirits with ECOC. Nevertheless, it was directly obtained

from semantic knowledge bases, thus lacked the intrinsic

characteristics of ECOC (e.g. good diversity). Therefore,

to the best of our knowledge, this is the first work that en-

hances ECOC for the purpose of ZSAR. Next, we will in-

troduce the design of our discriminative ZSECOC in detail.

3. Discriminative ZSECOC

In ZSAR, we aim to recognize any instance x
u from

Cu unseen action categories, given all N instances X =
{xn}Nn=1 ∈ R

d×N from C seen categories, where d is the

original feature dimension. In this work, we would like

to seek m-bit category-level ZSECOC as the label embed-

ding, by incorporating word vectors as the side information.

We denote the ZSECOC of seen and unseen categories as

B = {bi}Ci=1 ∈ {−1, 1}m×C and B
u = {bu

j }C
u

j=1 ∈
{−1, 1}m×Cu

, respectively. The semantic labels of seen

and unseen categories are denoted as {yi}Ci=1 ∈ Y and

{yuj }C
u

j=1 ∈ Yu respectively, where Y ∩ Yu = ∅. In the fol-

lowing, we will show the principles for designing ZSECOC

for seen categories (i.e. B) from category-level semantics

and visual data structures. Subsequently, a joint optimiza-

tion framework based on alternating iteration is presented

for solving the resultant challenging problem.

3.1. Design Principles

1) Preserving Category-Level Semantics. Previous works

[3, 42, 18, 8] have shown that ECOC should have good di-

versity. We find this property is also crucial for ZSAR, thus

our code matrix B is derived from the following properties:

• Column separation: max
∑ ||bi − bj ||22,

• Row uncorrelation: 1
C

∑

bib
⊤
i = I,

• Row-wise balancedness:
∑

bi = 0,

where I is the identity matrix. Besides, as discussed in [45,

61], preserving semantics is crucial for discrimination. We

adopt such a property with the following objective function:

min
bi

∑

sij ||bi − bj ||22, s.t. bi ∈ {−1, 1}m, (1)

where sij denotes the category-level semantic affinity be-

tween the i-th and j-th categories. Specifically, we capture

semantic correlations across categories based on the dis-

tributed representation of category names. In practice, we

employ the skip-gram neural network model [37] trained

on the Google News dataset. Each category is thus embed-

ded by a 300-d word vector φ(yi), where ‘φ(·)’ is the em-

bedding function. We assign the cosine similarity between

φ(yi) and φ(yj) to sij , i.e. sij =
<φ(yi),φ(yj)>
||φ(yi)||·||φ(yj)||

, i, j =

1, ..., C, where <,> indicates the inner product operation.

The intuition behind formula (1) is that the ZSECOC of

similar categories should be close to each other, while dif-

ferent categories should possess distinct codes. Here, we
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denote this property as column ‘association’. Similar ob-

jectives are also adopted in graph-based hashing methods

[57, 33], because of their capabilities of well preserving se-

mantics and achieving high precision in the retrieval task.

By combining all the above objectives, we have

min
bi

∑

sij ||bi − bj ||22 − λ
∑

||bi − bj ||22,

s.t.
1

C

∑

bib
⊤
i = I,

∑

bi = 0,bi ∈ {−1, 1}m, (2)

where λ > 0 is the trade-off between columns ‘separation’

and ‘association’. By introducing the matrix form of (2),

we have

min
B

Osp := trace(BLB
⊤)

s.t. BB
⊤ = CI, B1 = 0,B ∈ {−1, 1}m×C , (3)

where the subscript ‘sp’ indicates the semantics-preserving

characteristic of our ZSECOC, and L is the associated

Laplacian matrix of the affinity matrix S
′ = {s′ij} ∈ R

C×C

where s′ij = sij−λ, ∀i, j. Specifically, L = diag(S′
1)−S

′.

To tackle this challenging problem, many existing ap-

proaches [43, 50, 33, 56, 57] choose to obtain sub-optimal

solutions by discarding the binary constraints. As shown in

[32, 49, 51], these solutions are of low quality and will lead

to less effective classification performance. In this paper,

we attempt to address the problem directly without any re-

laxations and achieve a more accurate solution to B. We

will provide the details for optimization in Section 3.2.

2) Capturing Visual Data Structures. According to

[63, 65], visual data structures should also be considered

for discriminative ECOC. For instance, [63] utilized spec-

tral analysis and [65] employed sum match kernel to acquire

useful information from data. We adopt the similar spirit but

learn our ZSECOC from data in a different way by using la-

tent factor decomposition (LFD). Specifically, we formulate

the problem of learning data-driven ZSECOC as

min
R,V,B

Odd := ||X−DV||2F + γ||V||2F + α||BP−RV||2F

s.t. R⊤
R = I,B ∈ {−1, 1}m×C , (4)

where ‘dd’ denotes the data-driven characteristic of ZSEC-

OC, || · ||2F denotes the Frobenius norm, D ∈ R
d×m is the

pre-computed dictionary (or so-called bases) usually ob-

tained by applying k-means or Gaussian mixture models

on seen data X, V ∈ R
m×N is the latent factor matrix,

P ∈ {0, 1}C×N is the category-instance indicator matrix,

R ∈ R
m×m is the orthogonal transformation matrix, α > 0

is the penalty parameter, and γ > 0 is the regularization

parameter w.r.t. V. In particular, each entry pij of P is

defined as follows:

pij =

{

1, if xj belongs to the i−th category,

0, otherwise.
(5)

By multiplying the category-level B with P, we can recon-

struct the codes for all seen instances.

The first two terms in (4) correspond to the latent fac-

tor decomposition problem. With the dictionary D, a data

point xn can be reconstructed as Dvn by using its laten-

t factor vn. To approximate the final ZSECOC, we derive

the latent factors in terms of the same dimension as with the

length of the codes (i.e. m). Furthermore, to fit the codes

and the decomposed latent factors, we introduce a penalty

term, i.e. the last term in (4). Theoretically, with a suf-

ficiently large α, the resulting ZSECOC can well preserve

the intrinsic structure of the visual data. We additionally

impose an orthogonal rotation on the factors because such

rotation will reduce the quantization loss effectively [19].
Overall Objective Function. By coupling the above two
problems, we can learn discriminative ZSECOC from both
category-level semantics and visual data structures. The
overall objective function is

min
R,V,B

O(R,V,B) := Odd + βOsp

s.t. R⊤
R = I,BB

⊤ = CI,B1 = 0,B ∈ {−1, 1}m×C
, (6)

where β > 0 weights the importance between the two char-

acteristics, i.e. semantics-preserving and data-driven.

3.2. Alternating Optimization

The above joint problem (6) is generally NP-hard and

non-convex due to the discrete constraint on B. Here, we at-

tempt to tackle it by iteratively computing each of the three

variables, i.e. R, V and B. In other words, we find the

solution to one variable while fixing the other two. Similar

techniques are adopted in [30, 48, 49].

R-Step: With fixed B and V, the subproblem w.r.t. R is

min
R

||BP−RV||2F, s.t. R⊤
R = I. (7)

This objective function is equivalent to the classic Orthog-

onal Procrustes Problem (OPP) [47]. OPP tries to find a

rotation to align one point set (i.e. V) with another (i.e.

BP). Specifically, the solution to R is obtained as follows:

UΣÛ
⊤ = svd(BPV

⊤), R = UÛ
⊤, (8)

where ‘svd(·)’ denotes the singular value decomposition.

V-Step: The subproblem by fixing B and P becomes:

min
V

||X−DV||2F + α||BP−RV||2F + γ||V||2F
⇔min

V

||XBP −DRV||2F + γ||V||2F, (9)

where

XBP =

[

X
√
αBP

]

and DR =

[

D
√
αR

]

.
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Algorithm 1: Learning ZSECOC for Seen Categories

Input: Seen instances X ∈ R
d×N ; the Laplacian

matrix L ∈ R
C×C ; the indicator matrix

P ∈ {0, 1}C×N ; code length m; maximum

iteration t; parameters α, β, γ, λ, δ, ρ.

Output: Category-level ZSECOC: B ∈ {−1, 1}m×C .

1 Generate dictionary D ∈ R
d×m by k-means on X;

2 Compute V = (D⊤
D+ γI)−1

D
⊤
X;

3 Randomly initialize B, set proximal parameter µ = 1;

4 Loop until convergence or reach t iterations:

5 - R-Step: Compute R by Eq. (8);

6 - V-Step: Compute V by Eq. (10);

7 - B-Step: Compute B by Eq. (13) and (14).

Problem (9) is equivalent to the regularized least squares

problem and thus has a closed-form solution:

V = (D⊤
R
DR + γI)−1

D
⊤
R
XBP. (10)

B-Step: Given V and R, the objective function in terms of

B has the following formulation:

min
B

α||BP−RV||2F + βtrace(BLB
⊤)

s.t. BB
⊤ = CI,B1 = 0,B ∈ {−1, 1}m×C . (11)

Due to the three constraints on B, this problem is very dif-

ficult to solve. To make (11) computationally feasible, we

rewrite it by discarding the first two constraints:

min
B

O(B) := α||BP−RV||2F + βtrace(BLB
⊤)

+
δ

4
||BB

⊤||2F +
ρ

2
||B1||2F, s.t. B ∈ {−1, 1}m×C . (12)

We can see that with sufficiently large δ and ρ, problem-

s (11) and (12) will be equivalent to each other. However,

the above problem is still computationally inapplicable due

to the discrete constraint. By carefully looking at (12), we

attempt to tackle it by adopting the discrete proximal lin-

earized minimization (DPLM) algorithm recently proposed

in [51]. DPLM reformulates the problem into an uncon-

strained minimization problem, which is then addressed us-

ing proximal optimization. In this way, high-quality ZSEC-

OC can be obtained directly without any relaxations. Par-

ticularly, we obtain the solution to B as follows:

B
(i+1) = sign(B(i) − 1

µ
∇O(B(i))), (13)

where B
(i) is the obtained code in the i-th iteration; µ > 0

is the proximal parameter controlling the convergence rate;

‘sign(·)’ returns ‘1’ if the argument is positive and ‘-1’ oth-
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Figure 3. Convergence of our optimization procedure.

erwise. The binary optimization is then performed by up-

dating B in each iteration with the gradient of O(B) as

∇O(B) = 2α(BPP
⊤ −RVP

⊤) + 2βBL

+ δBB
⊤
B+ ρB11

⊤. (14)

In practice, we adopt the self-adaptive scheme (SAS) [31]

to update the convergence rate for fast convergence of D-

PLM. Specifically, SAS associates the optimization proce-

dure with an adaptive rate µ. In each iteration, µ is enlarged

or reduced according to the changing values of O(B) be-

tween adjacent iterations. We also set an upper bound for

the number of iterations for DPLM.

Convergence Analysis. Algorithm 1 illustrates the over-

all learning process of ZSECOC for seen categories. The-

oretically, our optimization procedure can be regarded as

the generalized cyclic coordinate descent (CCD) algorith-

m. Previous studies [4, 19] have guaranteed the conver-

gence of such an optimization scheme. Specifically, in each

R/V/B-step, we can obtain either a global or a local opti-

mum. And the overall problem (6) is lower bounded, we can

thus ensure the convergence of our method. In our experi-

ments, the overall method can successfully converge within

t = 5 ∼ 10 iterations, as illustrated in Fig. 3.

Until now, the discriminative ZSECOC (i.e. B) for seen

categories has been obtained, it is still unclear how to gen-

erate the prototype codes of unseen categories (i.e. Bu) for

final recognition. We will elaborate on how to acquire B
u

with semantic knowledge transfer in the following section.

4. Semantic Transfer for Unseen Categories

Straightforwardly, we could design B
u in the same way

as with B, by preserving semantics and data structures of

unseen categories. However, on the one hand, employing

visual data from unseen categories is prohibitive in the train-

ing phase of the standard ZSL setting as ours. This makes

learning B
u intractable due to the lack of data, which is al-

so one major reason why previous ECOC has hardly been

explored for ZSL. On the other hand, we will encounter

domain shift even if we could design B
u in this way, i.e.

visual-semantic mappings trained from seen categories are

not suitable for classifying disjoint unseen instances.
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In [23, 60, 21], several techniques were proposed to

solve domain shift in a transductive way, by incorporating

some examples from unseen categories to refine the visual-

semantic mapping. However, as we claimed, this is op-

posed to our standard ZSL setting. Here, we propose a

simple semantic knowledge transfer strategy to acquire B
u

without employing any instances from unseen categories.

An existing work [61] attempted to utilize a matrix indi-

cating the similarities between seen and unseen categories

to fulfill this task. However, the matrix was provided by

some volunteers, thus it was highly subjective and unreli-

able. As we aim to learn ZSECOC automatically without

manual intervention, we instead employ a matrix that cap-

tures semantic correlations between seen and unseen cat-

egories. Particularly, we construct the similarity matrix

S
u = {suij} ∈ R

C×Cu

based on the cosine distances be-

tween word vectors of seen and unseen categories:

suij =
< φ(yi), φ(y

u
j ) >

||φ(yi)|| · ||φ(yuj )||
, i = 1, ..., C, and j = 1, ..., Cu.

Subsequently, we generate B
u = sign(BS

u). In this way,

S
u can well transfer the semantic knowledge from correlat-

ed seen categories to unseen ones. More importantly, our

S
u is obtained without utilizing any unseen instances.

Zero-Shot Recognition. Based on B, i.e. the category-

level ZSECOC of seen categories, we can learn the visual-

semantic mapping via a set of independent binary classifiers

(e.g. linear SVMs). Specifically, we regard each row of B

as the binary labels for seen categories and one binary clas-

sifier is trained based on all the seen data and the associated

labels. This will result in m independent binary classifiers:

{fi}mi=1. Subsequently, for any unseen data point xu, we

can acquire its code through the outputs of these classifiers,

i.e. F (xu) = [f1(x
u), ..., fm(xu)]⊤. Finally, we formulate

zero-shot recognition as the Hamming decoding process [3]

of ECOC. We assign the unseen category label yj∗ to a test

data point xu as follows:

j∗ = argmin
j

dH(F (xu),bu
j ), (15)

where dH denotes the Hamming distance and b
u
j is the pro-

totype code of the j-th unseen category.

5. Experiments

5.1. Experimental Setup

Datasets and Settings. We conduct our experiments on

three realistic video action datasets, i.e. Olympic Sports

[39], HMDB51 [24] and UCF101 [53], in which there are

totally 783, 6766 and 13320 action videos from 16, 51 and

101 categories, respectively. For action representation, we

adopt the 50688-d features kindly provided by [60], which

are improved dense trajectory (IDT) [55] features encoded

(a) ZSECOC (b) Word Vector (c) Attribute (d) Visual Data

Figure 4. Similarity matrices created using different label embed-

dings on Olympic Sports. Brighter colors depict larger values.

Table 1. Recognition accuracies with different label embeddings.

ZSECOC employs m = 10log2(#category) bits of codes.
Embedding Olympic Sports HMDB51 UCF101

Word Vector 21.6±0.9 (300-d∗) 16.5±3.9 (300-d) 3.2±0.7 (300-d)

Attribute 27.7±4.6 (40-bit) N/A 13.7±0.5 (115-bit)

ZSECOC 59.8±5.6 (40-bit) 22.6±1.2 (70-bit) 15.1±1.7 (100-bit)

*1-d feature of the double-precision floating-point format equals 64-bit binary code.

by Fisher Vectors (FV) [41]. We adopt the skip-gram neu-

ral network model [37] trained on the Google News dataset

(≈ 100 billion words) and represent each category name by

an L2-normalized 300-d word vector. For any multi-word

category name (e.g. ‘ride horse’), we generate its vector by

accumulating the word vectors of each unique word [38].

For the visual-semantic mapping, we adopt a set of inde-

pendent linear SVMs [11], as used by the conventional E-

COC methods [3]. The lengths of ZSECOC are empirically

set to m = 10log2(C + Cu) as suggested in [3], i.e. 40,

70 and 100 w.r.t. Olympic Sports, HMDB51 and UCF101,

respectively. We use cross-validations on seen categories to

determine the hyper-parameters for our model.

Evaluation Metric. Following [60], we adopt the class-

wise data splits by evenly dividing each dataset into

seen/unseen categories, i.e. 8/8, 27/26 and 51/50 splits with

regard to Olympic Sports, HMDB51 and UCF101, respec-

tively. We randomly generate 10 splits for each dataset, and

the average recognition accuracies and standard deviations

are reported. Due to the randomness of initializing B, we re-

port the average results for each split of each dataset based

on 5 trials. We conduct the experiments on a PC with an

Intel quad-core 3.4GHz CPU and 32GB memory.

In the following, we systematically evaluate our ZSEC-

OC in different aspects. Firstly, ZSECOC is compared to

conventional label embebddings. Subsequently, we com-

pare ZSECOC with state-of-the-art ECOC and ZSL meth-

ods. Finally, we visualize various qualitative results and

present some further analyses as well.

5.2. Experimental Results

Evaluation of Label Embeddings. We first evaluate dif-

ferent strategies for the label embedding, including seman-

tic attributes, word vectors and our ZSECOC. For the real-

valued word vectors, we employ linear support vector re-

gression (SVR) instead of SVMs for learning the visual-

semantic mapping. In terms of semantic attributes, [29] and

[22] provided the 40 and 115 category-level attributes for

Olympic Sports and UCF101, respectively. As no semantic
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Table 2. Zero-shot action recognition accuracies on the three datasets in terms of different ZSL methods. Feature: Fisher Vectors (FV) or

Bag of Words (BoW); Label embedding - Attribute (A) or Word Vector (WV); TD: Transductive Dependency on unseen data.
Method Reference Feature Label Embedding TD Olympic Sports HMDB51 UCF101

HAA [28] CVPR 2011 FV A × 46.1±12.4 N/A 14.9±0.8

DAP [26] TPAMI 2014 FV A × 45.4±12.8 N/A 14.3±1.9

IAP [26] TPAMI 2014 FV A × 42.3±12.5 N/A 12.8±2.0

ST [59] ICIP 2015 BoW WV × N/A 13.0±2.7 10.9±1.5

ST [59] ICIP 2015 BoW WV � N/A 15.0±3.0 15.8±2.3

ESZSL [46] ICML 2015 FV WV × 39.6±9.6 18.5±2.0 15.0±1.3

SJE [2] CVPR 2015 FV WV × 28.6±4.9 13.3±2.4 9.9±1.4

SJE [2] CVPR 2015 FV A × 47.5±14.8 N/A 12.0±1.2

UDA [23] ICCV 2015 FV A � N/A N/A 13.2±1.9

UDA [23] ICCV 2015 FV A+WV × N/A N/A 14.0±1.8

MTE [60] ECCV 2016 FV WV × 44.3±8.1 19.7±1.6 15.8±1.3

ZSECOC Ours FV ECOC × 59.8±5.6 (40-bit) 22.6±1.2 (70-bit) 15.1±1.7 (100-bit)

Table 3. Recognition accuracies using different ECOC methods.
Method Olympic Sports HMDB51 UCF101

RSECOC [3] 18.4±0.6 5.3 ±0.1 3.0±0.8

RDECOC [3] 25.3±1.8 6.2±1.0 2.7±0.2

DECOC [42] 40.1±4.2 6.9±1.0 4.8±0.6

Forest-ECOC [9] 51.0±8.7 9.2±0.7 5.9±0.5

ZSECOC 59.8±5.6 22.6±1.2 15.1±1.7

attributes are available for HMDB51, we omit the attribute-

based results on HMDB51. Table 1 shows the ZSAR ac-

curacies on the three datasets. We can have the following

observations: (1) Semantic attributes based embeddings can

achieve better accuracies than word vectors. (2) Our ZSEC-

OC is the best choice for the label embedding because of its

superior characteristics. (3) Shorter codes are required by

ZSECOC compared with word vectors and attributes, lead-

ing to lower memory load.

We further visually depict the similarity matrices (see

Fig. 4) among categories for the three embeddings on

Olympic Sports as in [64]. For the binary attributes and

ZSECOC, we create their matrices based on the Hamming

distance, and the cosine distance is adopted for word vec-

tors. As our ZSECOC is data-driven, we also show the sim-

ilarity matrix of visual data using the Euclidean distance.

We can observe that, in most cases, the colors of the blocks

in Fig. 4 (a) are related to the corresponding ones in Fig.

4 (b) and (d). This indicates that ZSECOC can generate a

similarity matrix that couples the analogical relationship-

s among both word vectors and visual data. As for the

attribute-based matrix, correlations between different cat-

egories are stronger than any other embeddings. Thus, the

category-level ‘separation’ is neglected to some extent. This

is probably the reason why attributes are not so discrimina-

tive as our learned ZSECOC, which owns both category-

level ‘separation’ and ‘association’.

Comparison with Other ECOC Methods. As ZSECOC

is developed from the conventional ECOC, we also com-

pare ZSECOC with several state-of-the-art ECOC method-

s. The competitors include data-independent methods: ran-

dom sparse ECOC (RSECOC) [3] and random dense ECOC

(RDECOC) [3]; data-dependent ones: discriminant ECOC

(DECOC) [42] and Forest-ECOC [9]. All of the approach-

es are implemented using the ECOC Library [10]. For fair

comparison, we employ the same similarity matrix S
u to

equip data-dependent ECOC with the ZSL ability.

The recognition accuracies of different methods are

shown in Table 3. Generally, data-dependent ECOC meth-

ods perform better than data-independent ones. This im-

plies the necessity of incorporating visual data structures

when learning ECOC. Particularly, our ZSECOC consis-

tently achieves the best accuracies on all the three dataset-

s. The performance gains are especially obvious on large-

scale datasets, i.e. HMDB51 and UCF101. This mainly

owes to the employment of both category-level semantic

correlations and instance-level visual data structures when

designing our ZSECOC.

Comparison with State-of-the-Art ZSL Methods. We

compare ZSECOC with various contemporary ZSL meth-

ods: (1) Direct/Indirect Attribute Prediction (DAP/IAP)

[26]: the classic attribute-based ZSL strategy; (2) Human

Actions by Attributes (HAA) [28]: we adopt the simpli-

fied version provided in [60]; (3) the Self-Training model

(ST) [59]: domain shift is solved by a transductive self-

training procedure; (4) Embarrassingly Simple Zero-Shot

Learning (ESZSL) [46]: the mean square loss is used in-

stead of the regression loss w.r.t. the objective function; (5)

Structured Joint Embedding (SJE) [2]: a triplet hinge loss is

employed to ensure more related labels correspond to high-

er mapping values from visual features; (6) Unsupervised

Domain Adaptation (UDA) [23]: a target domain specific

dictionary is learned by using some unseen data; (7) Multi-

Task Embedding (MTE) [60]: multi-task regression is de-

veloped to learn the visual-semantic mapping, together with

a data augmentation strategy.

We notice that some compared methods (e.g. UDA and

ST) require the access to unseen instances and we stil-

l compare with their results under this transductive setting.

However, [59, 60] developed some data augmentation tech-

niques by using examples from some auxiliary categories.

In this setting, categories used for training may be re-used

during testing, which seriously violates the fundamental as-
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Figure 5. Top-5 returned video examples for unseen categories on Olympic Sports (left) and HMDB51 (right).
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Figure 6. t-SNE [36] visualization between different embeddings of unseen categories w.r.t. two representative (S)plits on Olympic Sports.

sumption of ZSL that training/test categories should be mu-

tually excluded. We therefore do not compare with their

results in this data augmentation setting.

All the comparison results are illustrated in Table 2.

We can conclude that the compared methods can usually

achieve better performance by leveraging attributes. This is

in accordance with the observations from Table 1. Overal-

l, our ZSECOC consistently outperforms other competitors

on Olympic Sports and HMDB51, often by a large margin.

It is interesting that ZSECOC also has the advantage over

several transductive methods due to its discrimination and

semantic transfer ability. On UCF101, ZSECOC is superi-

or to most alternatives and performs slightly worse than ST

and MTE. However, ST is based on a transductive setting

with the access to unseen data and MTE utilizes the 300-d

(1.92×104-bit) word vector based embedding which is not

so scalable as our 100-bit compact binary embedding.

Qualitative Results. We visualize some ZSAR results in

Fig. 5 with the top-5 returned videos corresponding to four

unseen categories. The videos within red rectangles depict

false-positive examples. Interestingly, we are able to recog-

nize the ‘bowling’ and ‘diving’ actions regardless of differ-

ent view points. As for ‘golf’, the first returned video is mis-

classified since ‘throwing a baseball’ extremely resembles

‘playing golf’. Unfortunately, ZSECOC cannot well recog-

nize ‘smoking’ partially because the IDT features are not so

sensitive to the subtle thin smoke. Fig. 6 further visually de-

pict the unseen categories in terms of different embeddings

on Olympic Sports to facilitate better understanding of our

outstanding performance. As seen in Fig. 6, the ZSECOC-

based embeddings appear to be more clustered than those

using the original word vector/attribute-based embeddings.

This indicates that different unseen categories can be better

separated by using our ZSECOC.

Effects of Code Lengths. We show our performance with

the increasing numbers of bits. In general, longer codes

can achieve better accuracies, especially on larger datasets.

Specifically, with 110/120 bits on UCF101, our ZSECOC
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Figure 7. Recognition accuracies with increasing code lengths. All

the compared methods adopt the fixed-length 300-d word vectors.

can even outperform the best two methods in Table 2, i.e.

ST and MTE, which is really encouraging. On the other

hand, ZSECOC can obtain the state-of-the-art results with

very short codes (e.g. 20 bits w.r.t. Olympic Sports), and

this is highly desirable in realistic scenarios.

6. Conclusion

In this paper, we formulated zero-shot learning as de-

signing error-correcting output codes (ECOC). Discrimina-

tive ZSECOC was learned in terms of preserving category-

level semantics as well as maintaining intrinsic visual data

structures. A joint optimization scheme was proposed to it-

eratively learn the optimal ZSECOC for seen categories. An

intuitive semantic transfer strategy was developed to obtain

the ZSECOC of unseen categories without any transduc-

tive dependency on test data. The extensive experiments

in terms of zero-shot action recognition on three public

video action datasets demonstrated the state-of-the-art per-

formance of the proposed ZSECOC.
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