
Deep Network Flow for Multi-Object Tracking

Samuel Schulter Paul Vernaza Wongun Choi Manmohan Chandraker

NEC Laboratories America, Media Analytics Department

Cupertino, CA, USA

{samuel,pvernaza,wongun,manu}@nec-labs.com

Abstract

Data association problems are an important component

of many computer vision applications, with multi-object

tracking being one of the most prominent examples. A typi-

cal approach to data association involves finding a graph

matching or network flow that minimizes a sum of pair-

wise association costs, which are often either hand-crafted

or learned as linear functions of fixed features. In this

work, we demonstrate that it is possible to learn features

for network-flow-based data association via backpropaga-

tion, by expressing the optimum of a smoothed network flow

problem as a differentiable function of the pairwise associ-

ation costs. We apply this approach to multi-object tracking

with a network flow formulation. Our experiments demon-

strate that we are able to successfully learn all cost func-

tions for the association problem in an end-to-end fashion,

which outperform hand-crafted costs in all settings. The in-

tegration and combination of various sources of inputs be-

comes easy and the cost functions can be learned entirely

from data, alleviating tedious hand-designing of costs.

1. Introduction

Multi-object tracking (MOT) is the task of predicting

the trajectories of all object instances in a video sequence.

MOT is challenging due to occlusions, fast moving objects

or moving camera platforms, but it is an essential module in

many applications like action recognition, surveillance or

autonomous driving. The currently predominant approach

to MOT is tracking-by-detection [3, 7, 10, 15, 26, 33, 41],

where, in a first step, object detectors like [16, 43, 51] pro-

vide potential locations of the objects of interest in the form

of bounding boxes. Then, the task of multi-object tracking

translates into a data association problem where the bound-

ing boxes are assigned to trajectories that describe the path

of individual object instances over time.

Bipartite graph matching [25, 35] is often employed in

on-line approaches to assign bounding boxes in the current

frame to existing trajectories [22, 37, 38, 52]. Off-line meth-

ods can be elegantly formulated in a network flow frame-

work to solve the association problem including birth and

death of trajectories [27, 29, 54]. Section 2 gives more ex-

amples. All these association problems can be solved in a

linear programming (LP) framework, where the constraints

are given by the problem. The interplay of all variables in

the LP, and consequently their costs, determines the success

of the tracking approach. Hence, designing good cost func-

tions is crucial. Although cost functions are hand-crafted in

most prior work, there exist approaches for learning costs

from data. However, they either do not treat the problem as

a whole and only optimize parts of the costs [27, 31, 52, 54]

or are limited to linear cost functions [49, 50].

We propose a novel formulation that allows for learning

arbitrary parameterized cost functions for all variables of

the association problem in an end-to-end fashion, i.e., from

input data to the solution of the LP. By smoothing the LP,

bi-level optimization [6, 13] enables learning of all the pa-

rameters of the cost functions such as to minimize a loss

that is defined on the solution of the association problem,

see Section 3.2. The main benefit of this formulation is its

flexibility, general applicability to many problems and the

avoidance of tedious hand-crafting of cost functions. Our

approach is not limited to log-linear models (c.f ., [49]) but

can take full advantage of any differentiable parameterized

function, e.g., neural networks, to predict costs. Indeed, our

formulation can be integrated into any deep learning frame-

work as one particular layer that solves a linear program

in the forward pass and back-propagates gradients w.r.t. the

costs through its solution (see Figure 2).

While our approach is general and can be used for

many association problems, we explore its use for multi-

object tracking with a network flow formulation (see Sec-

tions 3.1 and 3.4). We empirically demonstrate on public

data sets [17, 28, 32] that: (i) Our approach enables end-to-

end learning of cost functions for the network flow problem.

(ii) Integrating different types of input sources like bound-

ing box information, temporal differences, appearance and

motion features becomes easy and all model parameters can

be learned jointly. (iii) The end-to-end learned cost func-
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tions outperform hand-crafted functions without the need to

hand-tune parameters. (iv) We achieve encouraging results

with appearance features, which suggests potential benefits

from end-to-end integration of deep object detection and

tracking, as enabled by our formulation.

2. Related Work

Association problems in MOT: Recent works on multi-

object tracking (MOT) mostly follow the tracking-by-

detection paradigm [3, 7, 10, 15, 26, 33, 41], where ob-

jects are first detected in each frame and then associated

over time to form trajectories for each object instance. On-

line methods like [8, 11, 15, 39, 41] associate detections

of the incoming frame immediately to existing trajectories

and are thus appropriate for real-time applications1. Tra-

jectories are typically treated as state-space models like

Kalman [21] or particle filters [18]. The association to

bounding boxes in the current frame is often formulated as

bipartite graph matching and solved via the Hungarian al-

gorithm [25, 35]. While on-line methods only have access

to the past and current observations, off-line (or batch) ap-

proaches [3, 9, 20, 1, 40, 54] also consider future frames or

even the whole sequence at once. Although not applicable

for real-time applications, the advantage of batch methods

is the temporal context allowing for more robust and non-

greedy predictions. An elegant solution to assign trajecto-

ries to detections is the network flow formulation [54] (see

Section 3.1 for details). Both of these association models

can be formulated as linear program.

Cost functions: Independent of the type of association

model, a proper choice of the cost function is crucial for

good tracking performance. Many works rely on care-

fully designed but hand-crafted functions. For instance,

[29, 33, 41] only rely on detection confidences and spa-

tial (i.e., bounding box differences) and temporal distances.

Zhang et al. [54] and Zamir et al. [53] include appearance

information via color histograms. Other works explicitly

learn affinity metrics, which are then used in their tracking

formulation. For instance, Li et al. [31] build upon a hi-

erarchical association approach where increasingly longer

tracklets are combined into trajectories. Affinities between

tracklets are learned via a boosting formulation from vari-

ous hand-crafted inputs including length of trajectories and

color histograms. This approach is extended in [26] by

learning affinities on-line for each sequence. Similarly, Bae

and Yoon [2] learn affinities on-line with a variant of lin-

ear discriminant analysis. Song et al. [47] train appearance

models on-line for individual trajectories when they are iso-

lated, which can then be used to disambiguate from other

trajectories in difficult situations like occlusions or interac-

tions. Leal-Taixé et al. [27] train a Siamese neural network

1In this context, real-time refers to a causal system.

to compare the appearance (raw RGB patches) of two detec-

tions and combine this with spatial and temporal differences

in a boosting framework. These pair-wise costs are used in a

network flow formulation similar to [29]. In contrast to our

approach, none of these methods consider the actual infer-

ence model during the learning phase but rely on surrogate

loss functions for parts of the tracking costs.

Integrating inference into learning: Similar to our ap-

proach, there have been recent works that also include the

full inference model in the training phase. In particular,

structured SVMs [48] have recently been used in the track-

ing context to learn costs for bipartite graph matching in

an on-line tracker [23], a divide-and-conquer tracking strat-

egy [46] and a joint graphical model for activity recognition

and tracking [12]. In a similar fashion, [49] present a formu-

lation to jointly learn all costs in a network flow graph with a

structured SVM, which is the closest work to ours. It shows

that properly learning cost functions for a relatively sim-

ple model can compete with complex tracking approaches.

However, the employed structured SVM limits the cost

functions to a linear parameterization. In contrast, our ap-

proach relies on bi-level optimization [6, 13] and is more

flexible, allowing for non-linear (differentiable) cost func-

tions like neural networks. Bi-level optimization has also

been used recently to learn costs of graphical models, e.g.,

for segmentation [42] or depth map restoration [44, 45].

3. Deep Network Flows for Tracking

We demonstrate our end-to-end formulation for associa-

tion problems with the example of network flows for multi-

object tracking. In particular, we consider a tracking-by-

detection framework, where potential detections d in every

frame t of a video sequence are given. Each detection con-

sists of a bounding box b(d) describing the spatial location,

a detection probability p(d) and a frame number t(d). For

each detection, the tracking algorithm needs to either asso-

ciate it with an object trajectory Tk or reject it. A trajectory

is defined as a set of detections belonging to the same ob-

ject, i.e., Tk = {d1
k, . . . ,d

Nk

k }, where Nk defines the size of

the trajectory. Only bounding boxes from different frames

can belong to the same trajectory. The number of trajecto-

ries |T | is unknown and needs to be inferred as well.

In this work, we focus on the network flow formulation

from Zhang et al. [54] to solve the association problem. It is

a popular choice [27, 29, 30, 49] that works well in practice

and can be solved via linear programming (LP). Note that

bipartite graph matching, which is typically used for on-line

trackers, can also be formulated as a network flow, making

our learning approach equally applicable.

3.1. Network Flow Formulation

We present the formulation of the directed network flow

graph with an example illustrated in Figure 1. Each de-

6952



t0 t1 t2

S

T

cin

cout

clink

cdet

Figure 1: A network flow graph for tracking 3 frames [54].

Each pair of nodes corresponds to a detection. The different

solid edges are explained in the text, the thick dashed lines

illustrate the solution of the network flow.

tection di is represented with two nodes connected by an

edge (red). This edge is assigned the flow variable xdet
i . To

be able to associate two detections, meaning they belong

to the same trajectory T , directed edges (blue) from all di

(second node) to all dj (first node) are added to the graph if

t(di) < t(dj) and |t(di)−t(dj)| < τt. Each of these edges

is assigned a flow variable xlink
i,j . Having edges over multiple

frames allows for handling occlusions or missed detections.

To reduce the size of the graph, we drop edges between de-

tections that are spatially far apart. This choice relies on

the smoothness assumption of objects in videos and does

not hurt performance but reduces inference time. In order

to handle birth and death of trajectories, two special nodes

are added to the graph. A source node (S) is connected with

the first node of each detection di with an edge (black) that

is assigned the flow variable xin
i . Similarly, the second node

of each detection is connected with a sink node (T) and the

corresponding edge (black) is assigned the variable xout
i .

Each variable in the graph is associated with a cost. For

each of the four variable types we define the corresponding

cost, i.e., cin, cout, cdet and clink. For ease of explanation later,

we differentiate between unary costs c
U (cin, cout and cdet)

and pairwise costs cP (clink). Finding the globally optimal

minimum cost flow can be formulated as the linear program

x
∗ = argmin

x

c
⊤
x

s.t. Ax ≤ b, Cx = 0,
(1)

where x ∈ R
M and c ∈ R

M are the concatenations of all

flow variables and costs, respectively, and M is the problem

dimension. Note that we already relaxed the actual integer

constraint on x with box constraints 0 ≤ x ≤ 1, modeled by

A = [I,−I]⊤ ∈ R
2M×M and b = [1,0]⊤ ∈ R

2M in (1).

The flow conservation constraints, xin
i +

∑

j x
link
ji = xdet

i and

xout
i +

∑

j x
link
ij = xdet

i ∀i, are modeled with C ∈ R
2K×M ,

where K is the number of detections. The thick dashed lines

in Figure 1 illustrate x
∗.

The most crucial part in this formulation is to find proper

costs c that model the interplay between birth, existence,

death and association of detections. The final tracking result

mainly depends on the choice of c.

3.2. End­to­end Learning of Cost Functions

The main contribution of this paper is a flexible frame-

work to learn functions that predict the costs of all variables

in the network flow graph. Learning can be done end-to-

end, i.e., from the input data all the way to the solution of

the network flow problem. To do so, we replace the constant

costs c in Equation (1) with parameterized cost functions

c(f ,Θ), where Θ are the parameters to be learned and f is

the input data. For the task of MOT, the input data typically

are bounding boxes, detection scores, images features, or

more specialized and effective features like ALFD [10].

Given a set of ground truth network flow solutions xgt of

a tracking sequence (we show how to define ground truth in

Section 3.3) and the corresponding input data f , we want to

learn the parameters Θ such that the network flow solution

minimizes some loss function. This can be formulated as

the bi-level optimization problem

argmin
Θ

L
(

x
gt,x∗

)

s.t. x
∗ = argmin

x

c(f ,Θ)⊤x

Ax ≤ b, Cx = 0,

(2)

which tries to minimize the loss function L (upper level

problem) w.r.t. the solution of another optimization prob-

lem (lower level problem), which is the network flow in our

case, i.e., the inference of the tracker. To compute gradients

of the loss function w.r.t. the parameters Θ we require a

smooth lower level problem. The box constraints, however,

render it non-smooth.

3.2.1 Smoothing the lower level problem

The box constraints in (1) and (2) can be approximated via

log-barriers [5]. The inference problem then becomes

x
∗ = argmin

x

t · c(f ,Θ)⊤x−
2M
∑

i=1

log(bi − a
⊤
i x)

s.t. Cx = 0,

(3)

where t is a temperature parameter (defining the accuracy

of the approximation) and a
⊤
i are rows of A. Moreover, we

can get rid of the linear equality constraints with a change

of basis x = x(z) = x0 + Bz, where Cx0 = 0 and

B = N (C), i.e., the null space of C, making our objec-

tive unconstrained in z (Cx = Cx0+CBz = Cx0 = 0 =
True ∀z). This results in the following unconstrained and

6953



smooth lower level problem

argmin
z

t · c(f ,Θ)⊤x(z) + P (x(z)), (4)

where P (x) = −
∑2M

i=1 log(bi − a
⊤
i x).

3.2.2 Gradients with respect to costs

Given the smoothed lower level problem (4), we can define

the final learning objective as

argmin
Θ

L
(

x
gt,x(z∗

)

)

s.t. z∗ = argmin
z

t · c(f ,Θ)⊤x(z) + P (x(z)),
(5)

which is now well-defined. We are interested in comput-

ing the gradient of the loss L w.r.t. the parameters Θ of our

cost function c(·,Θ). It is sufficient to show ∂L
∂c

, as gradi-

ents for the parameters Θ can be obtained via the chain rule

assuming c(·;Θ) is differentiable w.r.t. Θ.

The basic idea for computing gradients of problem (5)

is to make use of implicit differentiation on the optimality

condition of the lower level problem. For an uncluttered

notation, we drop all dependencies of functions in the fol-

lowing. We define the desired gradient via chain rule as

∂L

c
=

∂z∗

∂c

∂x

∂z∗
∂L

∂x
=

∂z∗

∂c
B

⊤ ∂L

∂x
. (6)

We assume the loss function L to be differentiable w.r.t. x.

To compute ∂z∗

∂c
, we use the optimality condition of (4)

0 =
∂

∂z

[

t · c⊤x+ P
]

= t ·
∂x

∂z
c+

∂x

∂z

∂P

∂x
= t ·B⊤

c+B
⊤ ∂P

∂x

(7)

and differentiate w.r.t. c, which gives

0 =
∂

∂c

[

t ·B⊤
c
]

+
∂

∂c

[

B
⊤ ∂P

∂x

]

= t ·B+
∂z

∂c

∂x

∂z

∂2P

∂x2
B = t ·B+

∂z

∂c
B

⊤ ∂2P

∂x2
B

(8)

and which can be rearranged to

∂z

∂c
= −t ·B

[

B
⊤ ∂2P

∂x2
B

]−1

. (9)

The final derivative can then be written as

∂L

c
= −t ·B

[

B
⊤ ∂2P

∂x2
B

]−1

B
⊤ ∂L

∂x
. (10)

To fully define (10), we provide the second derivative of P

w.r.t. x, which is given as

∂2P

∂x2
=

∂2P

∂x∂x⊤
=

2M
∑

i=1

1
(

bi − a⊤i x
)2 · aia

⊤
i . (11)

In the supplemental material we show that (10) is equivalent

to a generic solution provided in [36] and that B⊤ ∂2P
∂x2 B is

always invertible.

3.2.3 Discussion

Training requires to solve the smoothed linear program (4),

which can be done with any convex solver. This is essen-

tially one step in a path-following method with a fixed tem-

perature t. As suggested in [5], we set t = M
ǫ

, where ǫ is

a hyper-parameter defining the approximation accuracy of

the log barriers. We tried different values for ǫ and also an

annealing scheme, but the results seem insensitive to this

choice. We found ǫ = 0.1 to work well in practice.

It is also important to note that our formulation is not

limited to the task of MOT. It can be employed for any

application where it is desirable to learn costs functions

from data for an association problem, or, more generally,

for a linear program with the assumptions given in Sec-

tion 3.2.1. Our formulation can also be interpreted as one

particular layer in a neural network that solves a linear pro-

gram. The analogy between solving the smoothed linear

program (4) and computing the gradients (10) with the for-

ward and backward pass of a layer in a neural network is

illustrated in Figure 2.

3.3. Defining ground truth and the loss function

To learn the parameters Θ of the cost functions we need

to compare the LP solution x
∗ with the ground truth solu-

tion x
gt in a loss function L. Basically, xgt defines which

edges in the network flow graph should be active (x
gt
i = 1)

and inactive (x
gt
i = 0). Training data needs to contain the

ground truth bounding boxes (with target identities) and the

detection bounding boxes. The detections define the struc-

ture of the network flow graph (see Section 3.1).

To generate x
gt, we first match each detection with

ground truth boxes in each frame individually. Similar to

the evaluation of object detectors, we match the highest

scoring detection having an intersection-over-union over-

lap larger 0.5 to each ground truth bounding box. This di-

vides the set of detection into true and false positives and

already defines the ground truth for xdet. In order to provide

ground truth for associations between detections, i.e., xlink,

we iterate the frames sequentially and investigate all edges

pointing forward in time for each detection. We activate the

edge that points to the closest true positive detection in time,

which has the same target identity. All other xlink edges are

set to 0. After all ground truth trajectories are identified, it

is straightforward to set the ground truth of xin and xout.

As already pointed out in [50], there exist different types

of links that should be treated differently in the loss func-

tion. There are edges xlink between two false positives (FP-

FP), between true and false positives (TP-FP), and between
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U
i

∀i

cP(dij ;ΘP) → clink
ij

∀ij

S

T

{c,x} x
∗

∂L

∂x∗

∂c

∂Θ

∂x
∗

∂c

solve LP (1)

gradients via (10)

L (x∗,xgt)

t0

t1

(A) input (B) cost functions (C) network flow graph and LP (D) loss function and ground truth

Figure 2: During inference, two cost functions (B) predict unary and pair-wise costs based on features extracted from detec-

tions on the input frames (A). The costs drive the network flow (C). During training, a loss compares the solution x
∗ with

ground truth x
gt to back-propagate gradients to the parameters Θ.

t0

t1

t2
FP-FP

TP-FP

TP-TP-

TP-TP+ TP-TP+Far

Figure 3: An illustration of different types of links that

emerge when computing the loss. See text for more details

on the different combinations of true (TP, green) and false

positive (FP, red) detections.

two true positives with the same (TP-TP+) or a different

(TP-TP-) identity. For (TP-TP+) links, we also differentiate

between the shortest links for the trajectory and links that

are longer (TP-TP+Far). Edges associated with a single de-

tection (xin, xdet and xout) are either true (TP) or false pos-

itives (FP). Figure 3 illustrates all these cases. To trade-off

the importance between these types, we define the follow-

ing weighted loss function

L
(

x
∗,xgt

)

=
∑

κ∈{in,det,out}

∑

i

ωi(x
κ,∗
i − x

gt
i )

2

+
∑

i,j∈E

ωij(x
link,∗
i,j − x

gt
i,j)

2,
(12)

where E is the set of all edges between detections i and

j. Note that the weights can be adjusted for each variable

separately. The default value for the weights is 1, but we

can adjust them to incorporate three intuitions about the

loss. (i) Ambiguous edges: Detections of an (FP-FP) link

may describe a consistently tracked but wrong object. Also,

detections of a (TP-TP+Far) link are obviously very simi-

lar. In both cases the ground truth variable is still inactive.

It may hurt the learning procedure if a wrong prediction

is penalized too much for these cases. Thus, we can set

ωi,j = ωamb < 1. (ii) To influence the trade-off between

precision and recall, we define the weight ωpr for all edges

involving a true positive detection. Increasing ωpr favors re-

call. (iii) To emphasize associations, we additionally weight

all xlink variables with ωlink. If multiple of these cases are

true for a single variable, we multiply the weights.

Finally, we note that [50] uses a different weighting

scheme and an ℓ1 loss. We compare this definition with

various weightings of our loss function in Section 4.3.

3.4. Tracking model

After the training phase, the above described network

flow formulation can be readily applied for tracking. One

option is to batch process whole sequences at once, which,

however, does not scale to long sequences. Lenz et al. [30]

present a sophisticated approximation with bounded mem-

ory and computation costs. As we focus on the learning

phase in this paper, we opt for a simpler approach, which

empirically gives similar results to batch processing but

does not come with guarantees as in [30].

We use a temporal sliding window of length W that

breaks a video sequence into chunks. We solve the LP prob-

lem for the frames inside the window, move it by ∆ frames

and solve the new LP problem, where 0 < ∆ < W ensures

a minimal overlap of the two solutions. Each solution con-

tains a separate set of trajectories, which we associate with

bipartite graph matching to carry the object identity infor-

mation over time. The matching cost for each pair of trajec-

tories is inversely proportional to the number of detections

they share. Unmatched trajectories get new identities.

In practice, we use maximal overlap, i.e., ∆ = 1, to

ensure stable associations of trajectories between two LP

solutions. For each window, we output the detections of the

middle frame, i.e., looking W
2 frames into future and past,

similar to [10]. Note that using detections from the latest

frame as output enables on-line processing.

4. Experiments

To evaluate the proposed tracking algorithm we use

the publicly available benchmarks KITTI tracking [17],

MOT15 [28] and MOT16 [32]. The data sets provide train-

ing sets of 21, 11 and 7 sequences, respectively, which are

fully annotated. As suggested in [17, 28, 32], we do a (4-

fold) cross validation for all our experiments, except for the

benchmark results in Section 4.4.
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To assess the performance of the tracking algorithms

we rely on standard MOT metrics, CLEAR MOT [4] and

MT/PT/ML [31], which are also used by both bench-

marks [17, 28]. This set of metrics measures recall and pre-

cision, both on a detection and trajectory level, counts the

number of identity switches and fragmentations of trajecto-

ries and also provides an overall tracking accuracy (MOTA).

4.1. Learned versus hand­crafted cost functions

The main contribution of this paper is a novel way to au-

tomatically learn parameterized cost functions for a network

flow based tracking model from data. We illustrate the effi-

cacy of the learned cost functions by comparing them with

two standard choices for hand-crafted costs. First, we fol-

low [29] and define cdet
i = log(1 − p(di)), where p(di) is

the detection probability, and

clink
i,j = − logE

(

‖b(di)− b(dj)‖

∆t

, Vmax

)

− log(B∆t−1),

(13)

where E(Vt, Vmax) =
1
2 +

1
2erf(−Vt+0.5·Vmax

0.25·Vmax
) with erf(·) be-

ing the Gauss error function and ∆t is the frame difference

between i and j. While [29] defines a slightly different net-

work flow graph, we keep the graph definition the same (see

Section 3.1) for all methods to ensure a fair comparison of

the costs. Second, we hand-craft our own cost function and

define cdet
i = α · p(di) as well as

clink
i,j = (1− IoU(b(di),b(dj))) + β · (∆t − 1), (14)

where IoU(·, ·) is the intersection over union. We tune

all parameters, i.e., cin
i = cout

i = C (we did not observe

any benefit when choosing these parameters separately), B,

Vmax, α and β, with grid search to maximize MOTA while

balancing recall. Note that the exponential growth of the

search space w.r.t. the number of parameters makes grid

search infeasible at some point.

With the same source of input information, i.e., bound-

ing boxes b(d) and detection confidences p(d), we train

various types of parameterized functions with the algorithm

proposed in Section 3.2. For unary costs, we use the same

parameterization as for the hand-crafted model, i.e., con-

stants for cin and cout and a linear model for cdet. However,

for the pair-wise costs, we evaluate a linear model, a one-

layer MLP with 64 hidden neurons and a two-layer MLP

with 32 hidden neurons in both layers. The input feature f

is the difference between the two bounding boxes, their de-

tection confidences, the normalized time difference, as well

as the IoU value. We train all three models for 50k itera-

tions using ADAM [24] with a learning rate of 10−4, which

we decrease by a factor of 10 every 20k iterations.

Table 1 shows that our proposed training algorithm can

successfully learn cost functions from data on both KITTI-

Tracking and MOT16 data sets. With the same input in-

formation given, our approach even slightly outperforms

MOTA REC PREC MT IDS FRAG

Crafted [29] 73.64 83.54 92.99 58.73 121 459

Crafted-ours 73.75 83.92 92.65 59.44 89 431

Linear 73.51 83.47 92.99 59.08 132 430

MLP 1 74.09 83.93 92.87 59.61 70 371

MLP 2 74.19 84.07 92.85 59.96 70 376

(a)

MOTA REC PREC MT IDS FRAG

Crafted [29] 28.28 29.94 95.04 5.80 111 1063

Crafted-ours 29.19 34.01 87.88 6.77 142 1272

Linear 28.25 38.01 80.09 9.67 342 1620

MLP 1 31.05 37.51 85.81 8.32 282 1553

MLP 2 31.10 37.53 85.88 8.51 289 1562

(b)

Table 1: Learned vs. hand-crafted cost functions on a cross-

validation on (a) KITTI-Tracking [17] and (b) MOT16 [32].

both hand-crafted baselines in terms of MOTA. In particu-

lar, we observe lower identity switches and fragmentations

on KITTI-Tracking and higher recall and mostly-tracked on

MOT16. While our hand-crafted function (14) is inherently

limited when objects move fast and IoU becomes 0 (com-

pared to (13) [29]), both still achieve similar performance.

For both baselines, we did a hierarchical grid search to get

good results. However, an even finer grid search would be

required to achieve further improvements. The attraction of

our method is that it obviates the need for such a tedious

search and provides a principled way of finding good pa-

rameters. We can also observe from the tables that non-

linear functions (MLP 1 and MLP 2) perform better than

linear functions (Linear), which is not possible in [49].

4.2. Combining multiple input sources

Recent works have shown that temporal and appearance

features are often beneficial for MOT. Choi [10] presents a

spatio-temporal feature (ALFD) to compare two detections,

which summarizes statistics from tracked interest points in

a 288-dimensional histogram. Leal-Taixé et al. [27] show

how to use raw RGB data with a Siamese network to com-

pute an affinity metric for pedestrian tracking. Incorpo-

rating such information into a tracking model typically re-

quires (i) an isolated learning phase for the affinity metric

and (ii) some hand-tuning to combine it with other affinity

metrics and other costs in the model (e.g., cin, cdet, cout). In

the following, we demonstrate the use of both motion and

appearance features in our framework.

Motion-features: In Table 2, we demonstrate the im-

pact of the motion feature ALFD [10] compared to purely

spatial features on the KITTI-Tracking data set as in [10].

For each source of input, we compare both hand-crafted

(C) and learned (L) pair-wise cost functions. First, we use
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Inputs MOTA REC PREC MT IDS FRAG

(C) B 73.64 83.54 92.99 58.73 121 459

(L) B 73.65 84.55 92.00 61.55 89 422

(C) B+O 73.75 83.92 92.65 59.44 89 431

(L) B+O 74.12 84.13 92.69 60.49 55 361

(C) B+O+M 73.07 85.07 90.92 61.73 43 386

(L) B+O+M 74.11 84.74 92.05 61.73 29 335

Table 2: We evaluate the influence of different types of input

sources, raw detection inputs (B), bounding box overlaps

(O) and the ALFD motion feature [10] (M) for both learned

(L) and hand-crafted (C) costs on KITTI-Tracking [17].

only the raw bounding box information (B), i.e., location

and temporal difference and detection score. For the hand-

crafted baseline, we use the cost function defined in (13),

i.e., [29]. Second, we add the IoU overlap (B+O) and use

(14) for the hand-crafted baseline. Third, we incorporate

ALFD [10] into the cost (B+O+M). To build a hand-crafted

baseline for (B+O+M), we construct a separate training set

of ALFD features containing examples for positive and neg-

ative matches and train an SVM on the binary classification

task. During tracking, the normalized SVM scores ŝA (a

sigmoid function maps the raw SVM scores into [0, 1]) are

incorporated into the cost function

clink
i,j = (1−IoU(b(di),b(dj)))+β ·(∆t−1)+γ ·(1− ŝA),

(15)

where γ is another hyper-parameter we also tune with grid-

search. For our learned cost functions, we use a 2-layer

MLP with 64 neurons in each layer to predict clink
i,j for the

(B) and (B+O) options. For (B+O+M), we use a separate 2-

layer MLP to process the 288-dimensional ALFD feature,

concatenate both 64-dimensional hidden vectors of the sec-

ond layers, and predict clink
i,j with a final linear layer.

Table 2 again shows that learned cost functions outper-

form hand-crafted costs for all input sources, which is con-

sistent with the previous experiment in Section 4.1. The ta-

ble also demonstrates the ability of our approach to make ef-

fective use of the ALFD motion feature [10], especially for

identity switches and fragmentations. While it is typically

tedious and suboptimal to combine such diverse features

in hand-crafted cost functions, it is easy with our learning

method because all parameters can still be jointly trained

under the same loss function.

Appearance features: Here, we investigate the impact

of raw RGB data on both unary and pair-wise costs of the

network flow formulation. We use the MOT15 data set [28]

and the provided ACF detections [14]. First, we integrate

the raw RGB data into the unary cost cdet
i (Au). For each

detected bounding box b(di), we crop the underlying RGB

patch Ii with a fixed aspect ratio, resize the patch to 128×64

Unary cost MOTA REC PREC MT IDS FRAG

Crafted [29] 30.55 38.54 83.70 11.60 194 853

Crafted-ours 30.43 38.98 82.69 11.40 156 825

(B+O) 28.94 43.63 75.47 14.00 204 962

Au+(B+O) 39.08 46.99 86.71 15.60 285 1062

Au+(B+O+Ap) 39.23 47.17 86.50 15.80 233 954

Table 3: Using appearance for unary (Au) and pair-wise

(Ap) cost functions clearly improves tracking performance.
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Figure 4: The difference in the loss on the training (left)

and validation set (right) over 50k iterations of training for

models w/ (Au,Ap) and w/o appearance features.

and define the cost

cdet
i = cconf(p(di);Θconf) + cAu(Ii;ΘAu), (16)

which consists of one linear function taking the detection

confidence and one deep network taking the image patch.

We choose ResNet-50 [19] to extract features for cAu but

any other differentiable function can be used as well.

Second, we use a Siamese network (same as for unary

term) that compares RGB patches of two detections, sim-

ilar to [27] but without optical flow information. As with

the motion features above, we use a two-stream network

to combine spatial information (B+O) with appearance fea-

tures (Ap). The hidden feature vector of a 2-layer MLP

(B+O) is concatenated with the difference of the hidden fea-

tures from the Siamese network. A final linear layer predicts

the costs clink
i,j of the pair-wise terms.

Table 3 shows that integrating RGB information into the

detection cost Au+(B+O) improves tracking performance

significantly over the baselines. Using the RGB informa-

tion in the pair-wise cost as well Au+(B+O+Ap) further im-

proves results, especially for identity switches and fragmen-

tations. Figure 4 visualizes the loss on the training and vali-

dation set for the three learning-based methods, which again

shows the impact of appearance features. Note, however,

that the improvement is limited because we still rely on the

underlying ACF detector and are not able to improve recall

over the recall of the detector. But the experiment clearly

shows the potential ability to integrate deep network based

object detectors directly into an end-to-end tracking frame-

work. We plan to investigate this avenue in future work.
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Weighting MOTA REC PREC MT IDS FRAG

none 74.07 82.84 93.78 57.67 53 333

[49] 73.99 82.90 93.63 57.32 43 331

none-ℓ1 73.90 83.43 93.17 58.73 77 362

[49]-ℓ1 73.92 83.19 93.38 58.73 71 357

ωbasic = 0.1 74.15 84.11 92.72 60.49 51 360

ωbasic = 0.5 74.13 83.90 92.92 59.96 62 363

ωpr = 0.3 66.84 70.68 98.35 28.92 34 216

ωpr = 1.5 73.28 85.52 90.85 63.49 80 387

ωlinks = 1.5 74.14 84.53 92.31 61.38 45 357

ωlinks = 2.0 74.10 84.80 92.03 61.38 42 358

Table 4: Differently weighting the loss function provides a

trade-off between various behaviors of the learned costs.

4.3. Weighting the loss function

For completeness, we also investigate the impact of dif-

ferent weighting schemes for the loss function defined in

Section 3.3. First, we compare our loss function without

any weighting (none) with the loss defined in [49]. We also

do this for an ℓ1 loss. We can see from the first part in

Table 4 that both achieve similar results but [49] achieves

slightly better identity switches and fragmentations. By de-

creasing ωbasic we limit the impact of ambiguous cases (see

Section 3.3) and can observe a slight increase in recall and

mostly tracked. Also, we can influence the trade-off be-

tween precision and recall with ωpr and we can lower the

number of identity switches by increasing ωlinks.

4.4. Benchmark results

Finally, we evaluate our learned cost functions on the

benchmark test sets. For KITTI-Tracking [17], we train

cost functions equal to the ones described in Section 4.2

with ALFD motion features [10], i.e., (B+O+M) in Table 2.

We train the models on the full training set and upload the

results on the benchmark server. Table 5 compares our

method with other off-line approaches that use RegionLet

detections [51]. While [10] achieves better results on the

benchmark, their approach includes a complex graphical

model and a temporal model for trajectories. The fair com-

parison is with Wang and Fowlkes [50], which is the most

similar approach to ours. While we achieve better MOTA,

it is important to note that the comparison needs to be taken

with a grain of salt. We include motion features in the form

of ALFD [10]. On the other hand, the graph in [50] is more

complex as it also accounts for trajectory interactions.

We also evaluate on the MOT15 data set [28], where

we choose the model that integrates raw RGB data into

the unary costs, i.e., Au+(B+O) in Table 3. We achieve

an MOTA value of 26.8, compared to 25.2 for [50] (most

similar model) and 29.0 for [27] (using RGB data for pair-

wise term). We again note that [27] additionally integrates

optical flow into the pair-wise term. The impact of RGB

Method MOTA MOTP MT ML IDS FRAG

[30] 60.84 78.55 53.81 7.93 191 966

[10] 69.73 79.46 56.25 12.96 36 225

[34] 55.49 78.85 36.74 14.02 323 984

[50] 66.35 77.80 55.95 8.23 63 558

Ours 67.36 78.79 53.81 9.45 65 574

Table 5: Results on KITTI-Tracking [17] from 11/04/16.

t0

t1

t2

t3

t0

t1

t2

t3

Figure 5: A qualitative example showing a failure case of

the hand-crafted costs (left) compared to the learned costs

(right), which leads to a fragmentation. The green dotted

boxes are ground truth, the solid colored are ones tracked

objects. The numbers are the object IDs. Best viewed in

color and zoomed.

features is not as pronounced as in our cross-validation ex-

periment in Table 3. The most likely reason we found for

this scenario is over-fitting of the unary terms.

Figure 5 also gives a qualitative comparison between

hand-crafted and learned cost functions on KITTI [17]. The

supplemental material contains more qualitative results.

5. Conclusion

Our work demonstrates how to learn a parameterized

cost function of a network flow problem for multi-object

tracking in an end-to-end fashion. The main benefit is the

gained flexibility in the design of the cost function. We only

assume it to be parameterized and differentiable, enabling

the use of powerful neural network architectures. Our for-

mulation learns the costs of all variables in the network

flow graph, avoiding the delicate task of hand-crafting these

costs. Moreover, our approach also allows for easily com-

bining different sources of input data. Evaluations on three

public data sets confirm these benefits empirically.

For future works, we plan to integrate object detectors

end-to-end into this tracking model, investigate more com-

plex network flow graphs with trajectory interactions and

explore applications to max-flow problems.
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