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Abstract

We address the problem of determining correspondences

between two images in agreement with a geometric model

such as an affine or thin-plate spline transformation, and

estimating its parameters. The contributions of this work

are three-fold. First, we propose a convolutional neural net-

work architecture for geometric matching. The architecture

is based on three main components that mimic the standard

steps of feature extraction, matching and simultaneous in-

lier detection and model parameter estimation, while being

trainable end-to-end. Second, we demonstrate that the net-

work parameters can be trained from synthetically gener-

ated imagery without the need for manual annotation and

that our matching layer significantly increases generaliza-

tion capabilities to never seen before images. Finally, we

show that the same model can perform both instance-level

and category-level matching giving state-of-the-art results

on the challenging Proposal Flow dataset.

1. Introduction

Estimating correspondences between images is one of

the fundamental problems in computer vision [19, 25] with

applications ranging from large-scale 3D reconstruction [3]

to image manipulation [21] and semantic segmentation

[42]. Traditionally, correspondences consistent with a ge-

ometric model such as epipolar geometry or planar affine

transformation, are computed by detecting and matching

local features (such as SIFT [38] or HOG [12, 22]), fol-

lowed by pruning incorrect matches using local geometric

constraints [43, 47] and robust estimation of a global geo-

metric transformation using algorithms such as RANSAC

[18] or Hough transform [32, 34, 38]. This approach works

well in many cases but fails in situations that exhibit (i) large

changes of depicted appearance due to e.g. intra-class vari-

ation [22], or (ii) large changes of scene layout or non-rigid
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CNRS, PSL Research University, 75005 Paris, France.
3Czech Institute of Informatics, Robotics and Cybernetics at the

Czech Technical University in Prague.
∗Now at DeepMind.

Figure 1: Our trained geometry estimation network automatically

aligns two images with substantial appearance differences. It is

able to estimate large deformable transformations robustly in the

presence of clutter.

deformations that require complex geometric models with

many parameters which are hard to estimate in a manner

robust to outliers.

In this work we build on the traditional approach and

develop a convolutional neural network (CNN) architecture

that mimics the standard matching process. First, we re-

place the standard local features with powerful trainable

convolutional neural network features [31, 46], which al-

lows us to handle large changes of appearance between

the matched images. Second, we develop trainable match-

ing and transformation estimation layers that can cope with

noisy and incorrect matches in a robust way, mimicking the

good practices in feature matching such as the second near-

est neighbor test [38], neighborhood consensus [43, 47] and

Hough transform-like estimation [32, 34, 38].

The outcome is a convolutional neural network archi-

tecture trainable for the end task of geometric matching,

which can handle large appearance changes, and is therefore

suitable for both instance-level and category-level matching

problems.

2. Related work

The classical approach for finding correspondences in-

volves identifying interest points and computing local de-

scriptors around these points [10, 11, 24, 37, 38, 39, 43].
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While this approach performs relatively well for instance-

level matching, the feature detectors and descriptors lack

the generalization ability for category-level matching.

Recently, convolutional neural networks have been used

to learn powerful feature descriptors which are more robust

to appearance changes than the classical descriptors [9, 23,

28, 45, 52]. However, these works still divide the image into

a set of local patches and extract a descriptor individually

from each patch. Extracted descriptors are then compared

with an appropriate distance measure [9, 28, 45], by directly

outputting a similarity score [23, 52], or even by directly

outputting a binary matching/non-matching decision [4].

In this work, we take a different approach, treating the

image as a whole, instead of a set of patches. Our approach

has the advantage of capturing the interaction of the differ-

ent parts of the image in a greater extent, which is not pos-

sible when the image is divided into a set of local regions.

Related are also network architectures for estimating

inter-frame motion in video [17, 48, 50] or instance-level

homography estimation [14], however their goal is very dif-

ferent from ours, targeting high-precision correspondence

with very limited appearance variation and background

clutter. Closer to us is the network architecture of [29]

which, however, tackles a different problem of fine-grained

category-level matching (different species of birds) with

limited background clutter and small translations and scale

changes, as their objects are largely centered in the image.

In addition, their architecture is based on a different match-

ing layer, which we show not to perform as well as the

matching layer used in our work.

Some works, such as [11, 15, 22, 30, 35, 36], have ad-

dressed the hard problem of category-level matching, but

rely on traditional non-trainable optimization for matching

[11, 15, 30, 35, 36], or guide the matching using object pro-

posals [22]. On the contrary, our approach is fully trainable

in an end-to-end manner and does not require any optimiza-

tion procedure at evaluation time, or guidance by object pro-

posals.

Others [33, 44, 53] have addressed the problems of in-

stance and category-level correspondence by performing

joint image alignment. However, these methods differ from

ours as they: (i) require class labels; (ii) don’t use CNN fea-

tures; (iii) jointly align a large set of images, while we align

image pairs; and (iv) don’t use a trainable CNN architecture

for alignment as we do.

3. Architecture for geometric matching

In this section, we introduce a new convolutional neu-

ral network architecture for estimating parameters of a ge-

ometric transformation between two input images. The ar-

chitecture is designed to mimic the classical computer vi-

sion pipeline (e.g. [40]), while using differentiable modules

so that it is trainable end-to-end for the geometry estima-

Feature extraction CNNIA fA

Feature extraction CNNIB fB

W Matching fAB
Regression

CNN
θ̂

Figure 2: Diagram of the proposed architecture. Images IA and

IB are passed through feature extraction networks which have tied

parameters W , followed by a matching network which matches

the descriptors. The output of the matching network is passed

through a regression network which outputs the parameters of the

geometric transformation.

tion task. The classical approach consists of the following

stages: (i) local descriptors (e.g. SIFT) are extracted from

both input images, (ii) the descriptors are matched across

images to form a set of tentative correspondences, which

are then used to (iii) robustly estimate the parameters of the

geometric model using RANSAC or Hough voting.

Our architecture, illustrated in Fig. 2, mimics this pro-

cess by: (i) passing input images IA and IB through a

siamese architecture consisting of convolutional layers, thus

extracting feature maps fA and fB which are analogous to

dense local descriptors, (ii) matching the feature maps (“de-

scriptors”) across images into a tentative correspondence

map fAB , followed by a (iii) regression network which di-

rectly outputs the parameters of the geometric model, θ̂, in

a robust manner. The inputs to the network are the two im-

ages, and the outputs are the parameters of the chosen geo-

metric model, e.g. a 6-D vector for an affine transformation.

In the following, we describe each of the three stages in

detail.

3.1. Feature extraction

The first stage of the pipeline is feature extraction, for

which we use a standard CNN architecture. A CNN with-

out fully connected layers takes an input image and pro-

duces a feature map f ∈ R
h×w×d, which can be interpreted

as a h × w dense spatial grid of d-dimensional local de-

scriptors. A similar interpretation has been used previously

in instance retrieval [5, 7, 8, 20] demonstrating high dis-

criminative power of CNN-based descriptors. Thus, for fea-

ture extraction we use the VGG-16 network [46], cropped

at the pool4 layer (before the ReLU unit), followed by

per-feature L2-normalization. We use a pre-trained model,

originally trained on ImageNet [13] for the task of image

classification. As shown in Fig. 2, the feature extraction net-

work is duplicated and arranged in a siamese configuration

such that the two input images are passed through two iden-

tical networks which share parameters.

3.2. Matching network

The image features produced by the feature extraction

networks should be combined into a single tensor as input to

the regressor network to estimate the geometric transforma-
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correlation

layer

Figure 3: Correlation map computation with CNN features.

The correlation map cAB contains all pairwise similarities be-

tween individual features fA ∈ fA and fB ∈ fB . At a particular

spatial location (i, j) the correlation map output cAB contains all

the similarities between fB(i, j) and all fA ∈ fA.

tion. We first describe the classical approach for generating

tentative correspondences, and then present our matching

layer which mimics this process.

Tentative matches in classical geometry estimation.

Classical methods start by computing similarities between

all pairs of descriptors across the two images. From this

point on, the original descriptors are discarded as all the

necessary information for geometry estimation is contained

in the pairwise descriptor similarities and their spatial loca-

tions. Secondly, the pairs are pruned by either thresholding

the similarity values, or, more commonly, only keeping the

matches which involve the nearest (most similar) neighbors.

Furthermore, the second nearest neighbor test [38] prunes

the matches further by requiring that the match strength is

significantly stronger than the second best match involving

the same descriptor, which is very effective at discarding

ambiguous matches.

Matching layer. Our matching layer applies a similar pro-

cedure. Analogously to the classical approach, only de-

scriptor similarities and their spatial locations should be

considered for geometry estimation, and not the original de-

scriptors themselves.

To achieve this, we propose to use a correlation layer

followed by normalization. Firstly, all pairs of similarities

between descriptors are computed in the correlation layer.

Secondly, similarity scores are processed and normalized

such that ambiguous matches are strongly down-weighted.

In more detail, given L2-normalized dense feature

maps fA, fB ∈ R
h×w×d, the correlation map cAB ∈

R
h×w×(h×w) outputted by the correlation layer contains at

each position the scalar product of a pair of individual de-

scriptors fA ∈ fA and fB ∈ fB , as detailed in Eq. (1).

cAB(i, j, k) = fB(i, j)
T
fA(ik, jk) (1)

where (i, j) and (ik, jk) indicate the individual feature posi-

tions in the h×w dense feature maps, and k = h(jk−1)+ik
is an auxiliary indexing variable for (ik, jk).

A diagram of the correlation layer is presented in Fig. 3.

Note that at a particular position (i, j), the correlation map

cAB contains the similarities between fB at that position and

all the features of fA.

As is done in the classical methods for tentative cor-

respondence estimation, it is important to postprocess the

pairwise similarity scores to remove ambiguous matches.

To this end, we apply a channel-wise normalization of the

correlation map at each spatial location to produce the fi-

nal tentative correspondence map fAB . The normalization

is performed by ReLU, to zero out negative correlations,

followed by L2-normalization, which has two desirable ef-

fects. First, let us consider the case when descriptor fB cor-

relates well with only a single feature in fA. In this case,

the normalization will amplify the score of the match, akin

to the nearest neighbor matching in classical geometry esti-

mation. Second, in the case of the descriptor fB matching

multiple features in fA due to the existence of clutter or

repetitive patterns, matching scores will be down-weighted

similarly to the second nearest neighbor test [38]. However,

note that both the correlation and the normalization opera-

tions are differentiable with respect to the input descriptors,

which facilitates backpropagation thus enabling end-to-end

learning.

Discussion. The first step of our matching layer, namely

the correlation layer, is somewhat similar to layers used in

DeepMatching [50] and FlowNet [17]. However, Deep-

Matching [50] only uses deep RGB patches and no part

of their architecture is trainable. FlowNet [17] uses a spa-

tially constrained correlation layer such that similarities are

are only computed in a restricted spatial neighborhood thus

limiting the range of geometric transformations that can be

captured. This is acceptable for their task of learning to es-

timate optical flow, but is inappropriate for larger transfor-

mations that we consider in this work. Furthermore, neither

of these methods performs score normalization, which we

find to be crucial in dealing with cluttered scenes.

Previous works have used other matching layers to com-

bine descriptors across images, namely simple concatena-

tion of descriptors along the channel dimension [14] or sub-

traction [29]. However, these approaches suffer from two

problems. First, as following layers are typically convolu-

tional, these methods also struggle to handle large transfor-

mations as they are unable to detect long-range matches.

Second, when concatenating or subtracting descriptors, in-

stead of computing pairwise descriptor similarities as is

commonly done in classical geometry estimation and mim-

icked by the correlation layer, image content information

is directly outputted. To further illustrate why this can be

problematic, consider two pairs of images that are related

with the same geometric transformation – the concatenation

and subtraction strategies will produce different outputs for

the two cases, making it hard for the regressor to deduce the
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fAB θ^conv1 BN1 ReLU1 conv2 BN2 ReLU2 FC

7×7×225×128 5×5×128×64 5×5×64×P

Figure 4: Architecture of the regression network. It is composed

of two convolutional layers without padding and stride equal to 1,

followed by batch normalization and ReLU, and a final fully con-

nected layer which regresses to the P transformation parameters.

geometric transformation. In contrast, the correlation layer

output is likely to produce similar correlation maps for the

two cases, regardless of the image content, thus simplify-

ing the problem for the regressor. In line with this intuition,

in Sec. 5.5 we show that the concatenation and subtraction

methods indeed have difficulties generalizing beyond the

training set, while our correlation layer achieves general-

ization yielding superior results.

3.3. Regression network

The normalized correlation map is passed through a re-

gression network which directly estimates parameters of the

geometric transformation relating the two input images. In

classical geometry estimation, this step consists of robustly

estimating the transformation from the list of tentative cor-

respondences. Local geometric constraints are often used to

further prune the list of tentative matches [43, 47] by only

retaining matches which are consistent with other matches

in their spatial neighborhood. Final geometry estimation is

done by RANSAC [18] or Hough voting [32, 34, 38].

We again mimic the classical approach using a neural

network, where we stack two blocks of convolutional lay-

ers, followed by batch normalization [26] and the ReLU

non-linearity, and add a final fully connected layer which

regresses to the parameters of the transformation, as shown

in Fig. 4. The intuition behind this architecture is that the

estimation is performed in a bottom-up manner somewhat

like Hough voting, where early convolutional layers vote

for candidate transformations, and these are then processed

by the later layers to aggregate the votes. The first convolu-

tional layers can also enforce local neighborhood consensus

[43, 47] by learning filters which only fire if nearby descrip-

tors in image A are matched to nearby descriptors in image

B, and we show qualitative evidence in Sec. 5.5 that this in-

deed does happen.

Discussion. A potential alternative to a convolutional re-

gression network is to use fully connected layers. However,

as the input correlation map size is quadratic in the number

of image features, such a network would be hard to train

due to a large number of parameters that would need to be

learned, and it would not be scalable due to occupying too

much memory and being too slow to use. It should be noted

that even though the layers in our architecture are convolu-

tional, the regressor can learn to estimate large transforma-

tions. This is because one spatial location in the correlation

map contains similarity scores between the corresponding

feature in image B and all the features in image A (c.f. equa-

tion (1)), and not just the local neighborhood as in [17].

3.4. Hierarchy of transformations

Another commonly used approach when estimating im-

age to image transformations is to start by estimating a

simple transformation and then progressively increase the

model complexity, refining the estimates along the way

[11, 37, 40]. The motivation behind this method is that es-

timating a very complex transformation could be hard and

computationally inefficient in the presence of clutter, so a

robust and fast rough estimate of a simpler transformation

can be used as a starting point, also regularizing the subse-

quent estimation of the more complex transformation.

We follow the same good practice and start by estimat-

ing an affine transformation, which is a 6 degree of freedom

linear transformation capable of modeling translation, rota-

tion, non-isotropic scaling and shear. The estimated affine

transformation is then used to align image B to image A us-

ing an image resampling layer [27]. The aligned images are

then passed through a second geometry estimation network

which estimates 18 parameters of a thin-plate spline trans-

formation. The final estimate of the geometric transforma-

tion is then obtained by composing the two transformations,

which is also a thin-plate spline. The process is illustrated

in Fig. 5.

4. Training

In order to train the parameters of our geometric match-

ing CNN, it is necessary to design the appropriate loss func-

tion, and to use suitable training data. We address these two

important points next.

4.1. Loss function

We assume a fully supervised setting, where the train-

ing data consists of pairs of images and the desired outputs

in the form of the parameters θGT of the ground-truth ge-

ometric transformation. The loss function L is designed to

compare the estimated transformation θ̂ with the ground-

truth transformation θGT and, more importantly, compute

the gradient of the loss function with respect to the esti-

mates ∂L

∂θ̂
. This gradient is then used in a standard manner

to learn the network parameters which minimize the loss

function by using backpropagation and Stochastic Gradient

Descent.

It is desired for the loss to be general and not specific

to a particular type of geometric model, so that it can be

used for estimating affine, homography, thin-plate spline or

any other geometric transformation. Furthermore, the loss

should be independent of the parametrization of the trans-

formation and thus should not directly operate on the pa-

rameter values themselves. We address all these design con-
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Stage 1 Stage 2

IA

IB

Matching θAff
ˆ

Feature Extraction

IA Feature Extraction

Matching TPS Regression

Feature Extraction

Feature Extraction

θTPS
ˆ

Affine Regression

Figure 5: Estimating progressively more complex geometric transformations. Images A and B are passed through a network which

estimates an affine transformation with parameters θ̂Aff (see Fig. 2). Image A is then warped using this transformation to roughly align with

B, and passed along with B through a second network which estimates a thin-plate spline (TPS) transformation that refines the alignment.

straints by measuring loss on an imaginary grid of points

which is being deformed by the transformation. Namely,

we construct a grid of points in image A, transform it using

the ground truth and neural network estimated transforma-

tions TθGT
and T

θ̂
with parameters θGT and θ̂, respectively,

and measure the discrepancy between the two transformed

grids by summing the squared distances between the corre-

sponding grid points:

L(θ̂, θGT ) =
1

N

N∑

i=1

d(T
θ̂
(gi), TθGT

(gi))
2 (2)

where G = {gi} = {(xi, yi)} is the uniform grid used,

and N = |G|. We define the grid as having xi, yi ∈ {s :
s = −1 + 0.1 × n, n ∈ {0, 1, . . . , 20}}, that is to say,

each coordinate belongs to a partition of [−1, 1] in equally

spaced subintervals of steps 0.1. Note that we construct

the coordinate system such that the center of the image is at

(0, 0) and that the width and height of the image are equal to

2, i.e. the bottom left and top right corners have coordinates

(−1,−1) and (1, 1), respectively.

The gradient of the loss function with respect to the

transformation parameters, needed to perform backpropa-

gation in order to learn network weights, can be computed

easily if the location of the transformed grid points T
θ̂
(gi) is

differentiable with respect to θ̂. This is commonly the case,

for example, when T is an affine transformation, T
θ̂
(gi) is

linear in parameters θ̂ and therefore the loss can be differ-

entiated in a straightforward manner.

4.2. Training from synthetic transformations

Our training procedure requires fully supervised training

data consisting of image pairs and a known geometric rela-

tion. Training CNNs usually requires a lot of data, and no

public datasets exist that contain many image pairs anno-

tated with their geometric transformation. Therefore, we

opt for training from synthetically generated data, which

gives us the flexibility to gather as many training examples

as needed, for any 2-D geometric transformation of interest.

We generate each training pair (IA, IB), by sampling IA

IA

Original image

Padded image

IB

Figure 6: Synthetic image generation. Symmetric padding is

added to the original image to enlarge the sampling region, its cen-

tral crop is used as image A, and image B is created by performing

a randomly sampled transformation TθGT
.

from a public image dataset, and generating IB by applying

a random transformation TθGT
to IA. More precisely, IA

is created from the central crop of the original image, while

IB is created by transforming the original image with added

symmetrical padding in order to avoid border artifacts; the

procedure is shown in Fig. 6.

5. Experimental results

In this section we describe our datasets, give implemen-

tation details, and compare our method to baselines and the

state-of-the-art. We also provide further insights into the

components of our architecture.

5.1. Evaluation dataset and performance measure

Quantitative evaluation of our method is performed on

the Proposal Flow dataset of Ham et al. [22]. The dataset

contains 900 image pairs depicting different instances of the

same class, such as ducks and cars, but with large intra-

class variations, e.g. the cars are often of different make,

or the ducks can be of different subspecies. Furthermore,

the images contain significant background clutter, as can be

seen in Fig. 8. The task is to predict the locations of pre-

defined keypoints from image A in image B. We do so by

estimating a geometric transformation that warps image A

into image B, and applying the same transformation to the

keypoint locations. We follow the standard evaluation met-

ric used for this benchmark, i.e. the average probability of
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correct keypoint (PCK) [51], being the proportion of key-

points that are correctly matched. A keypoint is considered

to be matched correctly if its predicted location is within a

distance of α · max(h,w) of the target keypoint position,

where α = 0.1 and h and w are the height and width of the

object bounding box, respectively.

5.2. Training data

Two different training datasets for the affine and

thin-plate spline stages, dubbed StreetView-synth-aff and

StreetView-synth-tps respectively, were generated by apply-

ing synthetic transformations to images from the Tokyo

Time Machine dataset [5] which contains Google Street

View images of Tokyo.

Each synthetically generated dataset contains 40k im-

ages, divided into 20k for training and 20k for validation.

The ground truth transformation parameters were sampled

independently from reasonable ranges, e.g. for the affine

transformation we sample the relative scale change of up

to 2×, while for thin-plate spline we randomly jitter a 3× 3
grid of control points by independently translating each

point by up to one quarter of the image size in all directions.

In addition, a second training dataset for the affine stage

was generated, created from the training set of Pascal VOC

2011 [16] which we dubbed Pascal-synth-aff. In Sec. 5.5,

we compare the performance of networks trained with

StreetView-synth-aff and Pascal-synth-aff and demonstrate

the generalization capabilities of our approach.

5.3. Implementation details

We use the MatConvNet library [49] and train the net-

works with stochastic gradient descent, with learning rate

10−3, momentum 0.9, no weight decay and batch size of

16. There is no need for jittering as instead of data aug-

mentation we can simply generate more synthetic training

data. Input images are resized to 227 × 227 producing

15×15 feature maps that are passed into the matching layer.

The affine and thin-plate spline stages are trained indepen-

dently with the StreetView-synth-aff and StreetView-synth-

tps datasets, respectively. Both stages are trained until con-

vergence which typically occurs after 10 epochs, and takes

12 hours on a single GPU. Our final method for estimating

affine transformations uses an ensemble of two networks

that independently regress the parameters, which are then

averaged to produce the final affine estimate. The two net-

works were trained on different ranges of affine transfor-

mations. As in Fig. 5, the estimated affine transformation is

used to warp image A and pass it together with image B to a

second network which estimates the thin-plate spline trans-

formation. All training and evaluation code, as well as our

trained networks, are online at [1].

Methods PCK (%)

DeepFlow [41] 20

GMK [15] 27

SIFT Flow [35] 38

DSP [30] 29

Proposal Flow NAM [22] 53

Proposal Flow PHM [22] 55

Proposal Flow LOM [22] 56

RANSAC with our features (affine) 47

Ours (affine) 49

Ours (affine + thin-plate spline) 56

Ours (affine ensemble + thin-plate spline) 57

Table 1: Comparison to state-of-the-art and baselines. Match-

ing quality on the Proposal Flow dataset measured in terms of

PCK. The Proposal Flow methods have four different PCK values,

one for each of the four employed region proposal methods. All

the numbers apart from ours and RANSAC are taken from [22].

5.4. Comparison to state­of­the­art

We compare our method against SIFT Flow [35], Graph-

matching kernels (GMK) [15], Deformable spatial pyramid

matching (DSP) [30], DeepFlow [41], and all three variants

of Proposal Flow (NAM, PHM, LOM) [22]. As shown in

Tab. 1, our method outperforms all others and sets the new

state-of-the-art on this data. The best competing methods

are based on Proposal Flow and make use of object pro-

posals, which enables them to guide the matching towards

regions of images that contain objects. Their performance

varies significantly with the choice of the object proposal

method, illustrating the importance of this guided match-

ing. On the contrary, our method does not use any guiding,

but it still manages to outperform even the best Proposal

Flow and object proposal combination.

Furthermore, we also compare to affine transformations

estimated with RANSAC using the same descriptors as our

method (VGG-16 pool4). The parameters of this baseline

have been tuned extensively to obtain the best result by ad-

justing the thresholds for the second nearest neighbor test

and by pruning proposal transformations which are outside

of the range of likely transformations. Our affine estimator

outperforms the RANSAC baseline on this task with 49%

(ours) compared to 47% (RANSAC).

5.5. Discussions and ablation studies

In this section we examine the importance of various

components of our architecture. Apart from training on the

StreetView-synth-aff dataset, we also train on Pascal-synth-

aff which contains images that are more similar in nature to

the images in the Proposal Flow benchmark. The results of

these ablation studies are summarized in Tab. 2.

Correlation versus concatenation and subtraction. Re-

placing our correlation-based matching layer with feature

concatenation or subtraction, as proposed in [14] and [29],
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Figure 7: Filter visualization. Some convolutional filters from the first layer of the regressor, acting on the tentative correspondence

map, show preferences to spatially co-located features that transform consistently to the other image, thus learning to perform the local

neighborhood consensus criterion often used in classical feature matching. Refer to the text for more details on the visualization.

Image A Aligned A (affine) Aligned A (affine+TPS) Image B

Figure 8: Qualitative results on the Proposal Flow dataset. Each row shows one test example from the Proposal Flow dataset. Ground

truth matching keypoints, only used for alignment evaluation, are depicted as crosses and circles for images A and B, respectively. Key-

points of same color are supposed to match each other after image A is aligned to image B. To illustrate the matching error, we also overlay

keypoints of B onto different alignments of A so that lines that connect matching keypoints indicate the keypoint position error vector. Our

method manages to roughly align the images with an affine transformation (column 2), and then perform finer alignment using thin-plate

spline (TPS, column 3). It successfully handles background clutter, translations, rotations, and large changes in appearance and scale, as

well as non-rigid transformations and some perspective changes. Further examples are shown in the supplementary material [2] .

Methods StreetView-synth-aff Pascal-synth-aff

Concatenation [14] 26 29

Subtraction [29] 18 21

Ours without normalization 44 –

Ours 49 45

Table 2: Ablation studies. Matching quality on the Proposal Flow

dataset measured in terms of PCK. All methods use the same fea-

tures (VGG-16 cropped at pool4). The networks were trained on

the StreetView-synth-aff and Pascal-synth-aff datasets. For these

experiments, only the affine transformation is estimated.

respectively, incurs a large performance drop. The behavior

is expected as we designed the matching layer to only keep

information on pairwise descriptor similarities rather than

the descriptors themselves, as is good practice in classical

geometry estimation methods, while concatenation and sub-

traction do not follow this principle.

Generalization. As seen in Tab. 2, our method is relatively

unaffected by the choice of training data as its performance

is similar regardless whether it was trained with StreetView

or Pascal images. We also attribute this to the design choice

of operating on pairwise descriptor similarities rather than

the raw descriptors.

Normalization. Tab. 2 also shows the importance of the

correlation map normalization step, where the normaliza-
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(a) Image A (b) Image B (c) Aligned image A (d) Overlay of (b) and (c) (e) Difference map

Figure 9: Qualitative results on the Tokyo Time Machine dataset. Each row shows a pair of images from the Tokyo Time Machine

dataset, and our alignment along with a “difference map”, highlighting absolute differences between aligned images in the descriptor space.

Our method successfully aligns image A to image B despite of viewpoint and scene changes (highlighted in the difference map).

tion improves results from 44% to 49%. The step mimics

the second nearest neighbor test used in classical feature

matching [38], as discussed in Sec. 3.2. Note that [17] also

uses a correlation layer, but they do not normalize the map

in any way, which is clearly suboptimal.

What is being learned? We examine filters from the first

convolutional layer of the regressor, which operate directly

on the output of the matching layer, i.e. the tentative corre-

spondence map. Recall that each spatial location in the cor-

respondence map (see Fig. 3, in green) contains all similar-

ity scores between that feature in image B and all features in

image A. Thus, each single 1-D slice through the weights of

one convolutional filter at a particular spatial location can be

visualized as an image, showing filter’s preferences to fea-

tures in image B that match to specific locations in image A.

For example, if the central slice of a filter contains all zeros

apart from a peak at the top-left corner, this filter responds

positively to features in image B that match to the top-left

of image A. Similarly, if many spatial locations of the fil-

ter produce similar visualizations, then this filter is highly

sensitive to spatially co-located features in image B that all

match to the top-left of image A. For visualization, we pick

the peaks from all slices of filter weights and average them

together to produce a single image. Several filters shown

in Fig. 7 confirm our hypothesis that this layer has learned

to mimic local neighborhood consensus as some filters re-

spond strongly to spatially co-located features in image B

that match to spatially consistent locations in image A. Fur-

thermore, it can be observed that the size of the preferred

spatial neighborhood varies across filters, thus showing that

the filters are discriminative of the scale change.

5.6. Qualitative results

Fig. 8 illustrates the effectiveness of our method in

category-level matching, where challenging pairs of images

from the Proposal Flow dataset [22], containing large intra-

class variations, are aligned correctly. The method is able

to robustly, in the presence of clutter, estimate large transla-

tions, rotations, scale changes, as well as non-rigid transfor-

mations and some perspective changes. Further examples

are shown in the supplementary material [2] .

Fig. 9 shows the quality of instance-level matching,

where different images of the same scene are aligned cor-

rectly. The images are taken from the Tokyo Time Machine

dataset [5] and are captured at different points in time which

are months or years apart. Note that, by automatically high-

lighting the differences (in the feature space) between the

aligned images, it is possible to detect changes in the scene,

such as occlusions, changes in vegetation, or structural dif-

ferences e.g. new buildings being built.

6. Conclusions

We have described a network architecture for geomet-

ric matching fully trainable from synthetic imagery with-

out the need for manual annotations. Thanks to our match-

ing layer, the network generalizes well to never seen be-

fore imagery, reaching state-of-the-art results on the chal-

lenging Proposal Flow dataset for category-level matching.

This opens-up the possibility of applying our architecture

to other difficult correspondence problems such as match-

ing across large changes in illumination (day/night) [5] or

depiction style [6].
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