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Abstract

Text instance as one category of self-described objects

provides valuable information for understanding and de-

scribing cluttered scenes. In this paper, we explore the

task of unambiguous text localization and retrieval, to accu-

rately localize a specific targeted text instance in a cluttered

image given a natural language description that refers to

it. To address this issue, first a novel recurrent Dense Text

Localization Network (DTLN) is proposed to sequentially

decode the intermediate convolutional representations of a

cluttered scene image into a set of distinct text instance de-

tections. Our approach avoids repeated detections at multi-

ple scales of the same text instance by recurrently memoriz-

ing previous detections, and effectively tackles crowded text

instances in close proximity. Second, we propose a Context

Reasoning Text Retrieval (CRTR) model, which jointly en-

codes text instances and their context information through a

recurrent network, and ranks localized text bounding boxes

by a scoring function of context compatibility. Quantitative

evaluations on standard scene text localization benchmarks

and a newly collected scene text retrieval dataset demon-

strate the effectiveness and advantages of our models for

both scene text localization and retrieval.

1. Introduction

Text instances such as characters, words and strings in

a scene image provide the most concise and accurate nat-

ural language expressions to understand and explain the

scene. Reading text information from a camera-based natu-

ral scene, named as scene text extraction, plays a significant

role in scene understanding and its associated applications,

such as navigation, localization, context retrieval, end-to-

end machine translation, and wayfinding for visually im-

paired, etc. However, most existing scene text extraction

approaches regard text instances as a generic category of

objects, and attempt to encode text instances into separable

larger	text	above	a	pile	of	oranges

red	and	yellow	text	in	the	middle	

white	text	at	the	top	right “$398”

“$595”
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Text	RecognitionText	Instance	Retrieval	with	Natural	Language

Figure 1: An example of unambiguous text localization and re-

trieval. Given a cluttered scene image and candidate text bounding

boxes (in white, detected by the proposed DTLN), the proposed

CRTR model is applied to retrieve a specific text instance (in color)

based on a natural language description. It scores and ranks can-

didate boxes based on text attributes, spatial configurations, and

context information.

feature representations from other categories of objects, and

then assign all text instances existing in the scene to prede-

fined prediction labels. It means that text instance could not

contribute more than other objects to the understanding and

description of a scene, even though the text is more related

to context environment and semantically self-described.

Precisely, for a text instance in a natural scene image,

current mainstream text extraction methods could generate

their locations and sequential character codes, to which we

refer as spatial and literal information afterward. However,

to comprehensively describe and interpret a highly cluttered

natural scene, higher level clues such as semantic and con-
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textual information are necessary. There has been a lot of

work exploring practical applications of scene text extrac-

tion such as shopping assistants in grocery stores [1, 2], es-

pecially for blind or visually impaired people. But text in-

formation would help scene understanding only if the user

perceives where the text instances are from. For example,

when a blind or visually impaired people is using scene text

extraction in a grocery store to help find price of a prod-

uct, he/she would prefer the shopping assistant application

to generate natural language description like {large words on

a red sign saying “unbeatable price” above a basket of red apples

at the right side}, rather than a list of discrete and unordered

words from text extraction, as shown in Fig. 1. Moreover,

in daily life it is more natural for a human to refer to objects

and scene text instances based on their attributes, appear-

ances, and spatial configurations, since the fine recognition

process usually occurs in brain after rough localization1.

To better utilize text information in natural scenes, the

relationships between text instances and their contexts are

explored in this paper. We propose a new framework of

text-based scene understanding, which combines the local-

ization of text instances from a scene with the informative

and unambiguous natural language description of the local-

ized text instances. This kind of natural language descrip-

tions is known as referring expression [3, 4, 5]. We know

that context descriptions of text instances are effective on

the understanding and description of the entire scene if the

text instances are accurately localized. Being able to re-

trieve scene text instances from natural images is critical

in a number of applications that use natural language in-

terfaces, such as controlling a robot (e.g., {Alexa, please read

me the green note besides the fridge}), or interacting with photo

editing software (e.g., {Picasa, please blur the white door num-

bers on the grey front door}).In addition, it provides a valuable

testbed for research on vision and language systems.

The contributions of this paper have three aspects. First,

we propose a text-based framework of scene understand-

ing, which combines the localization of text bounding boxes

with the retrieval of text instances from context descrip-

tion. Second, we propose the relationship modeling be-

tween scene text instances and their context concepts in

scene images. Third, a new large-scale dataset is con-

structed to evaluate the performance of unambiguous text

instance retrieval. The proposed framework the first solu-

tion of jointly modeling image-based scene text localiza-

tion with language-based description of the localized text

instances. It significantly extends the conventional scene

text retrieval task, and can be applied to understand and de-

scribe cluttered scenes.

In our proposed framework, spatial information and con-

text descriptions of scene text instances benefit from each

other. The scene text locations could provide pivotal and

1http://tinyurl.com/nerorec

precise information for context descriptions of the entire

or a region of the scene image, while context description

could provide a more user-friendly way to incorporate the

extracted text information and its context into practical ap-

plications.

2. Related Work

Generally, text detection and recognition, word image

retrieval, image captioning and description, generation and

comprehension of referring expressions can be seen as dif-

ferent directions of the same Visual-Linguistic super-task,

which jointly models the natural language information and

image content. We discuss these related areas as follows.

Text extraction in the wild. Scene text extraction consists

of text localization and text recognition. As the state-of-

the-art text recognition accuracy on cropped word image

has been over 98% [6], the performance of text localization

is the main bottleneck of text extraction in natural scenes.

Most existing text localization methods [7, 8, 9, 10, 11] usu-

ally employed a bottom-up pipeline based on sliding win-

dow or connected components, which was usually hard-

coded with less robustness and reliability, and their per-

formance heavily relied on the low-level image filtering.

Even though Convolutional Neural Networks (CNN) sub-

stantially improved generic object detections, text localiza-

tion from cluttered scene image was still a challenging prob-

lem, due to the highly variant and undefined appearance and

structure of scene text instances [12, 13, 14]. Recently, a

new synthetic text dataset was proposed in [15] for train-

ing a fully convolutional regression network for text local-

ization similar to YOLO [16], and achieved decent results

on several popular datasets, though failures often occur on

tiny or crowded text instances. Moreover, YOLO-alike ap-

proaches cannot predict more than two instances from one

grid cell, while our proposed model is able to generate sets

of predictions in variable lengths from a small region and

handle the crowded instances in a high density. [17] aimed

to connect sequential fine-scale text proposals horizontally

using LSTM which achieved top performance on text local-

ization. However, the strong assumption of horizontal text

lines could be easily violated in practice applications.

Many deep neural networks [18, 19, 20] were proposed

to effectively encode scene images or their sub-regions into

feature representations for classification tasks, and these

networks could be applied for scene text extraction. How-

ever, they ignored the relationships between text instances

and their surrounding objects in cluttered scene images. In

our proposed DTLN network, CNN is still employed to ob-

tain deep convolutional representations of scene images, but

we adopt Long Short Term Memory (LSTM) [21] based

decoders to jointly model text instances and their context.

This architecture worked very well on the generation of im-

age captions [22] and machine translations [23]. With the
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Figure 2: The architecture of the proposed Dense Text Localization Network (DTLN) and Context Reasoning Text Retrieval (CRTR)

Models. For an input image, the DTLN model directly decodes the CNN features into a variable length set of text instance candidates. The

CRTR model pools the information from three different LSTM models, and jointly scores and ranks the candidate text regions which are

generated by DTLN.

help of LSTM network, our proposed DTLN could memo-

rize previously generated text bounding boxes and avoid the

repeated detection at multiple scales of the same target.

Image captioning and referring expression. Several ap-

proaches were proposed to explore the descriptions and ex-

planations of scene images with natural language [24]. In

the recent work [3], the image content was represented by

hidden activations of a CNN, and then fed as input into

LSTM framework for caption generation. However, these

image captioning methods aimed to describe the entire im-

age, without modeling spatial localization of text instances

or some generic objects and their context. Our approach

employs a similar network architecture to generate context

descriptions of the localized text regions.

The context description is tightly related to the concept

referring expression in the visual-linguistic research area.

Referring expression generation had been a classic natural

language processing problem. There were several impor-

tant issues in this problem. It explored what types of at-

tributes people typically used to describe visual objects, and

also dealt with the usage of higher-order relationships (e.g.,

spatial comparison) [4]. However, referring expression for

text instances of a scene image still remains unexplored, and

our framework utilizes context descriptions of scene text in-

stances as their referring expression to retrieve targeted text

information from cluttered scene images.

The rest of the paper is organized as follows. Sec. 3

presents our proposed deep neural networks for dense scene

text localization from image-based feature and scene text re-

trieval from language-based context description. Sec. 4 de-

scribes the experiments of localizing text instances on stan-

dard benchmark datasets, and the experiments of retrieving

target text instances through their context descriptions on a

self-constructed dataset. Sec. 5 concludes this paper.

3. Proposed Framework

3.1. Convolutional Encoding Network

Our framework employs the VGG-16 architecture [20]

to encode a scene image I into a feature map in a M × N

grid of 512 dimensional feature descriptors. In detail, VGG-

16 network consists of 13 layers of 3 × 3 convolutions,

and 5 interleaved layers of 2 × 2 max-pooling. We draw

the network data before the final pooling layer as feature

map, namely conv5. The feature map covers large receptive

fields from the original scene image, and encodes object cat-

egories from ImageNet [25], which is then fed into a 2 × 2
average-pooling layer.
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3.2. Dense Sequential Text Localization

Although scene text instances were often treated as one

special category of object in the detection phase, their

highly variant appearances/scales and self-description at-

tribute significantly distinguish them from generic objects.

Convolutional encoding network as described above en-

codes a strided region of the original scene image into a

vector of 512 dimensional feature descriptors. According

to the recent development of LSTM based language model

[23, 26], we build a recurrent decoder to make joint pre-

dictions in sequence for all potential target objects, which

are scene text instances in our framework. The combina-

tion of a CNN-based encoder with LSTM-based decoder

plays a critical role in our framework. It enables the gen-

eration of coherent sets of predictions in variable lengths.

These properties have been leveraged successfully to gen-

erate image captions [22], machine translation [23], and

people detection [27]. The method in [27] worked well on

people detection, but was not involved in the detection of

objects with highly irregular and variant spatial configura-

tions. Also, this method was mainly to solve the occlusion

problems which rarely happen to scene text instances.

The ability to generate coherent sets is critically impor-

tant in our task because there is no prior knowledge of how

many text instances would appear in a local region, and our

system needs to memorize previously generated text predic-

tions and avoid repeated predictions of the same target.

Decoding process. The 512 dimensional feature descrip-

tor summarizes the contents of the strided region and car-

ries information about the sizes, positions and categories of

the objects inside the strided region. An LSTM-based de-

coder would smartly extract target scene text instances from

these CNN encoded feature descriptors. The LSTM-based

decoder sequentially outputs new bounding boxes and their

corresponding confidence scores. This score indicates the

probability that a previously undetected text instance could

be found at the location of the bounding box. The bound-

ing boxes are produced in the ordering of descending con-

fidence scores. When the LSTM-based decoder is unable

to find more bounding boxes with higher confidence scores

in the strided region, a stop symbol is produced to end the

entire decoding process. All the output bounding boxes and

confidence scores from all strided regions of the scene im-

age are collected as the predictions of scene text instances.

Implementation details. According to the convolutional

encoding network, there are M × N strided regions at a

scene image, so the same number of M × N LSTM con-

trollers run in parallel on 1 × 1 × 512 grid cells. In our

framework, we set M = 15 and N = 20 based on exper-

imental results. The LSTM units have 500 memory states,

no bias terms, and no output nonlinearities. At each step, we

concatenate the VGG-16 feature maps with the output of the

previous LSTM unit, and feed the result into the next LSTM

unit. This network learns to regress exactly on bounding

boxes of text instances through the LSTM decoder.

In training process, the LSTM-based decoder outputs an

overcomplete set of bounding boxes along with their confi-

dence scores. Bounding boxes with higher confidence score

are preferred during matching with the ground truth. On

COCO-TextRef dataset, we limit the overcomplete set to

be top 5 predictions. In our experiments, more predictions

largely increase the computational complexity, but not ob-

tain obvious performance improvement.

In training process, hypotheses of text bounding boxes

are generated in sequence. A text bounding box output

by LSTM is represented by a 6 dimensional vector b =

{bpos, bc}, where bpos = [ bx
W
,
by
H
, bw
W

, bh
H
, bw·bh
W ·H

] ∈ R
5 is

the relative position, width, height, and area size of the

bounding box, and bc ∈ [0, 1] is a real-valued confidence.

In LSTM, all hypotheses of text bounding boxes are associ-

ated with previous counterparts via the memory states.

Confidence scores lower than a pre-specified threshold

are interpreted as a stop symbol at the testing phase. The

higher confidence score bc indicates that the bounding box

is more likely to cover a true positive text instance. In prac-

tice, we use a Hungarian loss term for the output bound-

ing boxes as in [27]. Typical detection errors such as false

positives, missing detections, and repeated predictions of

the same ground-truth instance are penalized in the training

process.

Text region refinement. The proposed text localization

method is trained to predict multiple bounding boxes within

a grid cell. To handle an entire image in testing phase we

generate predictions from each cell of a 15 × 20 grid of

the image, and then recursively stitch and merge predic-

tions from successive cells on the grid. Therefore, the pro-

posed method can handle the dense and cluttered tiny text

instances while still capturing large-size text instance that

occupies a big area of the scene image.

3.3. Unambiguous retrieval of text instances

This subsection presents context reasoning model

(CRTR) which retrieves scene text instances by natural lan-

guage. In testing phase, given an image along with a nat-

ural language query and a set of candidate text bounding

boxes (ground truth or generated by the proposed DTLN),

the CRTR selects a subset of text bounding boxes from the

outputs of DTLN that match the query context description.

Visual relationship modeling. Text instances in scene im-

age are usually embedded in complex background with all

sorts of contextual outliers, so it is difficult to model infor-

mative and unambiguous descriptions of the text instances

if not take into account their relationships with the generic
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objects in context. This makes sense intuitively: text in-

stances in natural scenes are usually composed of printed or

handwritten characters appearing on the surface of certain

objects, and their visual relationships usually dominate the

holistic interpretation of a natural scene image.

Since the set of relationships between text instances and

context concepts (e.g., objects, stuff, persons) is tremendous

and permutationally growing, we focus on the context con-

cepts that are directly associated and interactive with text

instances. However, it is still uneasy to obtain sufficient

training examples to cover all this kind of relationship pairs.

To simplify this problem and work out a minimum viable

solution, we reduce the semantic space to contain only the

relationships between single text instance and single context

object, because the semantic space of all possible relation-

ship pairs is much larger than that of individual text instance

and context object. Visual relationship is represented as a

language query as {text-relationship-context}, where

relationship could be spatial, preposition, comparative

or other possible categories (e.g., no action and interaction

for text instances as the subject) [28] for text instances. To

avoid ambiguities in the evaluations of the context descrip-

tions of scene text instances, we focus on the prediction of

their spatial relationships and text attributes, similar to the

scheme in [4], as shown in Fig. 2.

Context reasoning text retrieval. Inspired by the archi-

tecture of LRCN [26] and SCRC [29], our Context Rea-

soning Text Retrieval (CRTR) model for natural language

scene text instance retrieval consists of several components

as illustrated in Figure 2. The model has three LSTM units

denoted by LSTMlang , LSTMlocal and LSTMglobal, a lo-

cal and a global CNN, and word embedding and prediction

layers, concurrent with [26] and [29]. At testing, given an

image I , a query text sequence S and a set of candidate text

bounding boxes {bpos} in I , the network outputs a score si
for the i-th candidate box bpos based on local image descrip-

tors xbox on bpos, spatial configuration bpos of the box with

respect to the scene, and global contextual feature xcontext.

The local descriptor xbox is extracted by CNNlocal from lo-

cal region Ibox on bpos, and the feature extracted by another

network CNNglobal on the whole image Iim is employed

as scene-level contextual feature xcontext. The spatial con-

figuration of bpos = [ bx
W
,
by
H
, bw
W

, bh
H
, bw·bh
W ·H

] ∈ R
5 is an 5-

dimensional representation similar to the one in DTLN.

In the query text sequence S, the words {wt} are rep-

resented as one-hot vectors and embedded through a lin-

ear word embedding matrix, and processed by LSTMlang

as the input time sequence. At each time step t,

LSTMlocal takes in [h
(t)
lang, xbox, bpos], and LSTMglobal

takes in [h
(t)
lang, xcontext]. Finally, based on h

(t)
local and

h
(t)
global, a word prediction layer predicts the conditional

probability distribution of the next word based on local im-

age region Ibox, whole image Iim, spatial configuration bpos
and all previous input words.

For the other training settings, we follow [26] and [29].

VGG-16 net [20] trained on ImageNet dataset [25] is still

used as the CNN architecture for CNNlocal and CNNglobal

and we extract 1000-dimensional fc8 outputs as xbox and

xcontext, and use the same LSTM implementation as in

[26] and [29]. Each of the three LSTM units has 1000-

dimensional state ht. It is worth noting that the CNNglobal

can share the features from the DTLN model. In testing

phase, given an input image I , a query text S and a set of

candidate text bounding boxes {bpos}, the query text S is

scored on i-th candidate box using the likelihood of S con-

ditioned on the local image region, the whole image and the

spatial configuration of the box, which can be computed as

s = p(S|Ibox, Iim, {bc, bpos}) and the candidate box with

the highest score is retrieved (bc = 1 for ground truth input,

and bc ∈ [0, 1] for text localization input). In training phase,

each instance is an image-bounding box-description tuple,

which is constructed from the ground truth annotations as

training instances (multiple tuples are constructed if there

are multiple descriptions for the same text instance, or same

description for multiple text instances in close proximity) in

experiments. During training, the model parameters are ini-

tialized from the pretrained network, and fine-tuned using

SGD with a smaller learning rate, allowing the network to

adapt to natural language text retrieval domain. The whole

CRTR network is trained end-to-end via back propagation.

4. Experiments

In Sec. 4.1 and 4.2 we introduce the details of the text

localization datasets and the newly collected scene text re-

trieval dataset. Experiments and corresponding discussions

are presented in Sec. 4.3 and 4.4.

4.1. Datasets for Text Localization

First, the proposed dense text localization method is

trained and evaluated on standard benchmarks, including

SynthText dataset, ICDAR 2013 dataset [30], and the Street

View Text dataset [31]. Then the whole unambiguous text

localization framework is evaluated on a newly collected

COCO-TextRef dataset.

SynthText in the wild dataset. This is a dataset containing

800,000 synthetic training images, which were generated in

[15]. Each image has word instances annotated with char-

acter and word-level bounding boxes.

ICDAR 2013 dataset. ICDAR (International Conference

on Document Analysis and Recognition) 2013 dataset con-

tains real world images of text on sign boards, books,

posters and other objects with world-level axis-aligned
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Table 1: Performance comparison between our proposed framework with previous scene text localization approaches on ICDAR 2013

[30] and SVT datasets [31] in terms of the measures of PASCAL Eval [32] and DetEval [33]. Precision (P) and Recall (R) at maximum

F-measure (F) and the average computation time (T) are reported. Bold number indicates the best performance for each measure metric.

Average time spent on these scene text localization approaches (the last column) demonstrates that the proposed DTLN achieves state-of-

the-art F-measure while running in comparable speed as competing approaches.

PASCAL Eval DetEval Time

IC13 SVT IC13 SVT Avg.

F P R F P R F P R F P R T/s

TH-TextLoc [30] - - - - - - 0.67 0.70 0.65 - - - -

Text Spotter [8] - - - - - - 0.74 0.88 0.65 - - - 0.3

Yin et al. [9] - - - - - - 0.76 0.88 0.66 - - - 0.43

Lu et al. [34] - - - - - - 0.78 0.89 0.70 - - - -

Jaderberg [12] 0.76 0.87 0.68 0.54 0.63 0.47 0.77 0.89 0.68 0.25 0.28 0.23 7.3

Zhang et al. [35] - - - - - - 0.80 0.88 0.74 - - - 60.0

FCN [13] - - - - - - 0.83 0.88 0.78 - - - 2.1

FCRNall+filts [15] 0.84 0.94 0.76 0.63 0.65 0.60 0.83 0.94 0.77 0.27 0.29 0.26 1.27

Tian et al. [17] 0.88 0.93 0.83 0.66 0.68 0.65 - - - - - - 0.14

DTLN 0.85 0.92 0.79 0.64 0.65 0.63 0.85 0.92 0.78 0.28 0.29 0.27 0.35

Figure 3: Example results of scene text localization. The green bounding boxes contain correct detections; Red bounding boxes contain

false positives; Red dashed box (e.g., the one at the bottom-right image) contains the false negative.

bounding box annotations. It consists of 229 training im-

ages and 233 testing images.

Street View Text (SVT) dataset. This dataset consists of

images harvested from Google Street View annotated with

word-level axis-aligned bounding boxes. SVT is more chal-

lenging than the ICDAR data as it contains smaller and

lower resolution text which exhibits high variability. It con-

sists of 100 training images and 249 testing images.

4.2. Data Construction for Text Instance Retrieval

To our knowledge, the largest dataset for evaluating ob-

ject retrieval and referring expression is ReferIt dataset

from [5]. However, this dataset did not provide any annota-

tions and expressions for scene text instances, therefore we

create a new large-scale dataset for evaluating the proposed

framework.

We select the intersection parts of COCO-Text and

Google Refexp Datasets to establish a new dataset contain-
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query = “largest text on the closest object” query = “white text around a bench”
query = “largest text left to the right human”

query = “text on a motorcycle”
query = “text on the right cup” query = “text on top of a red boat”

query = “blue text on the largest plane” query = “most salient text on a bus”

Figure 4: Text region retrieval results of the proposed Context Reasoning Text Retrieval (CRTR) model on the COCO-TextRef dataset.

At first, red boxes are employed to denote context concepts. Then green boxes are added to identify the successfully retrieved text regions

associated with the context concepts. The remaining text regions are marked by yellow boxes.

ing both text instance annotations and background concept

annotations with descriptions. Synthetic text instances are

rendered on certain images through the method in [15] with

corresponding descriptions manually labeled, when the

number of natural text instances is much less than the con-

text concepts. This dataset is referred as COCO-TextRef,

which in total contains 6,638 images with 31,870 ex-

pressions (all in {text-relationship-context} style,

and further filter out with human assessment), referring to

11,342 distinct objects. It contains 17,355 text instances and

their literal transcriptions.

4.3. Text Localization Experiments

The proposed dense text localization network is trained

on 800,000 images from the SynthText in the Wild dataset.

Each image is resized to 480×640. VGG-16 weights are

initialized with the weights pretrained on ImageNet [25],

and fine-tuned to meet the new demands of the decoding

process. All weights in the decoder are initialized from a

uniform distribution. Training proceeds in parallel on all

grid cells of one image at each iteration. All weights are

tied between regions and LSTM steps. Training on the

whole SynthText in the Wild dataset takes about 15 hours on

a NVIDIA Titan X (Maxwell) GPU for 200,000 iterations.

The following criteria are used to evaluate text localiza-

tion results. (1) The standard PASCAL VOC detect cri-

terion: a detection is true positive if the Intersection over

Union (IoU) between its bounding box and the ground truth

exceeds 50%. (2) The DetEval [33] criterion: an evaluation

metric which emphasizes more on detection quality and has

been popularly used in ICDAR competitions. To further im-

prove the performance, we follow the post-processing rou-
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Table 2: The left table presents the Top-1 precision of our

method compared with previous methods on annotated ground

truth bounding boxes on the COCO-TextRef dataset. The right

table presents the Top-1, Top-5 recalls of our method compared

with previous methods with detected text regions generated by the

proposed DTLN method.

Method P@1

LRCN [26] 0.264

DenseCap [36] 0.291

SCRC [29] 0.457

CRTR 0.582

Method R@1 R@5

LRCN [26] 0.083 0.213

DenseCap [36] 0.095 0.229

SCRC [29] 0.135 0.313

CRTR 0.184 0.394

tine introduced by [6] to filter out hard false positives. In

detail, first we use a binary text/non-text random forest clas-

sification model to filter out non-text proposals; second, text

region proposals are improved by CNN-based regression.

Table 1 shows the performance of our DTPN model. The

precision and recall at maximum F-measure, and the aver-

age computation time on both datasets of our basic model

are reported. In conjunction with a simple binary text/no-

text random-forest classifier [6] to further eliminate false-

positive detections, it outperforms state-of-the-art methods

in terms of recall and achieves comparable precision. Qual-

itative results are shown at Figure 3, which demonstrate

that the proposed approach effectively tackles the relatively

crowded scene text instances, and extracts them from the

cluttered and complex background.

Based on the analysis of evaluation results and compar-

ison with recent state-of-the-art word-based text detection

methods like [15] and [17], our proposed DTPN performs

equally well for sparse text instances, and performs better

in detecting relatively dense and crowded ones. However, it

still fails to handle some challenging cases, such as overex-

posure and large character spacing. Some failure cases are

indicated by red solid (false positive) and dash (false nega-

tive) boxes in Figure 3.

4.4. Text Retrieval Experiments

Context Reasoning Text Retrieval (CRTR) model is eval-

uated on the newly collected COCO-TextRef dataset. Since

DenseCap [36] solved a similar problem of region descrip-

tion and retrieval where text instances were treated as one

special category of objects and denoted as signs, words,

or letters, we fine-tune DenseCap with the COCO-TextRef

dataset and adopt it as our baseline. We compare our

method with LRCN [26] and SCRC [29], which are also

fine-tuned on the COCO-TextRef dataset for the ability to

retrieve text instances.

The CRTR model is evaluated for two scenarios. First,

given a natural scene image and a natural language query,

the model is to retrieve the corresponding text region from

all annotated text regions in that image, which is similar

to an object retrieval problem. And we evaluate our pro-

posed CRTR model individually in this scenario. Second,

as a more challenging but practical work, given an image

and a natural language query, the model should retrieve a

text region from a set of candidate text regions generated by

the scene text localization methods. In both scenarios, we

follow the standard PASCAL VOC detection criterion: a re-

trieved text region is considered as correct if IoU > 50%,

otherwise it is a false positive. This is equivalent to comput-

ing the precision@1 measure (the percentage of the high-

est scoring text region being correct). We then average

these scores over all images. Table 2 compares the eval-

uation results of our proposed CRTR model with previous

object retrieval models tuned for text instance retrieval. We

observe that CRTR outperforms most previous methods in

terms of precision@1 measure on individual text retrieval

evaluation, and in terms of recall@1 (the percentage of the

highest scoring text bounding box proposals being correct)

and recall@5 (the percentage of at least one of top-5 highest

scoring text bounding box proposals is correct) measures on

joint text localization and text retrieval evaluation.

Fig. 4 shows examples of successfully retrieved text in-

stances at top-1, where the highest scoring candidate region

from our CRTR model overlaps with ground truth annota-

tion by at least 50% IoU. It demonstrates that the proposed

model effectively localizes and retrieves the targeted text

region based on the input natural language queries. Also,

the {text-relationship-context} modeling which

the SCRC model did not explicitly handle substantively fills

in the gap between image-based scene text localization and

language-based scene understanding through the localized

text instances, and boosts the performance.

5. Conclusion

To utilize text instances for understanding natural scenes,

we have proposed a framework that combines image-based

text localization with language-based context description

for text instances. Context description enables the local-

ized text information to be delivered in a more user-friendly

way for many practical applications. Accurate localization

of scene text regions ensures concise and accurate language

description of a scene image, and effective retrieval of text

instances from context description.

Our future work will focus on combining the models of

scene text localization and scene text retrieval to produce an

end-to-end system. The performance can also be further im-

proved with pre-processing techniques such as image super-

resolution [37, 38] and deblurring [39, 40].
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