OctNet: Learning Deep 3D Representations at High Resolutions

Gernot Riegler1 \quad Ali Osman Ulusoy2 \quad Andreas Geiger2,3
1Institute for Computer Graphics and Vision, Graz University of Technology
2Autonomous Vision Group, MPI for Intelligent Systems Tübingen
3Computer Vision and Geometry Group, ETH Zürich

riegler@icg.tugraz.at \quad \{osman.ulusoy, andreas.geiger\}@tue.mpg.de

Abstract

We present OctNet, a representation for deep learning with sparse 3D data. In contrast to existing models, our representation enables 3D convolutional networks which are both deep and high resolution. Towards this goal, we exploit the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation. This allows to focus memory allocation and computation to the relevant dense regions and enables deeper networks without compromising resolution. We demonstrate the utility of our OctNet representation by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.

1. Introduction

Over the last several years, convolutional networks have lead to substantial performance gains in many areas of computer vision. In most of these cases, the input to the network is of two-dimensional nature, e.g., in image classification [18], object detection [35] or semantic segmentation [13]. However, recent advances in 3D reconstruction [33] and graphics [21] allow capturing and modeling large amounts of 3D data. At the same time, large 3D repositories such as ModelNet [47], ShapeNet [6] or 3D Warehouse1 as well as databases of 3D object scans [7] are becoming increasingly available. These factors have motivated the development of convolutional networks that operate on 3D data.

Most existing 3D network architectures [8,29,34,47] replace the 2D pixel array by its 3D analogue, i.e., a dense and regular 3D voxel grid, and process this grid using 3D convolution and pooling operations. However, for dense 3D data, computational and memory requirements grow \textit{cubically} with the resolution. Consequently, existing 3D networks are limited to low 3D resolutions, typically in the order of 303 voxels. To fully exploit the rich and detailed geometry of our 3D world, however, much higher resolution networks are required.

In this work, we build on the observation that 3D data is often sparse in nature, e.g., point clouds, or meshes, resulting in wasted computations when applying 3D convolutions.

1https://3dwarehouse.sketchup.com

Figure 1: Motivation. For illustration purposes, we trained a dense convolutional network to classify 3D shapes from [47]. Given a voxelized bed as input, we show the maximum response across all feature maps at intermediate layers (a-c) of the network before pooling. Higher activations are indicated with darker colors. Voxels with zero activation are not displayed. The first row visualizes the responses in 3D while the second row shows a 2D slice. Note how voxels close to the object contour respond more strongly than voxels further away. We exploit the sparsity in our data by allocating memory and computations using a space partitioning data structure (bottom row).
We illustrate this in Fig. 1 for a 3D classification example. Given the 3D meshes of [47] we voxelize the input at a resolution of 64^3 and train a simple 3D convolutional network to minimize a classification loss. We depict the maximum of the responses across all feature maps at different layers of the network. It is easy to observe that high activations occur only near the object boundaries.

Motivated by this observation, we propose OctNet, a 3D convolutional network that exploits this sparsity property. Our OctNet hierarchically partitions the 3D space into a set of unbalanced octrees [31]. Each octree splits the 3D space according to the density of the data. More specifically, we recursively split octree nodes that contain a data point in its domain, i.e., 3D points, or mesh triangles, stopping at the finest resolution of the tree. Therefore, leaf nodes vary in size, e.g., an empty leaf node may comprise up to $8^3 = 512$ voxels for a tree of depth 3 and each leaf node in the octree stores a pooled summary of all feature activations of the voxel it comprises. The convolutional network operations are directly defined on the structure of these trees. Therefore, our network dynamically focuses computational and memory resources, depending on the 3D structure of the input. This leads to a significant reduction in computational and memory requirements which allows for deep learning at high resolutions. Importantly, we also show how essential network operations (convolution, pooling or unpooling) can be efficiently implemented on this new data structure.

We demonstrate the utility of the proposed OctNet on three different problems involving three-dimensional data: 3D classification, 3D orientation estimation of unknown object instances and semantic segmentation of 3D point clouds. In particular, we show that the proposed OctNet enables significant higher input resolutions compared to dense inputs due to its lower memory consumption, while achieving identical performance compared to the equivalent dense network at lower resolutions. At the same time we gain significant speed-ups at resolutions of 128^3 and above. Using our OctNet, we investigate the impact of high resolution inputs wrt. accuracy on the three tasks and demonstrate that higher resolutions are particularly beneficial for orientation estimation and semantic point cloud labeling. Our code is available from the project website\(^2\).

2. Related Work

While 2D convolutional networks have proven very successful in extracting information from images [11, 13, 18, 35, 41, 42, 46, 48, 49], there exists comparably little work on processing three-dimensional data. In this Section, we review existing work on dense and sparse models.

Dense Models: Wu et al. [47] trained a deep belief network on shapes discretized to a 30^3 voxel grid for object classification, shape completion and next best view prediction. Maturana et al. [29] proposed VoxNet, a feed-forward convolutional network for classifying 32^3 voxel volumes from RGB-D data. In follow-up work, Sedaghat et al. [1] showed that introducing an auxiliary orientation loss increases classification performance over the original VoxNet. Similar models have also been exploited for semantic point cloud labeling [20] and scene context has been integrated in [51].

Recently, generative models [36] and auto-encoders [5, 39] have demonstrated impressive performance in learning low-dimensional object representations from collections of low-resolution (32^3) 3D shapes. Interestingly, these low-dimensional representations can be directly inferred from a single image [14] or a sequence of images [8].

Due to computational and memory limitations, all aforementioned methods are only able to process and generate shapes at a very coarse resolution, typically in the order of 30^3 voxels. Besides, when high-resolution outputs are desired, e.g., for labeling 3D point clouds, inefficient sliding-window techniques with a limited receptive field must be adopted [20]. Increasing the resolution na"ively [32, 40, 52] reduces the depth of the networks and hence their expressiveness. In contrast, the proposed OctNets allow for training deep architectures at significant higher resolutions.

Sparse Models: There exist only few network architectures which explicitly exploit sparsity in the data. As these networks do not require exhaustive dense convolutions they have the potential of handling higher resolutions.

Engelcke et al. [10] proposed to calculate convolutions at sparse input locations by pushing values to their target locations. This has the potential to reduce the number of convolutions but does not reduce the amount of memory required. Consequently, their work considers only very shallow networks with up to three layers.

A similar approach is presented in [15, 16] where sparse convolutions are reduced to matrix operations. Unfortunately, the model only allows for 2×2 convolutions and results in indexing and copy overhead which prevents processing volumes of larger resolution (the maximum resolution considered in [15, 16] is 80^3 voxels). Besides, each layer decreases sparsity and thus increases the number of operations, even at a single resolution. In contrast, the number of operations remains constant in our model.

Li et al. [27] proposed field probing networks which sample 3D data at sparse points before feeding them into fully connected layers. While this reduces memory and computation, it does not allow for exploiting the distributed computational power of convolutional networks as field probing layers can not be stacked, convolved or pooled.

Jampani et al. [22] introduced bilateral convolution layers (BCL) which map sparse inputs into permutohedral space where learnt convolutional filters are applied. Their work is related to ours with respect to efficiently exploiting

\(^2\)https://github.com/griegler/octnet
the sparsity in the input data. However, in contrast to BCL, our method is specifically targeted at 3D convolutional networks and can be immediately dropped in as a replacement in existing network architectures.

3. Octree Networks

To decrease the memory footprint of convolutional networks operating on sparse 3D data, we propose an adaptive space partitioning scheme which focuses computations on the relevant regions. As mathematical operations of deep networks, especially convolutional networks, are best understood on regular grids, we restrict our attention to data structures on 3D voxel grids. One of the most popular space partitioning structures on voxel grids are octrees [30] which have been widely adopted due to their flexible and hierarchical structure. Areas of application include depth fusion [23], image rendering [26] and 3D reconstruction [44]. In this paper, we propose 3D convolutional networks on octrees to learn representations from high resolution 3D data.

An octree partitions the 3D space by recursively subdividing it into octants. By subdividing only the cells which contain relevant information (e.g., cells crossing a surface boundary or cells containing one or more 3D points) storage can be allocated adaptively. Densely populated regions are modeled with high accuracy (i.e., using small cells) while empty regions are summarized by large cells in the octree.

Unfortunately, vanilla octree implementations [30] have several drawbacks that hamper its application in deep networks. While octrees reduce the memory footprint of the 3D representation, most versions do not allow for efficient access to the underlying data. In particular, octrees are typically implemented using pointers, where each node contains a pointer to its children. Accessing an arbitrary element (or the neighbor of an element) in the octree requires a traversal starting from the root until the desired cell is reached. Thus, the number of memory accesses is equal to the depth of the tree. This becomes increasingly costly for deep, i.e., high-resolution, octrees. Convolutional network operations such as convolution or pooling require frequent access to neighboring elements. It is thus critical to utilize an octree design that allows for fast data access.

We tackle these challenges by leveraging a hybrid grid-octree data structure which we describe in Section 3.1. In Section 3.2, we show how 3D convolution and pooling operations can be implemented efficiently on this data structure.

3.1. Hybrid Grid-Octree Data Structure

The above mentioned problems with the vanilla octree data structure increase with the octree depth. Instead of representing the entire high resolution 3D input with a single unbalanced octree, we leverage a hybrid grid-octree structure similar to the one proposed by Miller et al. [31]. The key idea is to restrict the maximal depth of an octree to a small number, e.g., three, and place several such shallow octrees along a regular grid (Fig. 2). While this data structure may not be as memory efficient as the standard octree, significant compression ratios can still be achieved. For instance, a single shallow octree that does not contain input data stores only a single vector, instead of $8^3 = 512$ vectors for all voxels at the finest resolution at depth 3.

An additional benefit of a collection of shallow octrees is that their structure can be encoded very efficiently using bit-strings. Here, the bit-string $10101000000000001010000000000000101000001...$ defines the octree in (a). The corresponding tree is shown in (b). The color of the voxels corresponds to the split level.

Figure 2: Hybrid Grid-Octree Data Structure. This example illustrates a hybrid grid-octree consisting of 8 shallow octrees indicated by different colors. Using 2 shallow octrees in each dimension with a maximum depth of 3 leads to a total resolution of 16^3 voxels.

Figure 3: Bit Representation. Shallow octrees can be efficiently encoded using bit-strings. Here, the bit-string $10101000000000001010000000000000101000001...$ defines the octree in (a). The corresponding tree is shown in (b). The color of the voxels corresponds to the split level.
low octree is fully characterised by its bit index. This index determines the depth of the voxel in the octree and therefore also the voxel size. Instead of using pointers to the parent and child nodes, simple arithmetic can be used to retrieve the corresponding indices of a voxel with bit index \(i \):

\[
\begin{align*}
\text{pa}(i) & = \left\lfloor \frac{i - 1}{8} \right\rfloor, \\
\text{ch}(i) & = 8 \cdot i + 1.
\end{align*}
\]

In contrast to [31], we associate a data container (for storing features vectors) with all leaf nodes of each shallow tree. We allocate the data of a shallow octree in a contiguous data array. The offset associated with a particular voxel in this array can be computed as follows:

\[
\text{data}_\text{idx}(i) = 8 \sum_{j=0}^{\text{pa}(i) - 1} \text{bit}(j) + 1 - \sum_{j=0}^{\text{ch}(i) - 1} \text{bit}(j) + \text{offset}
\]

Here, \(\text{mod} \) denotes the modulo operator and \(\text{bit} \) returns the tree bit-string value at \(i \). See supp. document for an example. Both sum operations can be efficiently implemented using bit counting intrinsics (\(\text{popcnt} \)). The data arrays of all shallow octrees are concatenated into a single contiguous data array during training and testing to reduce I/O latency.

3.2. Network Operations

Given the hybrid grid-octree data structure introduced in the previous Section, we now discuss the efficient implementation of network operations on this data structure. We will focus on the most common operations in convolutional networks [13, 18, 35]: convolution, pooling and unpooling. Note that point-wise operations, like activation functions, do not differ in their implementation as they are independent of the data structure.

Let us first introduce the notation which will be used throughout this Section. \(T_{i,j,k} \) denotes the value of a 3D tensor \(T \) at location \((i, j, k) \). Now assume a hybrid grid-octree structure with \(D \times H \times W \) unbalanced shallow octrees of maximum depth 3. Let \(O[i, j, k] \) denote the value of the smallest cell in this structure which comprises the voxel \((i, j, k) \). Note that in contrast to the tensor notation, \(O[i_1, j_1, k_1] \) and \(O[i_2, j_2, k_2] \) with \(i_1 \neq i_2 \lor j_1 \neq j_2 \lor k_1 \neq k_2 \) may refer to the same voxel in the hybrid grid-octree, depending on the size of the voxels. We obtain the index of the shallow octree in the grid via \(\left(\left\lfloor \frac{i}{8} \right\rfloor, \left\lfloor \frac{j}{8} \right\rfloor, \left\lfloor \frac{k}{8} \right\rfloor \right) \) and the local index of the voxel at the finest resolution in that octree by \(\text{mod}(i, 8), \text{mod}(j, 8), \text{mod}(k, 8) \).

Convolution

The convolution operation is the most important, but also the most computational expensive operation in deep convolutional networks. For a single feature
Figure 5: **Pooling.** The 2^3 pooling operation on the grid-octree structure combines 8 neighbouring shallow octrees (a) into one shallow octree (b). The size of each voxel is halved and copied to the new shallow octree structure. Voxel values on the finest resolution are pooled. Different shallow octrees are depicted in different colors.

The map, convolving a 3D tensor T with a 3D convolution kernel $W \in \mathbb{R}^{L \times M \times N}$ can be written as

$$T_{i,j,k}^{\text{out}} = \sum_{l=0}^{L-1} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} W_{l,m,n} \cdot T_{\hat{i},\hat{j},\hat{k}}^{\text{in}},$$

(7)

with $\hat{i} = i - l + \left\lfloor \frac{L}{2} \right\rfloor$, $\hat{j} = j - m + \left\lfloor \frac{M}{2} \right\rfloor$, $\hat{k} = k - n + \left\lfloor \frac{N}{2} \right\rfloor$. Similarly, the convolutions on the grid-octree data structure are defined as

$$O_{i,j,k}^{\text{out}} = \text{pool}_\text{voxels} (T_{i,j,k})$$

(8)

$$T_{i,j,k} = \sum_{l=0}^{L-1} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} W_{l,m,n} \cdot O_{j-l, j-m+1, k-n+1}^{\text{in}}.$$

While this calculation yields the same result as the tensor convolution in Eq. (7) with the oc2ten, ten2oc wrapper, we are now able to define a computationally more efficient convolution operator. Our key observation is that for small convolution kernels and large voxels, $T_{i,j,k}$ is constant within a small margin of the voxel due to its constant support $O^{\text{in}}_{i,j,k}$. Thus, we only need to compute the convolution within the voxel once, followed by convolution along the surface of the voxel where the support changes due to adjacent voxels taking different values (Fig. 4). This minimizes the number of calculations by a factor of 4 for voxels of size 8^3, see supp. material for a detailed derivation. At the same time, it enables a better caching mechanism.

Pooling Another important operation in deep convolutional networks is pooling. Pooling reduces the spatial resolution of the input tensor and aggregates higher-level information for further processing, thereby increasing the receptive field and capturing context. For instance, strided 2^3 max-pooling divides the input tensor T^{in} into 2^3 non-overlapping regions and computes the maximum value within each region. Formally, we have

$$T_{i,j,k}^{\text{out}} = \max_{l,m,n \in [0,1]} (T_{2i+l,2j+m,2k+n}^{\text{in}}),$$

(9)

where $T^{\text{in}} \in \mathbb{R}^{2D \times 2H \times 2W}$ and $T^{\text{out}} \in \mathbb{R}^{D \times H \times W}$.

To implement pooling on the grid-octree data structure we reduce the number of shallow octrees. For an input grid-octree O^{in} with $2D \times 2H \times 2W$ shallow octrees, the output O^{out} contains $D \times H \times W$ shallow octrees. Each voxel of O^{in} is halved in size and copied one level deeper in the shallow octree. Voxels at depth 3 in O^{in} are pooled. This can be formalized as

$$O_{i,j,k}^{\text{out}} = \begin{cases} O_{2i, 2j, 2k}^{\text{in}} & \text{if } \text{vxd}(2i, 2j, 2k) < 3 \\ P & \text{else} \end{cases}$$

$$P = \max_{l,m,n \in [0,1]} (O_{2i+l, 2j+m, 2k+n}^{\text{in}}),$$

(10)

where vxd(·) computes the depth of the indexed voxel in the shallow octree. A visual example is depicted in Fig. 5.

Unpooling For several tasks such as semantic segmentation, the desired network output is of the same size as the network input. While pooling is crucial to increase the receptive field size of the network and capture context, it loses spatial resolution. To increase the resolution of the network, U-shaped network architectures have become popular [2, 52] which encode information using pooling operations and increase the resolution in a decoder part using unpooling or deconvolution layers [50], possibly in combination with skip-connections [9, 18] to increase precision. The simplest unpooling strategy uses nearest neighbour interpolation and can be formalized on dense input $T^{\text{in}} \in \mathbb{R}^{D \times H \times W}$ and output $T^{\text{out}} \in \mathbb{R}^{2D \times 2H \times 2W}$ tensors as follows:

$$T_{i,j,k}^{\text{out}} = T_{i/2,j/2,k/2}^{\text{in}},$$

(11)
Again, we can define the analogous operation on the hybrid grid-octree data structure by

\[
O^\text{out}[i, j, k] = O^\text{in}[[i/2], [j/2], [k/2]].
\]

This operation also changes the data structure: The number of shallow octrees increases by a factor of 8, as each node at depth 0 spawns a new shallow octree. All other nodes double their size. Thus, after this operation the tree depth is decreased. See Fig. 6 for a visual example of this operation.

Remark: To capture fine details, voxels can be split again at the finest resolution according to the original octree of the corresponding pooling layer. This allows us to take full advantage of skip connections. We follow this approach in our semantic 3D point cloud labeling experiments.

4. Experimental Evaluation

In this Section we leverage our OctNet representation to investigate the impact of input resolution on three different 3D tasks: 3D shape classification, 3D orientation estimation and semantic segmentation of 3D point clouds. To isolate the effect of resolution from other factors we consider simple network architectures. Orthogonal techniques like data augmentation, joint 2D/3D modeling or ensemble learning are likely to further improve the performance of our models.

Implementation We implemented the grid-octree data structure, all layers including the necessary forward and backward functions, as well as utility methods to create the data structure from point clouds and meshes, as a stand-alone C++/CUDA library. This allows the usage of our code within all existing deep learning frameworks. For our experimental evaluation we used the Torch3 framework.

4.1. 3D Classification

We use the popular ModelNet10 dataset [47] for the 3D shape classification task. The dataset contains 10 shape categories and consists of 3991 3D shapes for training and 908 3D shapes for testing. Each shape is provided as a triangular mesh, oriented in a canonical pose. We convert the triangle meshes to dense respective grid-octree occupancy grids, where a voxel is set to 1 if it intersects the mesh. We scale each mesh to fit into a 3D grid of \((N - P)^3\) voxels, where \(N\) is the number of voxels in each dimension of the input grid and \(P = 2\) is a padding parameter.

We first study the influence of the input resolution on memory usage, runtime and classification accuracy. Towards this goal, we create a series of networks of different input resolution from \(8^3\) to \(256^3\) voxels. Each network consists of several blocks which reduce resolution by half until we reach a resolution of \(8^3\). Each block comprises two convolutional layers \((3^3\ \text{filters, stride } 1)\) and one max-pooling layer \((2^3\ \text{filters, stride } 2)\). The number of feature maps in the first block is 8 and increases by 6 with every block. After the last block we add a fully-connected layer with 512 units and a final output layer with 10 units. Each convolutional layer and the first fully-connected layer are followed by a rectified linear unit [25] as activation function and the weights are initialized as described in [17]. We use the standard cross-entropy loss for training and train all networks for 20 epochs with a batch size of 32 using Adam [24]. The initial learning rate is set to 0.001 and we decrease the learning rate by a factor of 10 after 15 epochs.

Overall, we consider three different types of networks: the original VoxNet architecture of Maturana et al. [29] which operates on a fixed \(32^3\) voxel grid, the proposed OctNet and a dense version of it which we denote “DenseNet” in the following. While performance gains can be obtained using orthogonal approaches such as network ensembles [5] or a combination of 3D and 2D convolutional networks [19,41], in this paper we deliberately focus on “pure” 3D convolutional network approaches to isolate the effect of resolution from other influencing factors.

Fig. 7 shows our results. First, we compare the memory consumption and run-time of our OctNet wrt. the dense baseline approach, see Fig. 7a and 7b. Importantly, OctNets require significantly less memory and run-time for high input resolutions compared to dense input grids. Using a batch size of 32 samples, our OctNet easily fits in a modern GPU’s memory (12GB) for an input resolution of \(256^3\). In contrast, the corresponding dense model fits into the memory only for resolutions \(\leq 64^3\). A more detailed analysis of the memory consumption wrt. the sparsity in the data is provided in the supp. document. OctNets also run faster than their dense counterparts for resolutions \(> 64^3\). For resolutions \(\leq 64^3\), OctNets run slightly slower due to the overhead incurred by the grid-octree representation and processing.

3http://torch.ch/
Leveraging our OctNets, we now compare the impact of input resolution with respect to classification accuracy. Fig. 7c shows the results of different OctNet architectures where we keep the number of convolutional layers per block fixed to 1, 2 and 3. Fig. 7d shows a comparison of accuracy with respect to DenseNet and VoxNet when keeping the capacity of the model, i.e., the number of parameters, constant by removing max-pooling layers from the beginning of the network. We first note that despite its pooled representation, OctNet performs on par with its dense equivalent. This confirms our initial intuition (Fig. 1) that sparse data allows for allocating resources adaptively without loss in performance. Furthermore, both models outperform the shallower VoxNet architecture, indicating the importance of network depth.

Regarding classification accuracy we observed improvements for lower resolutions but diminishing returns beyond an input resolution of 32^3 voxels. Taking a closer look at the confusion matrices in Fig. 9, we observe that higher input resolution helps for some classes, e.g.,

![Figure 8: Voxelized 3D Shapes from ModelNet10.](image)

the generalization ability of 3D convolutional networks, we consider a slightly different setup where only the object category is known. After training a model on a hold-out set of 3D shapes from a single category, we test the ability of the model to predict the 3D orientation of unseen 3D shapes from the same category.

More concretely, given an instance of an object category with unknown pose, the goal is to estimate the rotation with respect to the canonical pose. We utilize the 3D shapes from the chair class of the ModelNet10 dataset and rotate them randomly between $\pm 15^\circ$ around each axis. We use the same network architectures and training protocol as in the classification experiment, except that the networks regress orientations. We use unit quaternions to represent 3D rotations and train our networks with an Euclidean loss. For small angles, this loss is a good approximation to the rotation angle $\phi = \arccos(2(q_1q_2)^2 - 1)$ between quaternions q_1, q_2.

Fig. 10 shows our results using the same naming convention as in the previous Section. We observe that fine details are more important compared to the classification task. For the OctNet 1-3 architectures we observe a steady increase in performance, while for networks with constant capacity across resolutions (Fig. 10b), performance levels beyond 128^3 voxels input resolution. Qualitative results of the latter experiment are shown in Fig. 11. Each row shows 10 different predictions for two randomly selected chair instance over several input resolutions, ranging from 16^3 to 128^3. Darker colors indicate larger errors which occur more frequently at lower resolutions. In contrast, predictions at higher network resolutions cluster around the true pose. Note that learning a dense 3D representation at a resolution of 128^3 voxels or beyond would not be feasible.

![Figure 9: Confusion Matrices on ModelNet10.](image)

![Figure 10: Orientation Estimation on ModelNet10.](image)
4.3. 3D Semantic Segmentation

In this Section, we evaluate the proposed OctNets on the problem of labeling 3D point cloud with semantic information. We use the RueMonge2014 dataset [37] that provides a colored 3D point cloud of several Haussmanian style facades, comprising ∼1 million 3D points in total. The labels are window, wall, balcony, door, roof, sky and shop.

For this task, we train a U-shaped network [2, 52] on three different input resolutions, 64³, 128³ and 256³, where the voxel size was selected such that the height of all buildings fits into the input volume. We first map the point cloud into the grid-octree structure. For all leaf nodes which contain more than one point, we average the input features and calculate the majority vote of the ground truth labels for training. As features we use the binary voxel occupancy, the RGB color, the normal vector and the height above ground. Due to the small number of training samples, we augment the data for this task by applying small rotations.

Our network architecture comprises an encoder and a decoder part. The encoder part consists of four blocks which comprise 2 convolution layers (3³ filters, stride 1) followed by one max-pooling layer each. The decoder consists of four blocks which comprise 2 convolutions (3³ filters, stride 1) followed by a guided unpooling layer as discussed in the previous Section. Additionally, after each unpooling step all features from the last layer of the encoder at the same resolution are concatenated to provide high-resolution details. All networks are trained with a per voxel cross entropy loss using Adam [24] and a learning rate of 0.0001.

Table 1 compares the proposed OctNet to several state of the art approaches on the facade labeling task following the extended evaluation protocol of [12]. The 3D points of the test set are assigned the label of the corresponding grid-octree voxels. As evaluation measures we use overall pixel accuracy \(\frac{TP}{TP + FN} \) over all 3D points, average class accuracy, and intersection over union \(\frac{TP}{TP + FN + FP} \) over all classes. Here, FP, FN and TP denote false positives, false negatives and true positives, respectively.

Our results clearly show that increasing the input resolution is essential to obtain state-of-the-art results, as finer details vanish at coarser resolutions. Qualitative results for one facade are provided in Fig. 12. Further results are provided in the supp. document.

5. Conclusion and Future Work

We presented OctNet, a novel 3D representation which makes deep learning with high-resolution inputs tractable. We analyzed the importance of high resolution inputs on several 3D learning tasks, such as object categorization, pose estimation and semantic segmentation. Our experiments revealed that for ModelNet10 classification low-resolution networks prove sufficient while high input (and output) resolution matters for 3D orientation estimation and 3D point cloud labeling. We believe that as the community moves from low resolution object datasets such as ModelNet10 to high resolution large scale 3D data, OctNet will enable further improvements. One particularly promising avenue for future research is in learning representations for multi-view 3D reconstruction where the ability to process high resolution voxelized shapes is of crucial importance.
References

