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Abstract

We propose a new method to estimate the 6-dof trajec-

tory of a flying object such as a quadrotor UAV within a 3D

airspace monitored using multiple fixed ground cameras. It

is based on a new structure from motion formulation for

the 3D reconstruction of a single moving point with known

motion dynamics. Our main contribution is a new bundle

adjustment procedure which in addition to optimizing the

camera poses, regularizes the point trajectory using a prior

based on motion dynamics (or specifically flight dynamics).

Furthermore, we can infer the underlying control input sent

to the UAV’s autopilot that determined its flight trajectory.

Our method requires neither perfect single-view tracking

nor appearance matching across views. For robustness, we

allow the tracker to generate multiple detections per frame

in each video. The true detections and the data association

across videos is estimated using robust multi-view triangu-

lation and subsequently refined during our bundle adjust-

ment procedure. Quantitative evaluation on simulated data

and experiments on real videos from indoor and outdoor

scenes demonstrates the effectiveness of our method.

1. Introduction

Rapid adoption of unmanned aerial vehicles (UAV) and

drones for civilian applications will create demand for low-

cost aerial drone surveillance technology in the near future.

Although, acoustics [1], radar [2] and radio frequency (RF)

detection [3] have shown promise, they are expensive and

often ineffective at detecting small, autonomous UAVs [4].

Motion capture systems such as Vicon [5] and OptiTrack [6]

work for moderate sized scenes. However, the use of active

sensing and special markers on the target makes them in-

effective for tracking non-cooperative drones in large and

bright outdoor scenes. With the exception of some recent

works [7, 8], visual detection and tracking of drones using

passive video cameras remains a largely unexplored topic.

Existing single-camera detection and tracking methods

are mostly unsuitable for drone surveillance due to their

Figure 1: A quadrotor UAV was manually flown to a height

of 45 meters above a farm within a 100×50m2 area with six

cameras on the ground. [TOP] Two input frames along with

the detections and zoomed-in views of the UAV are shown.

[MIDDLE] 3D trajectory for a 4 minute flight and camera lo-

cations estimated by our method. The inset figure shows the

top-down view. [BOTTOM] Estimated throttle signal (one of

the control inputs sent to the autopilot).

limited field of view and the fact that it is difficult to ac-

curately estimate the distance of objects far from the cam-

era that occupy very few pixels in the video frame. Using

multiple overlapping cameras can address these limitations.

However, existing multi-camera tracking methods are de-

signed to track people, vehicles to address indoor and out-

door surveillance tasks, where the targets are often on the

ground. In contrast, small drones must be tracked within a

3D volume that is orders of magnitude larger. As a result
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its image may occupy less then 20 sq. pixels in a 4K UHD

resolution video stream. Most existing multi-camera sys-

tems also rely on accurate camera calibration that requires

someone to collect calibration data by walking around in the

scene. A drone detection system is difficult to calibrate in

this way because the effective 3D working volume is large

and extends high above the ground.

In this paper, we present a new structure from motion

(SfM) formulation to recover the 6-dof motion trajectory of

a quadrotor observed by multiple fixed cameras as shown in

Fig. 1. We model the drone as a single moving point and

assume that its underlying flight dynamics model is known.

Our contributions are three fold:

• We propose a novel bundle adjustment (BA) procedure

that not only optimizes the camera poses and the 3D tra-

jectory, but also regularizes the trajectory using a prior

based on the known flight dynamics model.

• This method lets us explicitly infer the underlying con-

trol inputs sent to the UAV’s autopilot that determined its

trajectory. This could provide analytics to drone pilots or

enable learning controllers from demonstration [9].

• Finally, our BA procedure uses a new cost function. It

is based on traditional image reprojection error but does

not depend on explicit data association derived from im-

age correspondences, which is typically considered a pre-

requisite in classical point-based SfM.

Briefly, the latter lets us keep multiple 2D detections per

frame instead of a single one. The true detection is indexed

using a per-frame assignment variable. These variables are

initialized using a RANSAC-based multi-view triangulation

step and further optimized during our bundle adjustment

procedure. This makes the estimation less reliant on ei-

ther perfect single-view tracking or cross-view appearance

matching both of which can often be inaccurate.

Our method runs batch optimization over all the videos,

which can be viewed as a camera calibration technique that

uses the drone as a calibration object. In this work, we as-

sume that the videos are synchronized, have known frame-

rates and the cameras intrinsics and lens parameters are also

known whereas an initial guess of the camera poses are

available. Finally, we assume only a single drone in the

scene. We evaluate our method extensively on data from a

realistic quadrotor flight simulator and real videos captured

in both indoor and outdoor scenes. We demonstrate that the

method is robust to noise and poor initialization and consis-

tently outperforms baseline methods in terms of accuracy.

2. Related work

We are not aware of any existing method that can accu-

rately recover a UAV’s 3D trajectory from ground cameras

and infer the underlying control inputs that determined its

trajectory. However, we review closely related works that

address single and multi-camera tracking, dynamic scene

reconstruction and constrained bundle adjustment.

Single-View Tracking. This topic has been well studied

in computer vision [10]. However, most trackers struggle

with tiny objects such as flying birds [11] and tracking mul-

tiple tiny targets remains very difficult even with infrared

cameras [12]. Some recent works [7, 13] proposed practi-

cal sense-and-avoid systems for distant flying objects using

passive cameras that can handle low-resolution imagery and

moving cameras. However, these methods cannot recover

accurate 3D UAV trajectories.

Multi-View Tracking. Synchronized passive multi-camera

systems are much more robust at tracking objects within

a 3D scene [14, 15]. Traditionally, they have been pro-

posed for understanding human activities, analyzing sports

scenes and for indoor, outdoor and traffic surveillance [16,

17, 18, 19, 20, 21]. These methods need calibrated cam-

eras and often assume targets are on the ground, and ex-

ploit this fact by proposing efficient optimization techniques

such as bipartite graph matching [20, 16, 19], dynamic pro-

gramming [17, 18] and min-cost network flow [21]. These

methods have rarely been used to track tiny objects in large

3D volume, where the aforementioned optimization meth-

ods are impractical. Furthermore, conventional calibration

methods are unsuitable in large scenes, especially when

much of the scene is high above ground level.

Multi-view 3D reconstruction. Synchronized multi-

camera systems have also been popular for dynamic scene

reconstruction. While most existing techniques require

careful pre-calibration, some techniques make it possible to

calibrate cameras on the fly [22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32]. Avidan et al. [22] proposed a method for sim-

ple linear or conical object motion which was later extended

to curved and general planar trajectories [23, 25]. More

recent methods have exploited other geometric constraints

for joint tracking and camera calibration [24, 26, 27, 28].

However, these methods require accurate feature tracking

and matching across views and are not suitable for tiny ob-

jects. Sinha et al. [29] use silhouettes correspondence and

Puwein et al. [31] used human pose estimates to calibrate

cameras. They do not require cross view feature matching

but only work on small scenes with human actors.

Vo et al. [32] need accurate feature tracking and match-

ing but can handle unsynchronized and moving cameras.

They reconstruct 3D trajectories on the moving targets us-

ing motion priors that favor motion with constant velocity

or constant acceleration. While our motivation is similar,

our physics-based motion dynamics prior is more realistic

for UAVs and enables explicit recovery of underlying pa-

rameters such as the control inputs given by the pilot.

Constrained Bundle Adjustment. In conventional bun-

dle adjustment [33], camera parameters are optimized along
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with the 3D structure which is often represented as a 3D

point cloud. Sometimes, regularization is incorporated

into bundle adjustment via soft geometric constraints on

the 3D structure, including planarity [34], 3D symme-

try [35], bound constraints [36] and prior knowledge of 3D

shape [37]. These priors can add significant overhead to

the Levenberg-Marquardt nonlinear least squares optimiza-

tion [38]. In our problem setting, the sequential nature of

the dynamics-based prior introduces a dependency between

all structure variables i.e. those representing sampled 3D

points on the trajectory. This leads to a dense Jacobian and

makes the nonlinear least square problem infeasible for long

trajectories. In this paper, we propose an alternative ap-

proach that retains the sparsity structure in regular BA. Our

idea is based on generating an intermediate trajectory and

then adding soft constraints to the variables associated with

3D points during optimization. We discuss it in Section 4.

3. Problem formulation

Consider the bundle adjustment (BA) problem for point-

based SfM [39]. Given image observations O = {ojt} :
ojt ∈ ❘

2 of T 3D points in M static cameras, one seeks to

estimate the coordinates of the 3D point X = {xt} : xt ∈
❘
3, t ∈ [1..T ] and the camera poses C = {cj}, j ∈ [1..M ],

where each cj = [Rj|tj] ∈ ❘
3×4. For our trajectories, let

xt denote each 3D point on the trajectory at time t. When

we have unique observations of xt in all the cameras where

it is visible (denoted by ojt for the j-th camera at time t),
the problem can be solved by minimizing an objective based

on the 2D image reprojection error

EBA(C,X,O) =

T
∑

t=1

∑

j∈Ωt

ρ(π(cj ,xt)− ojt), (1)

where Ωt ⊆ C is the set of cameras where the 3D point xt
is visible at time t, π(cj ,xt) : ❘

3 → ❘
2 is the function that

projects xt into camera cj and the function ρ(·) : ❘2 → ❘

robustly penalizes reprojections of xt that deviate from ojt.

Now, let us relax the assumption that unique observa-

tions of xt are available in the camera views where it is vis-

ible. Instead, we will assume that multiple candidate obser-

vations are given in each camera at time t, amongst which

at most one is the true observation. To handle this situation,

we propose using a new objective of the following form:

E(C,X,O) =

T
∑

t=1

∑

j∈Ωt

min
k
ρ (π(cj ,xt)− ojtk) , (2)

where ojtk is the k-th amongst Ktj candidate 2D observa-

tions at time t in camera j. This objective is motivated by

the fact that many object detectors naturally produce mul-

tiple hypotheses but accurately suppressing all the false de-

tections in a single view can be quite difficult.

So far, we have treated X as an independent 3D point

cloud and ignored the fact that the points lie on a UAV’s

flight trajectory. Since consecutive points on the trajectory

can be predicted from a suitable motion dynamics model

(given additional information about the user inputs), we

propose using such a regularizer in our BA formulation for

higher robustness to erroneous or noisy observations. Our

objective function therefore takes the following form:

argmin
C,X,Γ

(E(C,X,O) + λR(X,Γ)) . (3)

Here, the regularizer R(X,Γ) favors trajectories that can

be explained by good motion models. Γ : {γt} denotes the

set of latent variables γt for the motion model at time t and

λ is a scalar weight. Typically, such regularization, where

structure variables {xt} depend on one another destroys the

sparsity in the problem, which is key to efficiently solving

large BA instances. However, in our work, we avoid that

issue by using regularizers of the following type.

R(X,Γ) =
T
∑

t=1

(xt − x̂t(γt))
2, (4)

where {x̂t} are 3D points predicted by a motion model. As

a simple example, one could smooth the trajectory estimate

from a previous iteration of BA by setting x̂ = (g ∗ x)
with Gaussian kernel g and (· ∗ ·) the convolution operator,

to favor a smooth trajectory in the current iteration. There

are no latent variables for this simple case and so Γ = ∅.
Next, we discuss a more realistic case, involving a flight

dynamics model for a quadrotor UAV and based on it derive

an appropriate regularizer R(X,Γ).

3.1. Flight dynamics model

V : {vt} : velocity Φ : {φt} : roll

m : mass Θ : {θt} : pitch

U : {ut} : throttle Ψ : {ψt} : yaw

B : {bt} : angular velocity Uφ : {uφ(t)} : control

inputs
Ix, Iy, Iz : moments of inertia Uθ : {uθ(t)}
Jtp : propeller’s inertia Uψ : {uψ(t)}

Table 1: Notations for the physics-based model [40].

While several flight dynamics models for quadrotors are

known, we use the one proposed by Webb et al. [40, 41].

Table 1 presents the relevant notation. Here, we only in-

clude a subset of the equations that are required for deriv-

ing the prior or computing the control inputs. (U, Φ,Θ)

denote the thrust and the angles for the complete trajectory.

The control inputs [U,Uφ,Uθ,Uψ] in Table 1 denote the

joystick positions in the RC controller. In our case, we need

to assume that the yaw angle is zero Ψ = 0,Uψ = 0. This
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implies that quadrotor is always “looking” in a certain di-

rection, regardless of the motion direction. Since propeller

inertia Jtp is often very small (∼ 10−4), we set it to zero to

reduce the model complexity without losing much accuracy.

From the basic equations of motion, we have

xt+1 = xt + vtdt, vt+1 = vt + atdt, (5)

where at = (ax(t), ay(t), az(t)) is the acceleration of the

quadrotor at time t. From the principles of rigid body dy-

namics, we have the following equation.





ax(t)
ay(t)
az(t)



 =





0
0
−g



+





sin θt cosφt
− sinφt

cos θt cosφt





ut
m
, (6)

where g is the standard gravitational acceleration. From

Eq. 6 we obtain the following expression for (φt, θt, ut):

ut = m
√

ax(t)2 + ay(t)2 + (az(t) + g)2,
φt = arcsin (−ay(t)m/ut) ,
θt = arcsin ((ax(t)m/ut) cosφt) ,

φt ∈
[

−
π

2
,
π

2

)

, θt ∈
[

−
π

2
,
π

2

)

(7)

Here, ut must be greater than zero which is always satisfied

by a quadrotor in flight. Finally, we can estimate the UAV’s

angular velocity bt = [bp(t),bq(t),br(t)] as follows:





bp(t)
bq(t)
br(t)



 =





(φt − φt−1)/dt
((θt − θt−1)/dt)(cosφt/ sin

2 φt)
−θt/ sinφt



 , (8)

which can be used to compute control inputs as follows:

uφ(t) = Ix
bp(t)−bp(t−1)

dt
− (Iy − Iz)bq(t)br(t)

uθ(t) = Iy
bq(t)−bq(t−1)

dt
− (Iz − Ix)bp(t)br(t)

. (9)

Next, we describe the flight dynamics based regularizer.

3.2. Flight dynamics prior

In the rest of the paper, we denote Γ = [Φ,Θ,U]τ .

These variables will serve as the latent variables in the flight

dynamics based prior (we use the term regularizer and prior

interchangeably). The dynamics model provides us two

transformations denoted F and G below.

G : X→ Γ,F : Γ→ X. (10)

Equations 5 and 7 are used to obtain Γ from a trajectory

estimate. Similarly, the values of X can be derived from

Γ = (U,Φ,Θ) by recursively using Eqs. 5 and 6. This

is equivalent to performing integration with respect to time

which uniquely determines the quadrotor’s internal state

variables (position, velocity, acceleration etc.) up to con-

stant unknown namely the quadrotor’s state at time t = 0.

Algorithm 1 Bundle Adjustment with motion dynamics

1: Inputs:

• Initial trajectory X
0 and camera parameters C0

• Observations in camera views O

2: Outputs: Final estimates (X∗,C∗,Γ∗) and (Uθ,Uφ)

3: for iteration s ∈ [1..S] do

4: Γ
s−1 ← G(Xs−1)

5: Γ̂
s−1 ← H(Γs−1), h(·) defined in Eq. 11

6: (Xs,Cs,Γs)← run one step of LM to solve Eq. 3

7: end for

8: (X∗,C∗,Γ∗)← (Xs,Cs,Γs)
9: (Uθ,Uφ)← (Θ,Φ) from Eqs. 8 and 9

The general idea of the regularizer will be to add appro-

priate constraints to the latent variables (U,Φ,Θ) during

the intermediate steps of the bundle adjustment procedure.

Below, we useH to denote such a function.

Γ̂ = [Φ̂, Θ̂, Û] = H([Φ,Θ,U]) = H(Γ), (11)

In other words, we first recover the latent variables using F
and then apply a suitable amount of smoothing to them to

obtain Γ̂. Finally, we apply G on Γ̂ to obtain a new trajec-

tory which then serves as a soft constraint during the next

iteration of bundle adjustment.

In our experiments, we expect the UAV to move slowly

and smoothly. Therefore in our current implementation, we

used H(Γ) = (g ∗ Γ), where g denotes a Gaussian kernel.

Other more sophisticated forms ofH(·) are worth exploring

in the future. We can now write down the expression for the

dynamics-based prior or regularizer.

R(X,Γ) =









1
λ1
λ2
λ3









⊺ 







(X−F(Γ))2

ρ1(Φ− Φ̂)

ρ2(Θ− Θ̂)

ρ3(U− Û)









(12)

4. Optimization

We now describe the steps needed to solve the regular-

ized bundle adjustment problem stated in Eqs. 3 and 12.

This is done using an efficient nonlinear least squares

solver [42] and suitable initialization. In conventional

SfM, the 3D points are treated independently resulting in a

sparse problem that can be solved using a sparse Levenberg-

Marquardt (LM) method [38]. As we discussed, impos-

ing our dynamics-based regularizer directly would lead to

a dense linear systems within each iteration of LM [39].

Here, we describe our proposed technique to impose the

regularization indirectly. We will use the trajectory esti-

mate from the previous BA iteration to generate the soft

constraints for the dynamics-based prior. Formally these
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Algorithm 2 RANSAC-based multi-view triangulation

1: Inputs :

• Cameras C : {cj}, j ∈ [1..M ]
• Sets of observations ojt : {ojtk}, k ∈ [1..Kjt] for

camera j at time t
2: Outputs: 3D Point xt

3: for i ∈ [1..N ] do

4: Randomly pick 2 cameras: cm, cn
5: Randomly pick observation omtk from omt

6: Randomly pick observation ontl from ont

7: xi ← triangulate-2view(omtk, cm,ontl, cn)
8: e(xi)← evaluate score for hypothesis xi using Eq. 2

9: end for

10: xt = argmin
xi

(e(xi))

constraints are represented by Γ̂
s−1 = H(Γs−1), therefore

we rewrite Eq. 12 as:

R(Xs,Γs) =









1
λ1
λ2
λ3









⊺ 







(Xs −F(Γs))2

ρ1(Φ
s − Φ̂

s−1)

ρ2(Θ
s − Θ̂

s−1)

ρ3(U
s − Û

s−1)









(13)

where s is the iteration index in the LM technique for solv-

ing Eq. 3, λi ∈ ❘, i ∈ {1, 2, 3} are scalar weights and

ρi(·) : ❘2 → ❘, i ∈ {1, 2, 3} are robust cost functions.

This allows us to make the points x
s
t independent of each

other in the current iteration. However, there is an indirect

dependence on the associated points from the previous it-

eration x
s−1
t . Algorithm 1 depicts the exact steps of our

method. So far, we have not discussed initialization of the

camera poses and parameters. This is described next.

Trajectory and Camera Pose Initialization. First, we es-

timate camera poses C0 using a traditional point-based SfM

pipeline [43]. Because the cameras are often far apart and

the visible backgrounds do not overlap substantially, we

have used an additional camera to recover the initial cali-

bration. We capture a video walking around the scene using

an additional hand-held camera. Keyframes were extracted

from this video and added to the frames selected from the

fixed ground cameras. After running SfM on these frames,

we extract the poses for the fixed cameras.

Given C
0, we triangulate the trajectory points from de-

tections obtained from background subtraction. We propose

a robust RANSAC-based triangulation method to obtain X
0

(see Algorithm 2). This involves randomly picking a cam-

era pair and triangulating two random detections in these

cameras using a fast triangulation routine [44] to obtain a

3D point hypothesis. Amongst all the hypotheses, we select

the 3D point that has the lowest total residual error in all

the views (as defined in Eq. 2. We use Algorithm 2 on all

Figure 2: [Evaluation on synthetic data] with respect to dif-

ferent amount of noise added to the initial point locations,

camera parameters and point observations in camera views.

For each method plot above shows mean and standard devi-

ation of the resulting trajectory from the ground truth across

10 different runs of our algorithm. (best seen in color)

timesteps to compute the initial trajectory X
0.

Implementation details. Our method is implemented

in C++, using the Ceres non linear least squares mini-

mizer [42]. In order to detect the UAV we have used the

OpenCV [45] implementation of Gaussian Mixture Mod-

els (GMM)-based background subtraction [46]. Briefly, it

creates a GMM model for the background and updates it

with each incoming frame. Further, the regions of the im-

age that are not consistent with the model are considered to

be foreground and we use them as detections. This, how-

ever, leads to large amounts of false positives for the out-

door videos, therefore we processed the resulting detections

with a Kalman Filter (KF) [47] with a constant acceleration

model. Detections from the resulting tracks are used in our

BA optimization. To reduce the amount of false positives

we only considered tracks that are longer than 3 time steps.

As a result we ended up with 0-8 detections per frame in all

the camera views (see Fig. 7).

5. Experiments

We first evaluated our proposed method on synthetic data

obtained from a realistic quadrotor flight simulator to ana-

lyze accuracy and robustness of our estimated trajectories

and control inputs in the presence of image noise, outliers

in tracking and errors in the initial camera pose parameters.

We also present several results on real data captured indoors

and a large outdoor scene where we have access to ground

truth trajectory information.

We measure the accuracy of our estimated trajectories

by robustly aligning our trajectory estimate to the ground

truth trajectory [48]. In the ground truth coordinate system,

we then calculate the root mean squared error (RMSE). We
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Figure 3: Comparison between the predicted and ground truth positions and internal parameters of the quadrotor. In the left

part of the figure you can see the visualization of trajectory point locations. On the right we can see the difference between

3D coordinates (X) of the quadrotor and its internal parameters (U,Φ,Θ). (best seen in color)

have compared many variants of BA. The suffix ‘-p’ below

denotes the type of regularizer (prior).

• No-Opt: has no bundle adjustment optimization.

• BA: does regular point-based BA without regularization.

• BA-pGS: uses a Gaussian smoothing based regularizer.

• BA-pSS: uses a spline smoothing based regularizer.

• BA-pKF: This denotes the method with a Kalman filter

based motion regularizer.

• BA-pDM: This denotes our proposed method with the

flight dynamics-based regularizer.

Datasets. We evaluated our method on three sets of data.

We used an existing quadrotor simulator1 to generate tra-

jectories with random waypoints. Each simulated trajectory

contains 510 points or time steps that was used to simulate

17 seconds of video at 30Hz from 10 cameras. The camera

locations were randomly generated around the flight vol-

ume and the cameras were oriented towards the center of

the flight volume. We generated 100 sequences with vary-

ing degree of noise in the camera pose, initial trajectories as

well as image noise and outliers.

We evaluated our method on two datasets captured in real

scenes – LAB and FARM. In both cases, six GoPro tripod-

mounted cameras were pointed in the direction of the flight

volume. We recorded video at 2704×1536 pixel resolution

and 30 fps. The LAB-SCENE was approximately 6× 8 me-

ters and contains an OptiTrack motion capture system [6]

that was used to collect the ground truth quadrotor trajec-

tory and camera poses. In this case we flew an off-the-shelf

quadrotor (44.5 cm diameter) for 35 seconds. In order to

achieve precise tracking accuracy we equipped UAV with a

bright LED and an OptiTrack marker, placed close to each

other. LED helps us to facilitate the detection process, as

now it is narrowed down to searching for the brightest point

1github.com/OMARI1988/Quadrotor_MATLAB_simulation

Figure 4: Qualitative results (LAB dataset): [TOP] Two of

the six camera viewpoints. [MIDDLE] Zoomed in patches

of the trajectory point from all camera views with corre-

sponding background segmentation results. [BOTTOM] A

3D visualization of the estimated trajectory (in black) and

the ground truth trajectory (in red). (best seen in color)

in the frame. Despite the simple scenario, people that were

moving around in the room and reflectance from the walls

were frequently detected as moving objects.

The FARM dataset was captured in a large outdoor scene

(see Figure 1) with a bigger UAV (1.5 m in diameter).

Footage of a 4-minute flight was recorded using the six cam-

eras, placed ∼ 20 meters apart. The videos were captured

at the frame-rate of 15 FPS, which results in 3600 trajectory

points. We have also collected drone GPS data and used it

as ground truth for evaluation.
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method Position Error(m)

No-Opt .2045±.015

BA .1165±.014

BA-pGS .0760±.007

BA-pSS .0761±.007

BA-pKF .1141±.009

BA-pDM .0757±.007

Figure 5: Comparing the various methods on the LAB dataset. The initial camera poses are perturbed with increasing position

and orientation noise. The plots show the mean and std. dev. of the final error from 10 runs for the various methods. The

table lists the error statistics (mean and std. dev.) for all the methods across all the different runs. (best seen in color)

Figure 6: Sensitivity analysis on LAB dataset. [LEFT] Tri-

angulation result. [MIDDLE] Results of standard BA [43]

without any prior information. [RIGHT] Results of our

method with a dynamics-based prior. Each of these plots

show the mean position error across 10 runs, for different

amounts of noise added to the camera positions (σp) and ori-

entations (σo). The amount of error is color-coded and the

colorbar below the plots show the correspondence between

colors and actual values in meters. (best seen in color)

5.1. Experiments on Synthetic Data

Here we first describe the influence of noise on the per-

formance of our method. We then show that our approach

is capable of inferring the underlying control inputs that de-

fine the motion of the drone.

Sensitivity Analysis. Fig. 2 summarizes the results on the

synthetic dataset. We see that prior information mostly

helps to improve reconstruction accuracy. Of all the priors,

motion-based ones show a significant improvement over

conventional smoothing methods. Overall, the dynamics-

based prior is the most accurate. This is probably because

the trajectory generated by the quadrotor simulator com-

plies with the same model used to develop the dynamics-

based prior (Section 3.2).

Inferring Control Inputs. We have evaluated the quality

of prediction of the internal parameters (U,Φ,Θ) of the

quadrotor on the synthetic dataset, as it provides an easy

way of collecting ground truth information for these param-

eters. Fig. 3 summarizes this comparison. In the left part

of the figure we can see the predicted and ground truth lo-

cations of the 3D trajectory point locations. The right part

of the figure depicts the difference between predicted and

ground truth (x, y, z) positions of the quadrotor in the en-

vironment and the comparison of the predicted internal pa-

rameters of the quadrotor with the ground truth.

Fig. 3 shows that 3D locations of the quadrotor were pre-

dicted quite well with very small deviations from the ground

truth. Regarding the internal parameters, our method is

able to predict them very well for the parts of the sequence,

where these parameters vary smoothly. This behavior is in-

troduced by Algorithm 1, where we constrain the values of

(U,Φ,Θ) to vary smoothly through time. In our future re-

search we would like to investigate other constraints on the

internal quadrotor parameters that will allow us to recover

their sharp changes.

5.2. Results on LAB Dataset

Fig. 4 depicts an example of our indoor experiment.

Fig. 4(top) depicts sample camera views. Fig. 4(middle)

illustrates the cropped and zoomed in patches around the

tracked object. Fig. 4(bottom) shows the 3D reconstruction

of the trajectory compared to the OptiTrack ground truth.

We also performed a quantitative evaluation of our

method. In the LAB dataset, the detections in individual

frames were quite reliable. Therefore to perform the noise

sensitivity analysis, we have added noise to our initial cam-

era pose estimates before running the optimization.

Figures 5 and 6 show the quantitative evaluation re-

sults. Note that as we increase the noise added to the initial

camera poses, the triangulation accuracy steadily decreases.

This is because the point correspondence between different

camera views progressively become inaccurate. The use of

standard bundle adjustment improves the reconstruction ac-

curacy. However, the quadrotor dynamics-based prior pro-

duces even higher accuracy especially when the noise is

quite significant (see Fig. 6).

In Fig. 5, the plots for BA-pDM, BA-pGS and BA-pSS

methods are almost indistinguishable from each other, due

to very similar performance. This is because in the indoor

experiments, the UAV is always clearly visible and not too
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Figure 7: Qualitative Results (FARM dataset): The black and red curves denote the estimated and ground truth (GPS)

trajectory respectively. [LEFT] Initialization trajectory estimate after the triangulation step. [RIGHT] The result obtained after

bundle adjustment (BA-pDM). The trajectory is smoother and more accurate compared to the initial trajectory. [BOTTOM]

The number of per-frame candidate detections for 3 videos. The middle and right plots show where tracking was difficult.

far from all the cameras. This results in high quality de-

tections with few false positives and allows even BA with

simple smoothing-based priors to achieve good accuracy.

The general trend we noticed in these experiments was

that when the initial camera parameters are relatively ac-

curate even simple triangulation can produce quite reliable

trajectories. However, larger errors in initial camera pose

quickly degrades the performance of both standard trian-

gulation and bundle adjustment methods, whereas our ap-

proach is robust to relatively larger amounts of camera pose

error due to the effective use of quadrotor dynamics.

5.3. Results on FARM Dataset

Finally we have evaluated our methods on the outdoor

dataset. Fig. 1 depicts an example of our outdoor exper-

iment. We can see that compared to the indoor case the

drone is much further away from the camera, which results

in some challenges not just for the optimization, but also for

its detection with background subtraction algorithms. For

this experiment we have used Algorithm 2 to set the ini-

tial values for the camera parameters and trajectory point

locations. Fig. 7(left) shows the result obtained using Al-

gorithm 2, which we use as an initialization. Fig. 7(right)

shows the final result of our approach. Fig. 7(bottom) de-

picts the number of detections per frame for three out of

six camera views. We can see that towards the end of the

sequence more false positives appear, due to the UAV en-

tering a complicated area of the environment. Nevertheless,

our approach allows successfully tracking the drone.

Fig. 8 summarizes the accuracy of the various methods.

Similar to the other experiments, the prior information helps

to recover a more accurate trajectory. Moreover, using an

appropriate dynamics model prior produces the most accu-

rate result amongst all the priors.

The Kalman filter-based prior is not very effective in this

case due to noise in the initial trajectory (see Fig. 7(left)).

No-Opt BA BA-pGS BA-pSS BA-pKF BA-pDM

2.551 1.910 1.785 1.781 2.275 1.636

Figure 8: Comparing various methods on the FARM dataset.

The percentage of 3D points with position error less than a

threshold is shown for a range of thresholds. The RMSE

error in meters for all the methods are reported in the table.

The initialization noise causes the Kalman filter to be unsta-

ble and it fails to recover the correct motion model parame-

ters unlike the other priors which are more robust.

6. Conclusion

We have presented a new technique for accurately re-

constructing the 3D trajectory of a quadrotor UAV observed

from multiple cameras. We have shown that using motion

information significantly improves the accuracy of recon-

structed trajectory of the object in the 3D environment. Fur-

thermore our method allows inferring the internal parame-

ters of the quadrotor, such as roll, pitch angles and thrust,

that is being commanded by the operator. Inferring these

parameters has a broad variety of applications, ranging from

reinforcement learning to providing analytics for pilots in

air race competitions and making feasible research on UAVs

in large outdoor and indoor spaces without depending on

expensive motion capture systems.
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