
OctNet: Learning Deep 3D Representations at High Resolutions

Gernot Riegler1 Ali Osman Ulusoy2 Andreas Geiger2,3

1Institute for Computer Graphics and Vision, Graz University of Technology
2Autonomous Vision Group, MPI for Intelligent Systems Tübingen

3Computer Vision and Geometry Group, ETH Zürich

riegler@icg.tugraz.at {osman.ulusoy,andreas.geiger}@tue.mpg.de

Abstract

We present OctNet, a representation for deep learning

with sparse 3D data. In contrast to existing models, our rep-

resentation enables 3D convolutional networks which are

both deep and high resolution. Towards this goal, we ex-

ploit the sparsity in the input data to hierarchically parti-

tion the space using a set of unbalanced octrees where each

leaf node stores a pooled feature representation. This al-

lows to focus memory allocation and computation to the

relevant dense regions and enables deeper networks without

compromising resolution. We demonstrate the utility of our

OctNet representation by analyzing the impact of resolution

on several 3D tasks including 3D object classification, ori-

entation estimation and point cloud labeling.

1. Introduction

Over the last several years, convolutional networks have

lead to substantial performance gains in many areas of com-

puter vision. In most of these cases, the input to the network

is of two-dimensional nature, e.g., in image classification

[18], object detection [35] or semantic segmentation [13].

However, recent advances in 3D reconstruction [33] and

graphics [21] allow capturing and modeling large amounts

of 3D data. At the same time, large 3D repositories such as

ModelNet [47], ShapeNet [6] or 3D Warehouse1 as well as

databases of 3D object scans [7] are becoming increasingly

available. These factors have motivated the development of

convolutional networks that operate on 3D data.

Most existing 3D network architectures [8,29,34,47] re-

place the 2D pixel array by its 3D analogue, i.e., a dense and

regular 3D voxel grid, and process this grid using 3D con-

volution and pooling operations. However, for dense 3D

data, computational and memory requirements grow cubi-

cally with the resolution. Consequently, existing 3D net-

works are limited to low 3D resolutions, typically in the

order of 303 voxels. To fully exploit the rich and detailed

1https://3dwarehouse.sketchup.com

O
ct

N
et

D
en

se
3

D
C

o
n
v

N
et

D
en

se
3

D
C

o
n
v

N
et

(a) Layer 1: 323 (b) Layer 2: 163 (c) Layer 3: 83

Figure 1: Motivation. For illustration purposes, we

trained a dense convolutional network to classify 3D shapes

from [47]. Given a voxelized bed as input, we show the

maximum response across all feature maps at intermediate

layers (a-c) of the network before pooling. Higher activa-

tions are indicated with darker colors. Voxels with zero

activation are not displayed. The first row visualizes the

responses in 3D while the second row shows a 2D slice.

Note how voxels close to the object contour respond more

strongly than voxels further away. We exploit the sparsity

in our data by allocating memory and computations using a

space partitioning data structure (bottom row).

geometry of our 3D world, however, much higher resolution

networks are required.

In this work, we build on the observation that 3D data is

often sparse in nature, e.g., point clouds, or meshes, result-

ing in wasted computations when applying 3D convolutions

13577

https://3dwarehouse.sketchup.com

naı̈vely. We illustrate this in Fig. 1 for a 3D classification

example. Given the 3D meshes of [47] we voxelize the input

at a resolution of 643 and train a simple 3D convolutional

network to minimize a classification loss. We depict the

maximum of the responses across all feature maps at dif-

ferent layers of the network. It is easy to observe that high

activations occur only near the object boundaries.

Motivated by this observation, we propose OctNet, a 3D

convolutional network that exploits this sparsity property.

Our OctNet hierarchically partitions the 3D space into a set

of unbalanced octrees [31]. Each octree splits the 3D space

according to the density of the data. More specifically, we

recursively split octree nodes that contain a data point in its

domain, i.e., 3D points, or mesh triangles, stopping at the

finest resolution of the tree. Therefore, leaf nodes vary in

size, e.g., an empty leaf node may comprise up to 83 = 512
voxels for a tree of depth 3 and each leaf node in the octree

stores a pooled summary of all feature activations of the

voxel it comprises. The convolutional network operations

are directly defined on the structure of these trees. There-

fore, our network dynamically focuses computational and

memory resources, depending on the 3D structure of the in-

put. This leads to a significant reduction in computational

and memory requirements which allows for deep learning

at high resolutions. Importantly, we also show how essen-

tial network operations (convolution, pooling or unpooling)

can be efficiently implemented on this new data structure.

We demonstrate the utility of the proposed OctNet on

three different problems involving three-dimensional data:

3D classification, 3D orientation estimation of unknown

object instances and semantic segmentation of 3D point

clouds. In particular, we show that the proposed OctNet en-

ables significant higher input resolutions compared to dense

inputs due to its lower memory consumption, while achiev-

ing identical performance compared to the equivalent dense

network at lower resolutions. At the same time we gain sig-

nificant speed-ups at resolutions of 1283 and above. Using

our OctNet, we investigate the impact of high resolution in-

puts wrt. accuracy on the three tasks and demonstrate that

higher resolutions are particularly beneficial for orientation

estimation and semantic point cloud labeling. Our code is

available from the project website2.

2. Related Work

While 2D convolutional networks have proven very suc-

cessful in extracting information from images [11, 13, 18,

35, 41, 42, 46, 48, 49], there exists comparably little work

on processing three-dimensional data. In this Section, we

review existing work on dense and sparse models.

Dense Models: Wu et al. [47] trained a deep belief network

on shapes discretized to a 303 voxel grid for object classi-

2https://github.com/griegler/octnet

fication, shape completion and next best view prediction.

Maturana et al. [29] proposed VoxNet, a feed-forward con-

volutional network for classifying 323 voxel volumes from

RGB-D data. In follow-up work, Sedaghat et al. [1] showed

that introducing an auxiliary orientation loss increases clas-

sification performance over the original VoxNet. Similar

models have also been exploited for semantic point cloud

labeling [20] and scene context has been integrated in [51].

Recently, generative models [36] and auto-encoders [5,

39] have demonstrated impressive performance in learning

low-dimensional object representations from collections of

low-resolution (323) 3D shapes. Interestingly, these low-

dimensional representations can be directly inferred from a

single image [14] or a sequence of images [8].

Due to computational and memory limitations, all afore-

mentioned methods are only able to process and generate

shapes at a very coarse resolution, typically in the order of

303 voxels. Besides, when high-resolution outputs are de-

sired, e.g., for labeling 3D point clouds, inefficient sliding-

window techniques with a limited receptive field must be

adopted [20]. Increasing the resolution naı̈vely [32, 40, 52]

reduces the depth of the networks and hence their expres-

siveness. In contrast, the proposed OctNets allow for train-

ing deep architectures at significant higher resolutions.

Sparse Models: There exist only few network architec-

tures which explicitly exploit sparsity in the data. As these

networks do not require exhaustive dense convolutions they

have the potential of handling higher resolutions.

Engelcke et al. [10] proposed to calculate convolutions

at sparse input locations by pushing values to their target

locations. This has the potential to reduce the number of

convolutions but does not reduce the amount of memory re-

quired. Consequently, their work considers only very shal-

low networks with up to three layers.

A similar approach is presented in [15, 16] where sparse

convolutions are reduced to matrix operations. Unfortu-

nately, the model only allows for 2 × 2 convolutions and

results in indexing and copy overhead which prevents pro-

cessing volumes of larger resolution (the maximum reso-

lution considered in [15, 16] is 803 voxels). Besides, each

layer decreases sparsity and thus increases the number of

operations, even at a single resolution. In contrast, the num-

ber of operations remains constant in our model.

Li et al. [27] proposed field probing networks which

sample 3D data at sparse points before feeding them into

fully connected layers. While this reduces memory and

computation, it does not allow for exploiting the distributed

computational power of convolutional networks as field

probing layers can not be stacked, convolved or pooled.

Jampani et al. [22] introduced bilateral convolution lay-

ers (BCL) which map sparse inputs into permutohedral

space where learnt convolutional filters are applied. Their

work is related to ours with respect to efficiently exploiting

3578

https://github.com/griegler/octnet

the sparsity in the input data. However, in contrast to BCL

our method is specifically targeted at 3D convolutional net-

works and can be immediately dropped in as a replacement

in existing network architectures.

3. Octree Networks

To decrease the memory footprint of convolutional net-

works operating on sparse 3D data, we propose an adaptive

space partitioning scheme which focuses computations on

the relevant regions. As mathematical operations of deep

networks, especially convolutional networks, are best un-

derstood on regular grids, we restrict our attention to data

structures on 3D voxel grids. One of the most popular space

partitioning structures on voxel grids are octrees [30] which

have been widely adopted due to their flexible and hier-

archical structure. Areas of application include depth fu-

sion [23], image rendering [26] and 3D reconstruction [44].

In this paper, we propose 3D convolutional networks on oc-

trees to learn representations from high resolution 3D data.

An octree partitions the 3D space by recursively subdi-

viding it into octants. By subdividing only the cells which

contain relevant information (e.g., cells crossing a surface

boundary or cells containing one or more 3D points) storage

can be allocated adaptively. Densely populated regions are

modeled with high accuracy (i.e., using small cells) while

empty regions are summarized by large cells in the octree.

Unfortunately, vanilla octree implementations [30] have

several drawbacks that hamper its application in deep net-

works. While octrees reduce the memory footprint of the

3D representation, most versions do not allow for efficient

access to the underlying data. In particular, octrees are typi-

cally implemented using pointers, where each node contains

a pointer to its children. Accessing an arbitrary element (or

the neighbor of an element) in the octree requires a traversal

starting from the root until the desired cell is reached. Thus,

the number of memory accesses is equal to the depth of the

tree. This becomes increasingly costly for deep, i.e., high-

resolution, octrees. Convolutional network operations such

as convolution or pooling require frequent access to neigh-

boring elements. It is thus critical to utilize an octree design

that allows for fast data access.

We tackle these challenges by leveraging a hybrid grid-

octree data structure which we describe in Section 3.1. In

Section 3.2, we show how 3D convolution and pooling oper-

ations can be implemented efficiently on this data structure.

3.1. Hybrid Grid­Octree Data Structure

The above mentioned problems with the vanilla octree

data structure increase with the octree depth. Instead of rep-

resenting the entire high resolution 3D input with a single

unbalanced octree, we leverage a hybrid grid-octree struc-

ture similar to the one proposed by Miller et al. [31]. The

key idea is to restrict the maximal depth of an octree to a

Figure 2: Hybrid Grid-Octree Data Structure. This ex-

ample illustrates a hybrid grid-octree consisting of 8 shal-

low octrees indicated by different colors. Using 2 shallow

octrees in each dimension with a maximum depth of 3 leads

to a total resolution of 163 voxels.

(a) Shallow Octree

1

0 1

01010000

0 1

01010000

0 0 0 0

(b) Bit-Representation

Figure 3: Bit Representation. Shallow octrees can be

efficiently encoded using bit-strings. Here, the bit-string

1 01010000 00000000 01010000 00000000 01010000 0...

defines the octree in (a). The corresponding tree is shown

in (b). The color of the voxels corresponds to the split level.

small number, e.g., three, and place several such shallow

octrees along a regular grid (Fig. 2). While this data struc-

ture may not be as memory efficient as the standard octree,

significant compression ratios can still be achieved. For in-

stance, a single shallow octree that does not contain input

data stores only a single vector, instead of 83 = 512 vectors

for all voxels at the finest resolution at depth 3.

An additional benefit of a collection of shallow octrees

is that their structure can be encoded very efficiently us-

ing a bit string representation which further lowers access

time and allows for efficient GPGPU implementations [31].

Given a shallow octree of depth 3, we use 73 bit to repre-

sent the complete tree. The first bit with index 0 indicates,

if the root node is split, or not. Further, bits 1 to 8 indicate

if one of the child nodes is subdivided and bits 9 to 72 de-

note splits of the grandchildren, see Fig. 3. A tree depth of

3 gives a good trade-off between memory consumption and

computational efficiency. Increasing the octree depth results

in an exponential growth in the required bits to store the tree

structure and further increases the cell traversal time.

Using this bit-representation, a single voxel in the shal-

3579

low octree is fully characterised by its bit index. This index

determines the depth of the voxel in the octree and therefore

also the voxel size. Instead of using pointers to the parent

and child nodes, simple arithmetic can be used to retrieve

the corresponding indices of a voxel with bit index i:

pa(i) =

⌊
i− 1

8

⌋

, (1)

ch(i) = 8 · i+ 1 . (2)

In contrast to [31], we associate a data container (for storing

features vectors) with all leaf nodes of each shallow tree.

We allocate the data of a shallow octree in a contiguous data

array. The offset associated with a particular voxel in this

array can be computed as follows:

data idx(i) = 8

pa(i)−1
∑

j=0

bit(j) + 1

︸ ︷︷ ︸

#nodes above i

−

i−1∑

j=0

bit(j)

︸ ︷︷ ︸

#split nodes pre i

+mod (i− 1, 8)
︸ ︷︷ ︸

offset

.

(3)

Here, mod denotes the modulo operator and bit returns the

tree bit-string value at i. See supp. document for an exam-

ple. Both sum operations can be efficiently implemented

using bit counting intrinsics (popcnt). The data arrays of

all shallow octrees are concatenated into a single contiguous

data array during training and testing to reduce I/O latency.

3.2. Network Operations

Given the hybrid grid-octree data structure introduced in

the previous Section, we now discuss the efficient imple-

mentation of network operations on this data structure. We

will focus on the most common operations in convolutional

networks [13, 18, 35]: convolution, pooling and unpooling.

Note that point-wise operations, like activation functions,

do not differ in their implementation as they are indepen-

dent of the data structure.

Let us first introduce the notation which will be used

throughout this Section. Ti,j,k denotes the value of a 3D

tensor T at location (i, j, k). Now assume a hybrid grid-

octree structure with D ×H ×W unbalanced shallow oc-

trees of maximum depth 3. Let O[i, j, k] denote the value

of the smallest cell in this structure which comprises the

voxel (i, j, k). Note that in contrast to the tensor notation,

O[i1, j1, k1] and O[i2, j2, k2] with i1 6= i2∨ j1 6= j2∨k1 6=
k2 may refer to the same voxel in the hybrid grid-octree,

depending on the size of the voxels. We obtain the index

of the shallow octree in the grid via (⌊ i
8⌋, ⌊

j
8⌋, ⌊

k
8 ⌋) and the

local index of the voxel at the finest resolution in that octree

by (mod (i, 8),mod (j, 8),mod (k, 8)).

(a) Standard Convolution (b) Efficient Convolution

Figure 4: Convolution. This figure illustrates the convolu-

tion of a 33 kernel (red) with a 83 grid-octree cell (black).

Only 2 of the 3 dimensions are shown. A naı̈ve implemen-

tation evaluates the kernel at every location (i, j, k) within

a grid-octree cell as shown in (a). This results in ∼14k mul-

tiplications for this example. In contrast, (b) depicts our

efficient implementation of the same operation which re-

quires only ∼3k multiplications. As all 83 voxels inside the

grid-octree cell are the same value, the convolution kernel

inside the cell needs to be evaluated only once. Voxels at the

cell boundary need to integrate information from neighbor-

ing cells. This can be efficiently implemented by summing

truncated kernels. See our supp. document for details.

Given this notation, the mapping from a grid-octree O to

a tensor T with compatible dimensions is given by

oc2ten : Ti,j,k = O[i, j, k] . (4)

Similarly, the reverse mapping is given by

ten2oc : O[i, j, k] = pool voxels
(̄i,j̄,k̄)∈Ω[i,j,k]

(Tī,j̄,k̄) , (5)

where pool voxels (·) is a pooling function (e.g., average-

or max-pooling) which pools all voxels in T over the small-

est grid-octree cell comprising location (i, j, k), denoted by

Ω[i, j, k]. This pooling is necessary as a single voxel in O
can cover up to 83 = 512 elements of T , depending on its

size |Ω[i, j, k]|.
Remark: With the two functions defined above, we could

wrap any network operation f defined on 3D tensors via

g(O) = ten2oc(f(oc2ten(O))) . (6)

However, this would require a costly conversion from the

memory efficient grid-octrees to a regular 3D tensor and

back. Besides, storing a dense tensor in memory limits the

maximal resolution. We therefore define our network oper-

ations directly on the hybrid grid-octree data structure.

Convolution The convolution operation is the most im-

portant, but also the most computational expensive opera-

tion in deep convolutional networks. For a single feature

3580

(a) Input (b) Output

Figure 5: Pooling. The 23 pooling operation on the grid-

octree structure combines 8 neighbouring shallow octrees

(a) into one shallow octree (b). The size of each voxel is

halved and copied to the new shallow octree structure. Vox-

els on the finest resolution are pooled. Different shallow

octrees are depicted in different colors.

map, convolving a 3D tensor T with a 3D convolution ker-

nel W ∈ R
L×M×N can be written as

T out

i,j,k =
L−1∑

l=0

M−1∑

m=0

N−1∑

n=0

Wl,m,n · T in

î,ĵ,k̂
, (7)

with î = i− l+ ⌊L/2⌋, ĵ = j −m+ ⌊M/2⌋, k̂ = k− n+
⌊N/2⌋. Similarly, the convolutions on the grid-octree data

structure are defined as

Oout[i, j, k] = pool voxels
(̄i,j̄,k̄)∈Ω[i,j,k]

(Tī,j̄,k̄) (8)

Ti,j,k =

L−1∑

l=0

M−1∑

m=0

N−1∑

n=0

Wl,m,n ·Oin [̂i, ĵ, k̂] .

While this calculation yields the same result as the tensor

convolution in Eq. (7) with the oc2ten, ten2oc wrapper, we

are now able to define a computationally more efficient con-

volution operator. Our key observation is that for small con-

volution kernels and large voxels, Ti,j,k is constant within

a small margin of the voxel due to its constant support

Oin [̂i, ĵ, k̂]. Thus, we only need to compute the convolu-

tion within the voxel once, followed by convolution along

the surface of the voxel where the support changes due to

adjacent voxels taking different values (Fig. 4). This mini-

mizes the number of calculations by a factor of 4 for voxels

of size 83, see supp. material for a detailed derivation. At

the same time, it enables a better caching mechanism.

Pooling Another important operation in deep convolu-

tional networks is pooling. Pooling reduces the spatial res-

olution of the input tensor and aggregates higher-level in-

formation for further processing, thereby increasing the re-

ceptive field and capturing context. For instance, strided

23 max-pooling divides the input tensor T in into 23 non-

overlapping regions and computes the maximum value

(a) Input (b) Output

Figure 6: Unpooling. The 23 unpooling operation trans-

forms a single shallow octree of depth d as shown in (a)

into 8 shallow octrees of depth d− 1, illustrated in (b). For

each node at depth zero one shallow octree is spawned. All

other voxels double in size. Different shallow octrees are

depicted in different colors.

within each region. Formally, we have

T out

i,j,k = max
l,m,n∈[0,1]

(
T in

2i+l,2j+m,2k+n

)
, (9)

where T in ∈ R
2D×2H×2W and T out ∈ R

D×H×W .

To implement pooling on the grid-octree data structure

we reduce the number of shallow octrees. For an input grid-

octree Oin with 2D× 2H × 2W shallow octrees, the output

Oout contains D × H × W shallow octrees. Each voxel

of Oin is halved in size and copied one level deeper in the

shallow octree. Voxels at depth 3 in Oin are pooled. This

can be formalized as

Oout[i, j, k] =

{

Oin[2i, 2j, 2k] if vxd(2i, 2j, 2k) < 3

P else

P = max
l,m,n∈[0,1]

(Oin[2i+ l, 2j +m, 2k + n]) , (10)

where vxd(·) computes the depth of the indexed voxel in

the shallow octree. A visual example is depicted in Fig. 5.

Unpooling For several tasks such as semantic segmenta-

tion, the desired network output is of the same size as the

network input. While pooling is crucial to increase the re-

ceptive field size of the network and capture context, it loses

spatial resolution. To increase the resolution of the net-

work, U-shaped network architectures have become pop-

ular [2, 52] which encode information using pooling oper-

ations and increase the resolution in a decoder part using

unpooling or deconvolution layers [50], possibly in com-

bination with skip-connections [9, 18] to increase preci-

sion. The simplest unpooling strategy uses nearest neigh-

bour interpolation and can be formalized on dense input

T in ∈ R
D×H×W and output T out ∈ R

2D×2H×2W tensors

as follows:

T out

i,j,k = T in

⌊i/2⌋,⌊j/2⌋,⌊k/2⌋ . (11)

3581

Again, we can define the analogous operation on the hybrid

grid-octree data structure by

Oout[i, j, k] = Oin[⌊i/2⌋, ⌊j/2⌋, ⌊k/2⌋] . (12)

This operation also changes the data structure: The number

of shallow octrees increases by a factor of 8, as each node

at depth 0 spawns a new shallow octree. All other nodes

double their size. Thus, after this operation the tree depth is

decreased. See Fig. 6 for a visual example of this operation.

Remark: To capture fine details, voxels can be split again

at the finest resolution according to the original octree of

the corresponding pooling layer. This allows us to take full

advantage of skip connections. We follow this approach in

our semantic 3D point cloud labeling experiments.

4. Experimental Evaluation

In this Section we leverage our OctNet representation to

investigate the impact of input resolution on three different

3D tasks: 3D shape classification, 3D orientation estimation

and semantic segmentation of 3D point clouds. To isolate

the effect of resolution from other factors we consider sim-

ple network architectures. Orthogonal techniques like data

augmentation, joint 2D/3D modeling or ensemble learning

are likely to further improve the performance of our models.

Implementation We implemented the grid-octree data

structure, all layers including the necessary forward and

backward functions, as well as utility methods to create the

data structure from point clouds and meshes, as a stand-

alone C++/CUDA library. This allows the usage of our code

within all existing deep learning frameworks. For our ex-

perimental evaluation we used the Torch3 framework.

4.1. 3D Classification

We use the popular ModelNet10 dataset [47] for the 3D

shape classification task. The dataset contains 10 shape cat-

egories and consists of 3991 3D shapes for training and 908
3D shapes for testing. Each shape is provided as a trian-

gular mesh, oriented in a canonical pose. We convert the

triangle meshes to dense respective grid-octree occupancy

grids, where a voxel is set to 1 if it intersects the mesh. We

scale each mesh to fit into a 3D grid of (N − P)3 voxels,

where N is the number of voxels in each dimension of the

input grid and P = 2 is a padding parameter.

We first study the influence of the input resolution on

memory usage, runtime and classification accuracy. To-

wards this goal, we create a series of networks of different

input resolution from 83 to 2563 voxels. Each network con-

sists of several blocks which reduce resolution by half until

we reach a resolution of 83. Each block comprises two con-

volutional layers (33 filters, stride 1) and one max-pooling

3http://torch.ch/

83 163 323 643 1283 2563

Input Resolution

0

10

20

30

40

50

60

70

80

M
e
m

o
ry

[G
B

]

OctNet

DenseNet

(a) Memory

83 163 323 643 1283 2563

Input Resolution

0

2

4

6

8

10

12

14

16

R
u

n
ti

m
e

[s
]

OctNet

DenseNet

(b) Runtime

83 163 323 643 1283 2563

Input Resolution

0.86

0.88

0.90

0.92

0.94

A
cc

u
ra

cy

OctNet 1

OctNet 2

OctNet 3

(c) Accuracy

83 163 323 643 1283 2563

Input Resolution

0.86

0.88

0.90

0.92

0.94

A
cc

u
ra

cy

OctNet

DenseNet

VoxNet

(d) Accuracy

Figure 7: Results on ModelNet10 Classification Task.

layer (23 filters, stride 2). The number of feature maps in the

first block is 8 and increases by 6 with every block. After the

last block we add a fully-connected layer with 512 units and

a final output layer with 10 units. Each convolutional layer

and the first fully-connected layer are followed by a recti-

fied linear unit [25] as activation function and the weights

are initialized as described in [17]. We use the standard

cross-entropy loss for training and train all networks for 20
epochs with a batch size of 32 using Adam [24]. The initial

learning rate is set to 0.001 and we decrease the learning

rate by a factor of 10 after 15 epochs.

Overall, we consider three different types of networks:

the original VoxNet architecture of Maturana et al. [29]

which operates on a fixed 323 voxel grid, the proposed Oct-

Net and a dense version of it which we denote “DenseNet”

in the following. While performance gains can be ob-

tained using orthogonal approaches such as network ensem-

bles [5] or a combination of 3D and 2D convolutional net-

works [19,41], in this paper we deliberately focus on “pure”

3D convolutional network approaches to isolate the effect of

resolution from other influencing factors.

Fig. 7 shows our results. First, we compare the mem-

ory consumption and run-time of our OctNet wrt. the dense

baseline approach, see Fig. 7a and 7b. Importantly, OctNets

require significantly less memory and run-time for high in-

put resolutions compared to dense input grids. Using a

batch size of 32 samples, our OctNet easily fits in a modern

GPU’s memory (12GB) for an input resolution of 2563. In

contrast, the corresponding dense model fits into the mem-

ory only for resolutions ≤643. A more detailed analysis of

the memory consumption wrt. the sparsity in the data is pro-

vided in the supp. document. OctNets also run faster than

their dense counterparts for resolutions >643. For resolu-

tions ≤643, OctNets run slightly slower due to the overhead

incurred by the grid-octree representation and processing.

3582

http://torch.ch/

6
4
3

3
2
3

1
63

8
3

Bathtub Bed Dresser N. Stand

Figure 8: Voxelized 3D Shapes from ModelNet10.

Leveraging our OctNets, we now compare the impact

of input resolution with respect to classification accuracy.

Fig. 7c shows the results of different OctNet architectures

where we keep the number of convolutional layers per block

fixed to 1, 2 and 3. Fig. 7d shows a comparison of accuracy

with respect to DenseNet and VoxNet when keeping the ca-

pacity of the model, i.e., the number of parameters, constant

by removing max-pooling layers from the beginning of the

network. We first note that despite its pooled representation,

OctNet performs on par with its dense equivalent. This con-

firms our initial intuition (Fig. 1) that sparse data allows for

allocating resources adaptively without loss in performance.

Furthermore, both models outperform the shallower VoxNet

architecture, indicating the importance of network depth.

Regarding classification accuracy we observed improve-

ments for lower resolutions but diminishing returns beyond

an input resolution of 323 voxels. Taking a closer look at

the confusion matrices in Fig. 9, we observe that higher in-

put resolution helps for some classes, e.g., bathtub, while

others remain ambiguous independently of the resolution,

e.g., dresser vs. night stand. We visualize this lack of dis-

criminative power by showing voxelized representations of

3D shapes from the ModelNet10 database Fig. 8. While

bathtubs look similar to beds (or sofas, tables) at low reso-

lution they can be successfully distinguished at higher reso-

lutions. However, a certain ambiguity between dresser and

night stand remains.

4.2. 3D Orientation Estimation

In this Section, we investigate the importance of input

resolution on 3D orientation estimation. Most existing ap-

proaches to 3D pose estimation [3,4,38,43,45] assume that

the true 3D shape of the object instance is known. To assess

b
a
th

tu
b

b
e
d

ch
a
ir

d
e
sk

d
re

ss
e
r

m
o
n

it
o
r

n
.

st
a
n

d

so
fa

ta
b
le

to
il

e
t

toilet

table

sofa

n. stand

monitor

dresser

desk

chair

bed

bathtub

0.01 0.01 0.01 0.97

0.10 0.01 0.89

0.04 0.03 0.01 0.92

0.01 0.01 0.30 0.58 0.09

0.03 0.97

0.87 0.05 0.08

0.70 0.02 0.09 0.19

0.97 0.03

0.95 0.01 0.03 0.01

0.76 0.10 0.02 0.08 0.04

8
3

b
a
th

tu
b

b
e
d

ch
a
ir

d
e
sk

d
re

ss
e
r

m
o
n

it
o
r

n
.

st
a
n

d

so
fa

ta
b
le

to
il

e
t

toilet

table

sofa

n. stand

monitor

dresser

desk

chair

bed

bathtub

0.01 0.02 0.97

0.22 0.78

0.01 0.02 0.01 0.01 0.95

0.01 0.17 0.77 0.05

0.01 0.02 0.96 0.01

0.01 0.87 0.12

0.81 0.01 0.02 0.03 0.12

0.99 0.01

0.99 0.01

0.92 0.08

32
3

Figure 9: Confusion Matrices on ModelNet10.

83 163 323 643 1283 2563 5123

Input Resolution

3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

M
e
a
n

A
n

g
u

la
r

E
rr

o
r
µ
(φ
)[
◦
]

OctNet 1

OctNet 2

OctNet 3

(a) Mean Angular Error

163 323 643 1283

Input Resolution

6

8

10

12

14

M
e
a
n

A
n

g
u

la
r

E
rr

o
r
µ
(φ
)[
◦
]

OctNet

(b) Mean Angular Error

Figure 10: Orientation Estimation on ModelNet10.

the generalization ability of 3D convolutional networks, we

consider a slightly different setup where only the object cat-

egory is known. After training a model on a hold-out set of

3D shapes from a single category, we test the ability of the

model to predict the 3D orientation of unseen 3D shapes

from the same category.

More concretely, given an instance of an object category

with unknown pose, the goal is to estimate the rotation with

respect to the canonical pose. We utilize the 3D shapes from

the chair class of the ModelNet10 dataset and rotate them

randomly between ±15◦ around each axis. We use the same

network architectures and training protocol as in the classi-

fication experiment, except that the networks regress orien-

tations. We use unit quaternions to represent 3D rotations

and train our networks with an Euclidean loss. For small an-

gles, this loss is a good approximation to the rotation angle

φ = arccos(2〈q1, q2〉
2 − 1) between quaternions q1, q2.

Fig. 10 shows our results using the same naming con-

vention as in the previous Section. We observe that fine

details are more important compared to the classification

task. For the OctNet 1-3 architectures we observe a steady

increase in performance, while for networks with constant

capacity across resolutions (Fig. 10b), performance levels

beyond 1283 voxels input resolution. Qualitative results of

the latter experiment are shown in Fig. 11. Each row shows

10 different predictions for two randomly selected chair

instance over several input resolutions, ranging from 163

to 1283. Darker colors indicate larger errors which occur

more frequently at lower resolutions. In contrast, predic-

tions at higher network resolutions cluster around the true

pose. Note that learning a dense 3D representation at a res-

olution of 1283 voxels or beyond would not be feasible.

3583

16
3

32
3

64
3

128
3

Figure 11: Orientation Estimation on ModelNet10. This

figure illustrates 10 rotation estimates for 3 chair instances

while varying the input resolution from 163 to 1283. Darker

colors indicate larger deviations from the ground truth.

4.3. 3D Semantic Segmentation

In this Section, we evaluate the proposed OctNets on the

problem of labeling 3D point cloud with semantic informa-

tion. We use the RueMonge2014 dataset [37] that provides

a colored 3D point cloud of several Haussmanian style fa-

cades, comprising ∼1 million 3D points in total. The labels

are window, wall, balcony, door, roof, sky and shop.

For this task, we train a U-shaped network [2, 52] on

three different input resolutions, 643, 1283 and 2563, where

the voxel size was selected such that the height of all build-

ings fits into the input volume. We first map the point cloud

into the grid-octree structure. For all leaf nodes which con-

tain more than one point, we average the input features and

calculate the majority vote of the ground truth labels for

training. As features we use the binary voxel occupancy, the

RGB color, the normal vector and the height above ground.

Due to the small number of training samples, we augment

the data for this task by applying small rotations.

Our network architecture comprises an encoder and a de-

coder part. The encoder part consists of four blocks which

comprise 2 convolution layers (33 filters, stride 1) followed

by one max-pooling layer each. The decoder consists of

four blocks which comprise 2 convolutions (33 filters, stride

1) followed by a guided unpooling layer as discussed in the

previous Section. Additionally, after each unpooling step all

features from the last layer of the encoder at the same res-

olution are concatenated to provide high-resolution details.

All networks are trained with a per voxel cross entropy loss

using Adam [24] and a learning rate of 0.0001.

Table 1 compares the proposed OctNet to several state

of the art approaches on the facade labeling task following

the extended evaluation protocol of [12]. The 3D points of

Average Overall IoU

Riemenschneider et al. [37] - - 42.3

Martinovic et al. [28] - - 52.2

Gadde et al. [12] 68.5 78.6 54.4

OctNet 643 60.0 73.6 45.6

OctNet 1283 65.3 76.1 50.4

OctNet 2563 73.6 81.5 59.2

Table 1: Semantic Segmentation on RueMonge2014.

(a) Voxelized Input (b) Voxel Estimates

(c) Estimated Point Cloud (d) Ground Truth Point Cloud

Figure 12: OctNet 2563 Facade Labeling Results.

the test set are assigned the label of the corresponding grid-

octree voxels. As evaluation measures we use overall pixel

accuracy TP
TP+FN

over all 3D points, average class accu-

racy, and intersection over union TP
TP+FN+FP

over all classes.

Here, FP, FN and TP denote false positives, false negatives

and true positives, respectively.

Our results clearly show that increasing the input reso-

lution is essential to obtain state-of-the-art results, as finer

details vanish at coarser resolutions. Qualitative results for

one facade are provided in Fig. 12. Further results are pro-

vided in the supp. document.

5. Conclusion and Future Work

We presented OctNet, a novel 3D representation which

makes deep learning with high-resolution inputs tractable.

We analyzed the importance of high resolution inputs on

several 3D learning tasks, such as object categorization,

pose estimation and semantic segmentation. Our exper-

iments revealed that for ModelNet10 classification low-

resolution networks prove sufficient while high input (and

output) resolution matters for 3D orientation estimation and

3D point cloud labeling. We believe that as the community

moves from low resolution object datasets such as Model-

Net10 to high resolution large scale 3D data, OctNet will

enable further improvements. One particularly promising

avenue for future research is in learning representations for

multi-view 3D reconstruction where the ability to process

high resolution voxelized shapes is of crucial importance.

3584

References

[1] N. S. Alvar, M. Zolfaghari, and T. Brox. Orientation-boosted

voxel nets for 3d object recognition. arXiv.org, 1604.03351,

2016. 2

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. arXiv.org, 1511.00561, 2015. 5, 8

[3] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton,

and C. Rother. Learning 6d object pose estimation using

3d object coordinates. In Proc. of the European Conf. on

Computer Vision (ECCV), 2014. 7

[4] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold,

and C. Rother. Uncertainty-driven 6d pose estimation of ob-

jects and scenes from a single rgb image. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR),

2016. 7

[5] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Generative

and discriminative voxel modeling with convolutional neural

networks. arXiv.org, 1608.04236, 2016. 2, 6

[6] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,

J. Xiao, L. Yi, and F. Yu. Shapenet: An information-rich 3d

model repository. arXiv.org, 1512.03012, 2015. 1

[7] S. Choi, Q. Zhou, S. Miller, and V. Koltun. A large dataset

of object scans. arXiv.org, 1602.02481, 2016. 1

[8] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-

r2n2: A unified approach for single and multi-view 3d object

reconstruction. In Proc. of the European Conf. on Computer

Vision (ECCV), 2016. 1, 2

[9] A. Dosovitskiy, P. Fischer, E. Ilg, P. Haeusser, C. Hazirbas,

V. Golkov, P. v.d. Smagt, D. Cremers, and T. Brox. Flownet:

Learning optical flow with convolutional networks. In Proc.

of the IEEE International Conf. on Computer Vision (ICCV),

2015. 5

[10] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner.

Vote3deep: Fast object detection in 3d point clouds using ef-

ficient convolutional neural networks. arXiv.org, 609.06666,

2016. 2

[11] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. Deep-

stereo: Learning to predict new views from the world’s im-

agery. arXiv.org, 1506.06825, 2015. 2

[12] R. Gadde, V. Jampani, R. Marlet, and P. V. Gehler. Ef-

ficient 2d and 3d facade segmentation using auto-context.

arXiv.org, 1606.06437, 2016. 8

[13] G. Ghiasi and C. C. Fowlkes. Laplacian pyramid reconstruc-

tion and refinement for semantic segmentation. In Proc. of

the European Conf. on Computer Vision (ECCV), 2016. 1, 2,

4

[14] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta.

Learning a predictable and generative vector representation

for objects. In Proc. of the European Conf. on Computer

Vision (ECCV), 2016. 2

[15] B. Graham. Spatially-sparse convolutional neural networks.

arXiv.org, 2014. 2

[16] B. Graham. Sparse 3d convolutional neural networks. In

Proc. of the British Machine Vision Conf. (BMVC), 2015. 2

[17] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proc. of the IEEE International Conf. on

Computer Vision (ICCV), 2015. 6

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), 2016. 1, 2, 4, 5

[19] V. Hegde and R. Zadeh. Fusionnet: 3d object classification

using multiple data representations. arXiv.org, 1607.05695,

2016. 6

[20] J. Huang and S. You. Point cloud labeling using 3d convolu-

tional neural network. In Proc. of the International Conf. on

Pattern Recognition (ICPR), 2016. 2

[21] Q. Huang, H. Wang, and V. Koltun. Single-view reconstruc-

tion via joint analysis of image and shape collections. In

ACM Trans. on Graphics (SIGGRAPH), 2015. 1

[22] V. Jampani, M. Kiefel, and P. V. Gehler. Learning sparse high

dimensional filters: Image filtering, dense crfs and bilateral

neural networks. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2016. 2

[23] W. Kehl, T. Holl, F. Tombari, S. Ilic, and N. Navab. An

octree-based approach towards efficient variational range

data fusion. arXiv.org, 1608.07411, 2016. 3

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In Proc. of the International Conf. on Learning

Representations (ICLR), 2015. 6, 8

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems (NIPS),

2012. 6

[26] S. Laine and T. Karras. Efficient sparse voxel octrees. IEEE

Trans. on Visualization and Computer Graphics (VCG),

17(8):1048–1059, 2011. 3

[27] Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas. FPNN: field

probing neural networks for 3d data. arXiv.org, 1605.06240,

2016. 2

[28] A. Martinović, J. Knopp, H. Riemenschneider, and L. Van

Gool. 3d all the way: Semantic segmentation of urban scenes

from start to end in 3d. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), 2015. 8

[29] D. Maturana and S. Scherer. Voxnet: A 3d convolutional

neural network for real-time object recognition. In Proc.

IEEE International Conf. on Intelligent Robots and Systems

(IROS), 2015. 1, 2, 6

[30] D. Meagher. Geometric modeling using octree encod-

ing. Computer Graphics and Image Processing (CGIP),

19(1):85, 1982. 3

[31] A. Miller, V. Jain, and J. L. Mundy. Real-time rendering

and dynamic updating of 3-d volumetric data. In Proc. of

the Workshop on General Purpose Processing on Graphics

Processing Units (GPGPU), page 8, 2011. 2, 3, 4

[32] F. Milletari, N. Navab, and S. Ahmadi. V-net: Fully convo-

lutional neural networks for volumetric medical image seg-

mentation. arXiv.org, 1606.04797, 2016. 2

[33] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and

3585

A. Fitzgibbon. Kinectfusion: Real-time dense surface map-

ping and tracking. In Proc. of the International Symposium

on Mixed and Augmented Reality (ISMAR), 2011. 1

[34] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. Guibas.

Volumetric and multi-view cnns for object classification on

3d data. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2016. 1

[35] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:

towards real-time object detection with region proposal net-

works. In Advances in Neural Information Processing Sys-

tems (NIPS), 2015. 1, 2, 4

[36] D. J. Rezende, S. M. A. Eslami, S. Mohamed, P. Battaglia,

M. Jaderberg, and N. Heess. Unsupervised learning of 3d

structure from images. arXiv.org, 1607.00662, 2016. 2

[37] H. Riemenschneider, A. Bódis-Szomorú, J. Weissenberg,

and L. V. Gool. Learning where to classify in multi-view

semantic segmentation. In Proc. of the European Conf. on

Computer Vision (ECCV), 2014. 8

[38] R. Rios-Cabrera and T. Tuytelaars. Discriminatively trained

templates for 3d object detection: A real-time scalable ap-

proach. In Proc. of the IEEE International Conf. on Com-

puter Vision (ICCV), pages 2048–2055, 2013. 7

[39] A. Sharma, O. Grau, and M. Fritz. Vconv-dae: Deep vol-

umetric shape learning without object labels. arXiv.org,

1604.03755, 2016. 2

[40] S. Song and J. Xiao. Deep sliding shapes for amodal 3d

object detection in RGB-D images. arXiv.org, 1511.02300,

2015. 2

[41] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller.

Multi-view convolutional neural networks for 3d shape

recognition. In Proc. of the IEEE International Conf. on

Computer Vision (ICCV), 2015. 2, 6

[42] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view

3d models from single images with a convolutional network.

In Proc. of the European Conf. on Computer Vision (ECCV),

2016. 2

[43] A. Tejani, D. Tang, R. Kouskouridas, and T. Kim. Latent-

class hough forests for 3d object detection and pose estima-

tion. In Proc. of the European Conf. on Computer Vision

(ECCV), 2014. 7

[44] A. O. Ulusoy, A. Geiger, and M. J. Black. Towards prob-

abilistic volumetric reconstruction using ray potentials. In

Proc. of the International Conf. on 3D Vision (3DV), 2015. 3

[45] P. Wohlhart and V. Lepetit. Learning descriptors for object

recognition and 3d pose estimation. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), 2015. 7

[46] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Tor-

ralba, and W. T. Freeman. Single image 3d interpreter net-

work. In Proc. of the European Conf. on Computer Vision

(ECCV), 2016. 2

[47] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2015. 1, 2, 6

[48] J. Xie, R. B. Girshick, and A. Farhadi. Deep3d: Fully au-

tomatic 2d-to-3d video conversion with deep convolutional

neural networks. In Proc. of the European Conf. on Com-

puter Vision (ECCV), 2016. 2

[49] A. R. Zamir, T. Wekel, P. Agrawal, C. Wei, J. Malik, and

S. Savarese. Generic 3d representation via pose estimation

and matching. In Proc. of the European Conf. on Computer

Vision (ECCV), 2016. 2

[50] M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive decon-

volutional networks for mid and high level feature learning.

In Proc. of the IEEE International Conf. on Computer Vision

(ICCV), 2011. 5

[51] Y. Zhang, M. Bai, P. Kohli, S. Izadi, and J. Xiao. Deepcon-

text: Context-encoding neural pathways for 3d holistic scene

understanding. arXiv.org, 1603.04922, 2016. 2

[52] Özgün Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and

O. Ronneberger. 3d u-net: Learning dense volumetric seg-

mentation from sparse annotation. arXiv.org, 1606.06650,

2016. 2, 5, 8

3586

