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Abstract

We present a principled approach to uncover the struc-

ture of visual data by solving a novel deep learning task

coined visual permutation learning. The goal of this task is

to find the permutation that recovers the structure of data

from shuffled versions of it. In the case of natural images,

this task boils down to recovering the original image from

patches shuffled by an unknown permutation matrix. Un-

fortunately, permutation matrices are discrete, thereby pos-

ing difficulties for gradient-based methods. To this end,

we resort to a continuous approximation of these matrices

using doubly-stochastic matrices which we generate from

standard CNN predictions using Sinkhorn iterations. Un-

rolling these iterations in a Sinkhorn network layer, we pro-

pose DeepPermNet, an end-to-end CNN model for this task.

The utility of DeepPermNet is demonstrated on two

challenging computer vision problems, namely, (i) relative

attributes learning and (ii) self-supervised representation

learning. Our results show state-of-the-art performance on

the Public Figures and OSR benchmarks for (i) and on the

classification and segmentation tasks on the PASCAL VOC

dataset for (ii).

1. Introduction

Visual data encompasses rich spatial (and temporal)

structure, which is often useful for solving a variety of

computer vision problems. For instance, surrounding back-

ground usually offers strong cues for object recognition,

sky and ground usually appear at predictable locations in

a scene, and objects are made up of known parts at familiar

relative locations. Such structural information within visual

data has been used to improve inference in several prob-

lems, such as object detection and semantic segmentation

[31, 35, 29].

In this paper, we present a deep learning framework that

uses the inherent structure in data to solve several visual

tasks. As an example, consider the task of assigning a

meaningful order (with respect to some attribute) to the im-

ages shown in the left panel of Figure 1. Indeed, it is diffi-

Subject: Smiling

Subject: Narrow Eyes

Permuted Image Original Image

Figure 1. Illustration of the proposed permutation learning task.

The goal of our method is to jointly learn visual features and the

predictors to solve the visual permutation problem. This can be

applied to ordering image sequences (left) or recovering spatial

layout (right).

cult to solve this task by just processing a single image or

even a pair of images at a time. The task becomes feasible,

however, if one exploits the structure and the broader con-

text by considering the entire set of images jointly. Then,

we start to recognize shared patterns that could guide the

algorithm towards a solution. A similar task involves recov-

ering the spatial structure in images. For example, consider

the task shown in the right panel of Figure 1. Here we ask

the question “given shuffled image patches, can we recover

the original image?”. Although this is a difficult task (even

for a humans), it becomes easy once we identify the object

in the patches (e.g., a cat), and arrange the patches for the

recognized object, thereby recovering the original image.

Such shuffled images can be generated cheaply and in

abundance from natural images. The problem of recover-

ing the original image from shuffled ones can be cast in an

unsupervised learning setting, similar to autoencoder meth-

ods [4] popular in the neural networks literature. Here the

recovery task does not require any human annotations (and

is thus unbiased [43]). Instead it uses the spatial structure

as a supervisory signal. Such a learning task is popularly

known as self-supervised learning [10, 16, 30, 32], and is

very useful to learn rich features, especially in the context

of training deep learning models, which often require large

amounts of human annotated datasets.

As is clear, the aforementioned tasks are similar and es-

sentially involve learning a function that can recover the or-

der, i.e., infer the shuffling permutation matrix. Such an in-
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ference could be used to understand scene structure, visual

attributes, or semantic concepts in images or image regions.

The knowledge acquired by this sort of learning framework

can then be used to solve many other computer vision tasks,

such as learning-to-rank [15], image reconstruction [7] and

object segmentation [31].

In this paper, we address the problem of learning to pre-

dict visual permutations. Towards this end, we propose

a novel permutation prediction formulation and a model

based on convolutional neural networks that can be trained

end-to-end. Moreover, our formulation admits an efficient

solution and allows our method to be applied to a range of

important computer vision problems including relative at-

tribute learning and representation learning.

Our contributions are threefold. First, we propose the

Visual Permutation Learning task as a generic formulation

to learn structural concepts intrinsic to natural images and

ordered image sequences. Second, we propose the Deep-

PermNet model, a end-to-end learning framework to solve

the visual permutation problem using convolutional neural

networks. Last, we introduce the Sinkhorn layer that trans-

forms standard CNN predictions into doubly-stochastic ma-

trices using Sinkhorn iterations; these matrices are contin-

uous approximations to discrete permutation matrices, and

thus allow efficient learning via backpropagation.

We evaluate our proposed approach on two different ap-

plications: relative attributes and self-supervised represen-

tation learning. More specifically, we show how to apply

our method to accurately and efficiently solve the relative

attributes task. Furthermore, we show how to learn features

in a self-supervised manner achieving the best performance

over existing approaches on both object classification and

segmentation.

2. Related Work

Broadly speaking, the permutation learning problem

consists of learning a meaningful order for a collection of

images or image regions based on some predetermined cri-

terion. Variations of this task have been studied extensively

by many scientific communities.

In computer graphics, the jigsaw puzzle problem con-

sists of reconstructing an image from a set of puzzle parts

[8, 37]. Likewise, structured problems including DNA or

RNA modeling in biology [28] and re-assembling relics

in archeology [7], can be modeled as permutation learn-

ing problems. We propose a generic data-driven approach

for learning permutations. We also develop a CNN based

framework to efficiently solve such a problem, which can

be applied in diverse applications, although in this paper we

limit our scope to computer vision, and review below topics

that are most similar to the applications considered in the

sequel.

Visual Attributes. Visual attributes are human understand-

able visual properties shared among images. They may

range from simple visual features (such as “narrow eyes”

and “bushy eyebrows” in faces) to semantic concepts (like

“natural” and “urban” scenes), or subjective concepts (such

as “memorability” and “interestingness” of images). Due

to the expressiveness of visual attributes, researchers have

successfully used them for many applications, including im-

age search [23], fine-grained recognition [6] and zero-shot

learning [33, 25].

Visual attributes are traditionally treated as binary pred-

icates indicating the presence or absence of certain proper-

ties in an image. From this perspective, most of the exist-

ing methods use supervised machine learning, whose goal

is to provide mid-level cues for object and scene recognition

[14], or to perform zero-shot transfer [25]. However, there

are methods that can discover binary visual attributes in an

unsupervised way [36, 18].

A more natural view on visual attributes is to measure

their strength in visual entities. For instance, Parikh and

Grauman [33] introduced the problem of relative attributes,

in which pairs of visual entities are compared with respect

to their relative strength for any specific attribute. This

problem is usually cast as a learning-to-rank problem us-

ing pair-wise constraints. Following this idea, Parikh and

Grauman [33] propose a linear relative comparison func-

tion based on the well-known Rank-SVM [21], while Yu

and Grauman [47] uses a local learning strategy.

With the recent success of deep learning and end-to-end

learning methods in computer vision, CNN-based methods

to tackle the relative attributes problem have been devel-

oped. Souri et al. [42] jointly learns image representation

and ranking network to perform pair-wise comparisons ac-

cording to a certain attribute. Similarly, Singh and Lee [39]

propose to combine spatial transformer networks [20] and

rank networks to localize, in addition to compare visual at-

tributes. Differently from our proposed approach, the afore-

mentioned methods use only pair-wise relationships and do

not leverage structure within longer image sequences.

Self-Supervised Representation Learning. The main idea

of self-supervision is to exploit supervisory signals, intrin-

sically in the data, to guide the learning process. In this

learning paradigm, a model is trained on an auxiliary task

that provides an intermediate representation which can be

used as generic features in other tasks. In the deep learning

domain, this approach is well-suited as a pre-training proce-

dure in situations when there is insufficient data to support

fully supervised learning.

Towards this end, Doersch et al. [10] uses spatial co-

location of patches in images, Wang and Gupta [45] uses

object tracking in videos to provide similar representations

for corresponding objects, Agrawal et al. [3] uses labellings

produced by ego-motion sensors, Fernando et al. [16] uses

odd-one-out question answering, and Pathak et al. [34] ex-
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plores image context to recover missing parts in an image.

The only objective in all these methods is to learn visual

representations, whereas our proposed method can be used

to solve a broader set of problems.

On the other hand, some pretext tasks can be useful

themselves. Isola et al. [19] learns to group visual enti-

ties based on their frequency of co-occurrence in space and

time. Zhang et al. [48] proposes a model to provide plau-

sible color versions for grayscale images. Donahue et al.

[11] builds a generative model for natural images. Note,

however that, these methods are highly engineered for their

training task and they can not be easily extended to deal

with other applications.

A recent work closely related to ours is Noroozi and

Favaro [32] that also proposes to train CNNs for solving

image-based jigsaw puzzles. However, different from us,

they train a CNN to predict only a tiny subset of possi-

ble permutations generated from an image shuffling grid

of size 3 × 3 (specifically, they use only 100 permutations

from 362k possible permutations). Instead, our method can

handle the full set of permutations and is scalable to even

finer shuffling grids. In addition, our scheme is generic and

can be used to solve problems such as relative attributes,

learning-to-rank, and self-supervised representation learn-

ing, and can explore the structure of image sequences or

spatial layout of image regions.

3. Learning Visual Permutations

In this section, we describe our method for learning vi-

sual permutations. We start by formalizing the visual per-

mutation prediction task. Then, we describe our end-to-end

learning algorithm, CNN model, and inference procedure.

3.1. Task

Given a sequence of images ordered by a pre-decided vi-

sual criterion, we generate shuffled sequences by applying

randomly generated permutation matrices to the original se-

quences. Similarly, we can recover the original sequences

from the shuffled ones by “un-permuting” them using the

inverse of the respective permutation matrices. In this con-

text, we define the visual permutation learning task as one

that takes as input a permuted sequence and produces as

output the permutation matrix that shuffled the original se-

quence.

Formally, let us define X to be an ordered sequence of

l images in which the order explicitly encodes the strength

of some predetermined criterion c. For example, c may be

the degree of “smilingness” in each image. In addition, con-

sider an artificially permuted version X̃ where the images in

the sequence X are permuted by a randomly generated per-

mutation matrix P ∈ {0, 1}l×l. Formally, the permutation

prediction task is to predict the permutation matrix P from

a given shuffled image sequence X̃ such that P−1 = PT

recovers the original ordered image sequence X .

We hypothesize that the learned deep models that are

trained to solve this task are able to capture high-level se-

mantic concepts, structure, and shared patterns in visual

data. The ability to learn these concepts is important to per-

form well on the permutation prediction task, as well as to

solve many other computer vision problems. Therefore, we

posit that the features learned by our models are transferable

to other related computer vision tasks as well.

3.2. Learning

Let us define a training set D = {(X,P ) | X ∈
Sc and ∀P ∈ P l} composed by tuples of ordered image

sequences X and permutation matrices P . Here, Sc repre-

sents a dataset of ordered image sequences, orderings im-

plied by a predetermined criterion c. Each X ∈ Sc is com-

posed of X = 〈I1, I2, . . . , Il〉, an ordered sequence of im-

ages Ii. The notation P l represents the set of all l × l per-

mutation matrices. Accordingly, the training set D is thus

composed of all shufflings of each X by all P . Note that

given an ordered X , such a dataset can be generated on-the-

fly by randomly permuting the order, and the size of such

permuted sets scales factorially on the sequence length l,

providing a huge amount of data with low processing and

storage cost to train high capacity models.

A permutation matrix is a binary square matrix that has

exactly a single unit value in every row and column, and

zeros everywhere else. Thus, these matrices form discrete

points in the Euclidean space. While, permutation matri-

ces are central to our formulations, directly working with

them for deriving gradient-based optimization solvers is dif-

ficult as such solvers often start with an initial point and

iteratively refines it using small (stochastic updates along

gradient directions) towards an optimum. In this respect,

working directly with discrete permutation matrices is not

feasible. Thus, in this paper, we propose to approximate

inference over permutation matrices to inference over their

nearest convex surrogate, the doubly-stochastic matrices.

A double stochastic matrix (DSM) is a square matrix of

non-negative real numbers with the property that every row

and every column sums to one. According to the Birkhoff-

von Neumann theorem [5, 44], the Birkhoff polytope Bl

(which is the set of l× l doubly-stochastic matrices), forms

a convex hull for the set of l× l permutation matrices. Con-

sequently, it is natural to think of DSMs as relaxations of

permutation matrices.

Following these ideas, we propose to learn a

parametrized function fθ : Sc → Bl that maps a

fixed length image sequence (of length l) denoted by X̃

to an l × l doubly stochastic matrix Q. In the ideal case,

the matrix Q should be equal to P . Then, our permutation
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learning problem can be described as,

minimize
θ

∑

(X,P )∈D

∆
(

P, fθ(X̃)
)

+R (θ) (1)

where X̃ is the image sequence X permuted by the permu-

tation matrix P , ∆(·, ·) is a loss function, θ captures the

parameters of the permutation learning function, and R(θ)
regularizers these parameters to avoid overfitting.

3.3. Model

We wish to learn the image representation that cap-

tures the structure behind our sequences and also solves

the permutation problem jointly. Then, the parametrized

function fθ(·) should learn intermediate feature representa-

tions which encode semantic concepts about the input data.

We propose to implement the function fθ(·) as a convolu-

tional neural network (CNN) which is able to exploit large

datasets and learn valuable low-level, mid-level, and high-

level features, that can be used as intermediate representa-

tions, while jointly learning the required mapping.

More specifically, we use a Siamese type of convolu-

tional neural network in which each branch receives an im-

age from a permuted sequence X̃ (see Figure 2). Each

branch up to the first fully connected layer fc6 uses the

AlexNet architecture [24]. The outputs of fc6 layers are

concatenated and given as input to fc7. All layers up to fc6

share the same set of weights. We name our proposed model

as DeepPermNet.

Note that, if we ignore the structure of permutation ma-

trices, this problem can be naı̈vely cast as an l2 multi-

label classification problem by optimizing the combination

of sigmoid outputs and cross-entropy loss. However, in-

corporating this inherent structure can avoid the optimizer

from searching over impossible solutions, thereby leading

to faster convergence and better solutions. Thus, in the se-

quel, we explore schemes that uses the geometry of permu-

tation matrices (using doubly-stochastic approximations).

To the best of our knowledge, currently, there is no stan-

dard CNN layer that is able to explore such structure.

3.3.1 Sinkhorn Normalization

A principled and efficient way to enforce a CNN to generate

DSMs as outputs is to make use of the Sinkhorn normaliza-

tion algorithm [40, 41]. As alluded to earlier, a DSM is

a square matrix with rows and columns summing to one.

Sinkhorn [40, 41] showed that any non-negative square ma-

trix (with full support [22]) can be converted to a DSM

by alternating between rescaling its rows and columns to

one. Recently, Adams and Zemel [1] examine the use of

DSMs as differentiable relaxations of permutation matrices

in gradient based optimization problems. Here, we propose

a CNN layer that performs such a normalization. Consider

a matrix Q ∈ R
l×l
+ , which can be converted to a doubly

stochastic matrix by repeatedly performing row and column

normalizations. Define row R (·) and column C (·) normal-

izations as follows,

Ri,j (Q) =
Qi,j

∑l

k=1 Qi,k

; Ci,j (Q) =
Qi,j

∑l

k=1 Qk,j

(2)

Then, the Sinkhorn normalization for the n-th iteration can

be defined recursively as:

Sn(Q) =

{

Q, if n = 0

C
(

R
(

Sn−1 (Q)
))

, otherwise.
(3)

The Sinkhorn normalization function Sn (·) is differ-

entiable and we can compute its gradient with respect

the inputs efficiently by unrolling the normalization oper-

ations and propagating the gradient through the sequence of

row and columns normalizations. For instance, the partial

derivatives of the row normalizations can be defined as,

∂∆

∂Qp,q

=

l
∑

j=1

∂∆

∂Rp,j

[

[[j = q]]
∑l

k=1 Qp,k

−
Qp,j

(

∑l

k=1 Qp,k

)2

]

(4)

where Q and R are the inputs and outputs of the row nor-

malization function and [[ · ]] is the indicator function, evalu-

ating to one, if its argument is true, and zero otherwise. The

derivative of the column normalization can be obtained by

transposing indexes appropriately. In practice, before ap-

plying the Sinkhorn normalization, we add a small value

(≈ 10−3) to each entry of Q as a regularization term to

avoid numerical instability.

3.4. Inference

As alluded to above, our main goal is to recover the orig-

inal image sequence from a permuted sequence. Thus, our

inference consists of approximating the closest permutation

matrix P̂ from the predicted doubly stochastic matrix Q.

This problem can be described as,

P̂ ∈ argmin
P̂

∥

∥

∥
P̂ −Q

∥

∥

∥

F

subject to P̂ · 1 = 1

1T · P̂ = 1

P̂ ∈ {0, 1}l×l

(5)

where P̂ is our approximated permutation matrix from Q.

This optimization problem is an instance of a mixed-

boolean program and can be efficiently solved by branch-

and-bound methods available in public solvers [9]. After

obtaining P̂ we recover the original sequence X as,

X = P̂T X̃. (6)
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Figure 2. DeepPermNet Architecture. It receives a permuted sequence of images as input. Each image in the sequence goes trough a

different branch that follows the AlexNet [24] architecture from conv1 up to fc6. Then, the outputs of fc6 are concatenated and passed as

input to fc7. Finally, the model predictions are obtained by applying the Sinkhorn Layer on the outputs of fc8 layer.

3.5. Implementation Details

For training, we use stochastic gradient descent with

mini-batches of size 32, images of 256×256 pixels and dif-

ferent sequence lengths. During preprocessing, we subtract

the mean and randomly crop each image to size 227× 227.

We initialize our network from conv1 to fc6 layers using an

AlexNet model pre-trained on ILSVRC 2012 [24] dataset

for the task of image classification, while other layers are

randomly initialized from a Gaussian distribution. Then,

we set the learning rate to 10−5 and fine-tune our model

for permutation prediction during 25k iterations using the

multi-class cross entropy loss.

4. Experiments

We now describe how to extend our model to tackle dif-

ferent computer vision problems and measure our model

performance on well established benchmarks. First, in Sec-

tion 4.1, we analyze how effectively our proposed model

solves the permutation prediction problem under different

settings. Second, in Section 4.2, we evaluate our model on

the relative attributes task. Finally, in Section 4.3, we evalu-

ate our method for self-supervised representation learning.

4.1. Permutation Prediction

In this experiment, we evaluate our proposed method

on the permutation prediction task and compare with a

naı̈ve approach which combines sigmoid outputs and cross-

entropy loss by casting the permutation prediction problem

as a multi-label classification problem.

In this experiment, we use the Public Figures dataset [33]

which consists of 800 facial images of eight public figures

and eleven physical attributes, such as big lips, white, and

young. This dataset is annotated in category level, i.e., all

images in a specific category may be ranked higher, equal,

or lower than all images in another category, with respect to

an attribute. That is, images are partially ordered.

Method Length KT HS NE

Naive App. 4 0.859 0.893 0.062

Sinkhorn Norm. 4 0.884 0.906 0.019

Naive App. 8 0.774 0.832 0.1

Sinkhorn Norm. 8 0.963 0.973 0.022

Table 1. Evaluating and comparing Sinkhorn Normalization and a

combination of sigmoid and cross entropy loss, named naive ap-

proach, on the permutation prediction task using the Public Fig-

ures Dataset [33]. KT, HS and NE stands for Kendall Tau, ham-

ming similarity and l1 normalization error respectively.

As performance metrics for the permutation prediction

task, we use Kendall-Tau and Hamming Similarity. Kendall

Tau is defined as KT = c+−c−

0.5l(l−1) , where c+ and c− denote

the number of all pairs in the sequence that are correctly and

incorrectly ordered, respectively. It captures how close we

are to the perfect rank. The Hamming similarity measures

the number of equals entries in two vectors or matrices nor-

malized by the total number of elements. It indicates how

similar our prediction is to the ground truth permutation ma-

trix. In addition, we measure the averaged ℓ1 normalization

error of rows and columns of our predicted permutation ma-

trices.

We train a CNN model for each attribute in the Public

Figures dataset by sampling 30K ordered image sequences

from as training images. Then, we evaluate the trained mod-

els on 20K image sequences generated from the test set by

sampling correctly ordered sequences and randomly per-

muting them. We averaged the results over the 11 attributes

and repeat the experiment for image sequences of length 4

and 8. Table 1 presents the results for Sinkhorn Normaliza-

tion and the naı̈ve approach.

We observe the naı̈ve approach works well for small se-

quences and is able to learn the normalization by itself. As

the sequence length increases, however, the performance

of the naı̈ve approach degenerates and the ℓ1 normaliza-

3953



3 4 5 6 7 8 9

Sequence Length

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

H
a
m

m
in

g
 S

im
ila

ri
ty

Young

Naive Approach

Sinkhorn Normalization

3 4 5 6 7 8 9

Sequence Length

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

K
e
n
d
a
ll 
T
a
u

Young

Naive Approach

Sinkhorn Normalization

3 4 5 6 7 8 9

Sequence Length

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

H
a
m

m
in

g
 S

im
ila

ri
ty

Round Face

Naive Approach

Sinkhorn Normalization

4 5 6 7 8 9

Sequence Length

0.75

0.80

0.85

0.90

0.95

1.00

K
e
n
d
a
ll 

T
a
u

Round Face

Naive Approach

Sinkhorn Normalization

Figure 3. Evaluating the performance and stability of Sinkhorn normalization and the naı̈ve approach on the permutation prediction task for

two attributes of public figures dataset: young and round face. Performance is reported in terms of Kendall Tau and hamming similarity.

Best viewed in color.

tion error increases. On the other hand, the Sinkhorn Nor-

malization approach reaches better results in Kendall-Tau

and hamming similarity while keep the normalization er-

ror almost unchangeable even for longer sequences. This

fact suggests that exploring the geometrical structure of the

space of doubly-stochastic matrices (and thereby the per-

mutation matrices) is useful.

The number of possible permutations for a given im-

age sequence increases factorially with the sequence length.

Thus, we evaluate how stable are the predictions of our pro-

posed model in relation to the variation in permutations.

For a given attribute, we create a test dataset composed of

1K random image sequences of length four, six, and eight.

Then, we augment this dataset with as many permutations

as possible for each sequence. More specifically, we gen-

erated all permutations of length four for each test sample.

Due to computational complexity, for length six and eight

we randomly sampled fifty different permutations for each

test sample. Figure 3 shows the results for the attributes

Young and Round Face.

Again, we obtain better results with the Sinkhorn Nor-

malization layer which shows a trend of increasing per-

formance as the length of the image sequence increases.

We also note that the variations in the prediction for the

Sinkhorn Normalization layer is negligible while the naı̈ve

approach becomes unstable for longer sequences. There-

fore, we adopt the sinkhorn normalization layer in our pro-

posed model DeepPermNet. In the next sections, we focus

on how the DeepPermNet can be applied for ordering im-

ages based on relative attributes and self-supervised repre-

sentation learning.

4.2. Relative Attributes

In this experiment, we use DeepPermNet to compare im-

ages in a given sequence according to a certain attribute by

predicting permutations and applying its inverse. This pro-

cedure can be used to solve the relative attributes task, the

goal of which is to compare pairs or sets of images accord-

ing to the “strength” of a given attribute.

For this application, we use the OSR scene dataset [33],

in addition to the Public Figures Dataset[33]. We train our

model for each attribute with 30K ordered image sequences

of length 8 generated from the training set. Then, we report

our model performance in terms of pairwise accuracy mea-

sured on the predicted ordering for 20K image sequences

of length 8 generated from the test set using stratified sam-

pling.

Different from the existing methods [42, 39], we directly

predict the order for sequences of images instead of pairs.

Our scheme allows us to make use of the structure in the se-

quences as a whole, which is more informative than pairs.

For a fair comparison to prior methods, we measure our per-

formance by computing the pairwise accuracy for all pairs

in each sequence. Tables 2 and 3 present our results.

On Public Figures dataset, DeepPermNet outperforms

the state-of-the-art models by a margin of 3% in pairwise

accuracy. It is a substantial margin, consistently observed

across all attributes. Note that, we outperform the recent

method in [42], which is a VGG CNN model that has sig-

nificantly more modeling capacity than the AlexNet [24]

architecture we use. On the other hand, our method works

slightly worse than [42] on OSR dataset. We also provide

results by building our scheme on a VGG CNN model. As

is clear, using this variant, we demonstrate even better re-

sults outperforming the state-of-the-art methods.

It is worth noting that DeepPermNet works better when

we use longer sequences for training, because they provide

rich information, which can be directly used in our method.

For instance, the performance of DeepPermNet drops 7%

in terms of average pairwise accuracy on Public Figures

dataset when we train our model using just pairs. In ad-

dition, the proposed model is not able to explicitly handle

equality cases, since the permutation learning formulation

assumes each permutation is unique, which is not true in

the relative attributes task. Perhaps, this is the reason for

the difference in performance between Public Figures and

OSR datasets. Nonetheless, DeepPermNet is able to learn

very good attribute rankers from data as shown in our ex-

periments.

We also compute the saliency maps of different attributes

using the method proposed by Simonyan et al. [38]. More

specifically, we take the derivative of the estimated permu-
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Table 2. Evaluating relative attributes prediction model on Public Figures Dataset.
Method Lips Eyebrows Chubby Male Eyes Nose Face Smiling Forehead White Young Mean

Parikh and Grauman [33] 79.17 79.87 76.27 81.80 81.67 77.40 82.33 79.90 87.60 76.97 83.20 80.56

Li et al. [26] 81.87 81.84 79.97 85.33 83.15 80.43 86.31 83.36 88.83 82.59 84.41 83.37

Yu and Grauman [47] 90.43 89.83 87.37 91.77 91.40 89.07 86.70 87.00 94.00 87.43 91.87 89.72

Souri et al. [42] 93.62 94.53 92.32 95.50 93.19 94.24 94.76 95.36 97.28 94.60 94.33 94.52

DeepPermNet 99.55 97.21 97.66 99.44 96.54 96.21 99.11 97.88 99.00 97.99 99.00 98.14

Table 3. Evaluating relative attributes prediction methods on OSR dataset.

Method Depth-Close Diagonal-Plane Natural Open Perspective Size-Large Mean

Parikh and Grauman [33] 87.53 86.5 95.03 90.77 86.73 86.23 88.80

Li et al. [26] 89.54 89.34 95.24 92.39 87.58 88.34 90.41

Yu and Grauman [47] 90.47 92.43 95.7 94.1 90.43 91.1 92.37

Singh and Lee [39] 96.1 97.64 98.89 97.2 96.31 95.98 97.02

Souri et al. [42] 97.65 98.43 99.4 97.44 96.88 96.79 97.77

DeepPermNet (AlexNet) 96.09 94.53 97.21 96.65 96.46 98.77 96.62

DeepPermNet (VGG16) 96.87 97.99 96.87 99.79 99.82 99.55 98.48

tation matrix with respect to the input, given a set of im-

ages. We perform max pooling across channels to generate

the saliency maps. Figure 4 presents qualitative results and

saliency maps generated by DeepPermNet for different at-

tributes.

These maps are a simplified way to visualize which pix-

els, regions, and features of a given image are more relevant

to the respective permutations predicted by our method. For

instance, the attribute “bushy eyebrows” are sensitive to the

region of eyes, while the attribute “smiling” is more sensi-

tive to the mouth region. An interesting observation is the

possibility of localizing such features without any explicit

supervision (e.g., bounding boxes or segmentation masks),

which could be used for unsupervised attribute localization.

Bushy-Eyebrows 

(Public Figures)

Smiling 

(Public Figures)

Natural (OSR)

Open (OSR)

Weak Strong

Figure 4. Qualitative results on Public Figures and OSR test im-

ages. Better viewed in color.

4.3. SelfSupervised Representation Learning

Yosinski et al. [46] observed that pre-training a network

helps to regularize the model reaching better performance

on the test set. Motivated by this observation, we pro-

pose to use the spatial structure existent in images as self-

supervisory signal to generate ordered sequences of patches

to train our model and transfer the learned weights for su-

pervised target tasks such as object classification, detection,

and segmentation.

More specifically, we use the train split of the ImageNet

dataset [24] as training set discarding its labels. For each

image, we split it into a grid with 3×3 cells, extract a patch

of size 64 × 64 pixels within each grid cell and generate

a sequence where the ordering is established by the spatial

position of each patch in the grid (see Figure 1 right). Then,

we train our models to predict random permutations of these

generated patch sequences as before.

Unlike our previous experiments, we train our CNN

models from scratch starting using random initialization.

The model is trained for 400k iterations using a initial learn-

ing rate of 0.001, which is dropped to one-tenth every 100k

iterations. we use batches of 256 sequences each of 64×64
image patches. Note that as this is self-supervised training,

we do not use any pre-trained models or human labels.

Using a CNN to recover an image from its parts is a

challenging task because it requires the network to learn se-

mantic concepts, contextual information, and objects-parts

relationships, in order to predict the right permutation. In

order to evaluate how well the proposed models can solve

such a task, we use 50k images on the ImageNet valida-

tion set and apply random permutations using the 3×3 grid

layout. In this self-supervised setting, on the Kendall Tau

metric, DeepPermNet reaches a score of 0.72 and the naı̈ve

approach reaches 0.64 on the permutation prediction task.

Following the literature on self-supervised pre-training
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Pre-training Method
Classification

(mAP%)

FRCN Detection [17]

(mAP%)

FCN Segmentation [27]

(%mIU)

ImageNet 78.2 56.8 48.0

Random Gaussian 53.3 43.4 19.8

Agarwala et al. [2] 52.9 41.8 -

Doersch et al. [10] 55.3 46.6 -

Wang and Gupta [45] 58.4 44.0 -

Pathak et al. [34] 56.5 44.5 29.7

Donahue et al. [11] 58.9 45.7 34.9

Zhang et al. [48] 65.6 47.9 35.6

Noroozi and Favaro [32] 68.6 51.8 36.1

Naive Approach 65.9 48.2 36.8

DeepPermNet 69.4 49.5 37.9

Table 4. Classification and detection results on PASCAL VOC

2007 test set under the standard mean average precision (mAP),

and segmentation results on the PASCAL VOC 2012 validation

set under mean intersection over union (mIU) metric.

[10, 11, 34, 32], we test our models on the commonly used

self-supervised benchmarks on the PASCAL Visual Ob-

ject Challenge and compare against supervised and self-

supervised procedures for pre-training. We transfer our

learned weights to initialize from Conv1 to Conv5 layers

of AlexNet [24], Fast-RCNN [17] and Fully Convolutional

Network [27] models and fine-tune them for object classi-

fication, object detection, and object segmentation tasks re-

spectively, using their default training parameters. For ob-

ject classification and detection, we report the mean average

precision (mAP) on PASCAL VOC 2007 [12], while for ob-

ject segmentation, we report mean average intersection over

union (mIU) on PASCAL VOC 2012 [13]. Table 4 presents

our results.

We observe that the self-supervised methods are still be-

hind the supervised approach, but this gap reduces grad-

ually. Our DeepPermNet outperforms the self-supervised

competitors in object classification and segmentation, while

it produces the second best performance for the detection

task. Interestingly, when finer grid cells are used (e.g.,

4 × 4), we do not observe any improvement in recognition

performance. Moreover, the first layer filters learned by our

method and the ones learned by Noroozi and Favaro [32]

seems somewhat similar (see Figure 5) despite the differ-

ent number of permutations learned. This fact suggests that

3 × 3 grid partition and a well chosen subset of permuta-

tions are enough to learn filters which produce state-of-the-

art results for self-supervised representation learning. How-

ever, DeepPermNet is a generic method than the method

proposed by Noroozi and Favaro [32], and our method can

be used to solve many different computer vision tasks as

shown in our experiments.

5. Conclusion

In this paper, we tackled the problem of learning the

structure of visual data by introducing the task of visual

permutation learning. We formulated an optimization prob-

lem for this task with the goal of recovering the permutation

Figure 5. Comparison of convolution layer one filters for left

Noroozi and Favaro [32] and right our method.

matrix responsible for generating a given randomly shuffled

image sequence based on a pre-defined visual criteria. We

proposed a novel CNN layer that can convert standard CNN

predictions to doubly-stochastic approximations of permu-

tation matrices using Sinkhorn normalizations; this CNN

can be trained in an end-to-end manner. Through a variety

of experiments, we showed that our framework is generic

and could be used not only for recovering the order, but also

to generate good initializations for training standard CNN

models.

Going forward, one compelling direction of investiga-

tion is to replace our unrolling of Sinkhorn iterations for

gradient propagation by more standard and exact optimiz-

ers. Another important direction is to investigate the use

of this scheme for other modalities of data such as video

sequences and 3D data.
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