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Abstract

We show that the matching problem that underlies op-

tical flow requires multiple strategies, depending on the

amount of image motion and other factors. We then study

the implications of this observation on training a deep neu-

ral network for representing image patches in the context of

descriptor based optical flow. We propose a metric learning

method, which selects suitable negative samples based on

the nature of the true match. This type of training produces

a network that displays multiple strategies depending on the

input and leads to state of the art results on the KITTI 2012

and KITTI 2015 optical flow benchmarks.

1. Introduction

In many AI challenges, including perception and plan-

ning, one specific problem requires multiple strategies. In

the computer vision literature, this topic has gained little

attention. Since a single model is typically trained, the con-

ventional view is that of a unified, albeit complex, solu-

tion that captures all scenarios. Our work shows that care-

ful consideration of the multifaceted nature of optical flow

leads to a clear improvement in performing this task.

In optical flow, one can roughly separate between the

small- and the large-displacement scenarios, and train

model to apply different strategies to these different cases.

The small displacement scenarios are characterized by rela-

tively small appearance changes and require patch descrip-

tors that can capture minute differences in appearance. The

large displacement scenarios, on the other hand, require

much more invariance in the matching process.

State of the art methods in optical flow employ metric

learning in order to learn the patch descriptors. We focus

on the process of selecting negative samples during training

and suggest two modifications. First, rather than selecting

all negative samples close to the ground truth, we propose

an interleaving learning method that selects negative sam-

ples at a distance that match the amount of displacement

that the true match (the positive sample) undergoes, as is il-

(a)

(b)

(c)

Figure 1. Illustration of strategies for selecting negative samples.

(a) The first frame, in which some locations are marked. (b) In the

baseline method [13], negative samples are sampled close to the

ground truth, regardless of the properties of the true match. Green

are the true matches and Red are the negative samples. (c) In the

proposed method, the negative samples are sampled based on the

displacement of the positive samples. Best viewed in color.

lustrated in Fig. 1. Second, we suggest gradually increasing

the difficulty of the negative samples during training.

In the implementation of the second component,

scheduling samples by difficulty, we combine two meth-

ods well known in the literature. The curriculum learning

method [6] selects samples, stratified by difficulty, using a

predefined order. The method of self-paced learning [24]

identifies a set of easy samples by their loss, and learns us-

ing only those samples. The amount of samples defined as

easy is increased over time. The Self-Paced-Curriculum-

Interleaving method we propose here combines in the se-

lection process both the difficulty of a sample and its loss.

However, in difference from the self-paced method, no sam-

ples are excluded during training. Instead, we control the

level of the difficulty of instances used for training by se-

lecting negative samples of appropriate distances.

The pipeline employed for computing optical flow is
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similar to the PatchBatch method [13]. We slightly mod-

ify it by replacing the DrLIM loss with a Hinge loss.

Our main contributions in this work are:

• We analyze, for the first time, the need for multiple

strategies in optical flow.

• We propose a novel, psychologically inspired way to

train a network to address multiple scenarios at once.

• We show how, in optical flow, our proposed new

scheme translates to a simple, unexpected, heuristic.

• We improve the PatchBatch[13] pipeline itself.

• State of the art results are demonstrated on the KITTI

2012 and KITTI 2015 benchmarks.

2. Related work

Many computer vision tasks require a pixel-wise im-

age comparison (e.g. image retrieval, object recognition,

multi-view reconstruction). To allow for the comparison

to be invariant to scale, rotation, illumination, etc., im-

age descriptors such as SIFT [28], SURF [5], HOG [10],

and DAISY [35] have been used. Brox and Malik were the

first to apply local descriptors to the problem of dense op-

tical flow [7]. They found that the use of descriptors en-

ables better performance for large displacement matching,

but that the obtained solution has many outliers due to miss-

ing regularization constraints. In order to account for this,

they used descriptors to build a sparse initial flow and in-

terpolate it to a dense one using image smoothness assump-

tions. Following their success, many other models adopted

the use of local descriptors [39, 30, 20, 34].

With the advent of deep learning methods, CNNs were

shown to be extremely powerful in the related problem of

stereo matching [33, 41]. For optical flow, a few CNN based

models were proposed. In [37], a CNN is used to predict

the flow from a single static image. FlowNet [11] is the

first end-to-end CNN for optical flow and showed compet-

itive results. In the PatchBatch [13] pipeline, a CNN was

used for extracting patch descriptors that are then used for

matching via the PatchMatch [4] Nearest Neighbor Field

(NNF) algorithms. It achieved state of the art performance

in the KITTI benchmarks [15, 29] as of last year.

While the use of descriptors has greatly improved overall

performance and accuracy, methods keep failing with large

displacements, as we further discuss in Section 4. To solve

this problem, extensive efforts have been devoted to meth-

ods for the integration of descriptors with local assump-

tions [7, 34, 30]. However, much less work was done in

making the descriptors themselves more suitable for this

scenario. A concurrent work [3], focused on decreasing

the error for large displacements by down-sampling patches

and adding a threshold to the loss function. However, this

comes at the cost of reducing the accuracy obtained for

small displacements.

In our work, we follow the PatchBatch pipeline and use a

CNN to extract descriptors. We expand the work by analyz-

ing different matching cases, specifically those of small and

large displacements, and present a method for generating

better matching descriptors for both cases.

2.1. Learning for multiple strategies

The need for multiple strategies was found in several vi-

sion problems where the basic trained model could not op-

timize the solution for all sub-categories. An example is the

work of Antipov et al. [1] for age estimation. Unsatisfied

by the accuracy of the model for children of age 0-12, they

train a sub-model only for those ages and employ it to sam-

ples that are classified as this category by another model

that is run first.

Another common case is in fine-grained classification,

e.g. determining the exact model of a car or a particular

species of bird. The subtle differences between nearby

species require, for example, to focus on specific body

regions. However, different distinctions require different

body parts and we can consider each body part as a sepa-

rate decision strategy.

In order to achieve the required accuracy, some meth-

ods perform object segmentation [23] or part detection [22]

to limit the search of each sub-class to the most relevant

body parts. A different approach was shown in [14], where

several models were trained on different samples to create

per class expert models. At test time, the answer with the

highest confidence is chosen. The latter approach achieved

better results due to each model leveraging all of the input

data, and learning individually the required features to gain

expertise in its task.

2.2. Learning for varied difficulty levels

Curriculum learning [6], inspired by the learning pro-

cess of humans, was the first method to manipulate the or-

der of samples shown to the model during training. Specif-

ically, it is suggested to present the easy training samples

first and the harder samples later, after performing stratifi-

cation based on the difficulty level.

In self-paced learning [24], instead of using a predefined

order, the difficulty of each sample is dynamically estimated

during training by inspecting the associated loss. On each

epoch, only the easier samples are being learned from and

their amount is increased with time until the entire data is

considered. In the work of [19], those two methods were

combined to allow a prior knowledge of samples difficulty

to be considered in the self-paced iterations.

It was recently proposed to eliminate from the training

process samples that are either too easy or too hard [36]. For

this purpose, specific percentiles on the loss were employed.
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Figure 2. Flow diagram of the PatchBatch pipeline. The same

CNN is applied for patches from both images. PatchMatch [4]

is applied twice in order to get both flow directions.

Samples which did not meet the loss criteria were put aside

for a predefined number of epochs.

In the problem of optical flow, large displacements are

known to be more challenging. Moreover, as we show in

Section 4, the descriptor extraction strategy should differ by

displacement. Due to the correlation between the difficulty

level and the required strategy, applying the existing gradual

learning methods could result in acquiring specific strate-

gies in different training stages with the possibility of un-

wanted carryover. In Section 5, we suggest novel learning

techniques, which use all samples, support different strate-

gies and apply an easy to hard order.

3. The PatchBatch pipeline

The PatchBatch (PB) pipeline, as described in Fig. 2,

consists of a CNN which generates per-pixel descriptors and

an approximate nearest neighbor algorithm which is later

used to compute the actual assignments. PatchBatch’s AC-

CURATE network configuration generates descriptors with

512 float values. The assignment is computed by minimiz-

ing the L2 distance between descriptor vectors. To create

each pixel’s descriptor, the CNN uses a patch as an input.

In most of the CNN configurations described in PatchBatch,

the input is a 51 × 51 patch centered around the examined

pixel. The CNN uses the grayscale data of the patch to ex-

tract a descriptor as similar as possible to the one extracted

for the matching pixel on the second image.

Using the generated descriptors, PatchMatch [4] (PM)

algorithm is used to compute initial flow assignments. PM

is applied in both flow directions and is followed by a bidi-

rectional consistency check that allows elimination of non-

consistent matches.

In the final step, the sparse-to-dense EpicFlow [32] (EF)

algorithm creates the final estimation using the sparse flow

and the original raw images. We refer the reader to the

PatchBatch [13] paper and the published code1 for a more

detailed description.

3.1. Architecture improvements

In this paper, we improve the CNN that generates the de-

scriptors. We achieve this by several means. First, we adopt

the suggestion, that was partially tested in the original PB

paper [13], to enlarge the patch size from 51×51 to 71×71
pixels. Second, to improve the training of the network we

use two novelties: (1) We introduce a new learning method

for multiple displacements detailed in Section 5. (2) We

modify the loss function and use a new form of the Hinge

loss. Third, we altered the initial random guess range of the

PM algorithm on MPI-Sintel to be 100 instead of 10, to al-

low larger search distance and better utilization of our large

displacements descriptors. For the KITTI benchmarks, this

parameter remained unchanged (500).

3.2. Hinge loss with SD

Instead of the DrLIM [17] loss functions used in Patch-

Batch, we found the Hinge loss to achieve best results when

integrated with our, further detailed, learning method. To al-

low the use of this loss, we construct the samples as triplets.

For each patch, we collect a matching patch by the ground

truth and a non-matching one. As a baseline, we use the

same non-matching collecting method, which is a random

patch up to 8 pixels from the matching one.

We define the loss function as:

LH =
1

n

n∑

i=1

max(0,m+Di,match −Di,non−match)

(1)

where D is the L2 distance of the examined patch descriptor

from the matching or non-matching one.

In the PatchBatch paper, an addition of a standard de-

viation parameter was found to produce better distinction

between matching and non-matching samples. With that

inspiration, we apply a similar addition to the Hinge loss:

LH+SD = λLH + (1− λ)(σDmatch
+ σDnon−match

) (2)

We used m = 100, λ = 0.8 and a training set of n = 50k
triplets for each epoch.

4. Optical flow as a multifaceted problem

It is clear by examining the results of the common optical

flow benchmarks that optical flow methods are challenged

by large displacements. In the MPI-Sintel [8], where results

are separated by the velocity of pixels, the current average

1https://github.com/DediGadot/PatchBatch
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Train set 0-5 5-10 10-20 20-30 30-45 45-60 60-90 90-∞
Baseline (all) 2.32 7.32 5.32 9.38 25.21 50.43 67.32 216.39

<30 2.46 6.91 5.25 8.57 26.39 51.76 65.15 209.40

>30 3.03 9.07 5.64 10.29 24.74 46.81 56.69 199.61

Table 1. The increase of distractors with displacement and the success of models trained on a partial range, shown as average distractors

amount by displacement range. The number of distractors for a given patch is the number of patches whose descriptors are within a smaller

distance from it than the true match. Each column show the results for the Hinge+SD PB model trained on a specific displacement range.

Figure 3. Correlation of larger displacements with larger distances

between the true matches. The average L2 distance between de-

scriptors of matching patches are shown grouped by displacement

range. The descriptors were generated using a trained Hinge+SD

PB model on the KITTI2012 benchmark.

end-point-error (EPE) of the top 10 ranked methods is 35.47

for velocities higher than 40, while it is about 1.01 for ve-

locities lower than 10. In KITTI2015 [29], there is no pub-

lished estimation by velocity. However, there is separation

of foreground vs. background regions. The current aver-

age outliers percentage for the top 10 methods is 26.43%

for foreground versus 11.43% for background, which, as-

suming foreground objects typically move faster than back-

ground, supports the same observation. When evaluating

the baseline PatchBatch model on a validating set, we no-

tice an error (percent of pixels with euclidean error > 3) of

4.90% for displacements smaller than 10 and 42.15% for

displacements larger than 40.

The challenge of matching at larger distances is exem-

plified in Fig. 3, which shows the L2 distance of the true

match as a function of the ground truth displacement. Fur-

thermore, as the distance increases, the average number of

distractors in the second image, with higher similarity to

patch in the first image than the true match, increases. This

counting is performed in a radius of 25 pixels around the

true match and is shown in Tab. 1 under the Baseline train-

ing set.

4.1. Multiple strategies

When training the PatchBatch network only on displace-

ments that are smaller than 30, we are able to improve most

cases of small displacements, while, in most cases increas-

ing the number of nearby distractors for large displace-

ments. Conversely, training only on displacements larger

than 30 pixels, achieved a lower amount of distractors for

large displacements (Tab. 1). However, since there is no

mechanism for selecting between the two networks, it is

Figure 4. Extent of pixel displacement is correlated with appar-

ent differences in the KITTI benchmark. Samples are gathered in

triplets, in which the matching pair is next to a display that depicts

by red dots locations with L1 distance larger than 0.2 between pix-

els value. Each row show examples from a displacement range that

appears to the left. Best viewed in color.

best to train one network that addresses both scenarios. In-

terestingly, when training just one network on all samples,

the network seems to outperform the two specialized net-

works in the domain of very small displacements. This is

probably a result of designing the PatchBatch method to ex-

cel in benchmarks that emphasize this category.

Large displacements are typically associated with larger

differences in appearance, as demonstrated in Fig.4. Dif-

ferences in the patch appearance for the small displacement

case typically arise from objects moving within the patch

faster than the middle pixel. In contrast, in large motions,

we can expect much more pronounced changes in appear-

ance due to the following: (1) As fast objects move, their

background is more likely to change. (2) The view point

changes more drastically, which leads to different object

parts being occluded. (3) The distance and angle to light

sources vary more quickly, leading to a change in illumina-

tion. (4) When a significant displacement occurs along the

Z-axis of the camera, the object changes in both position

and scale.

5. Learning for multiple strategies and varying

difficulty

As baseline methods, we apply gradual learning methods

from the literature. For applying curriculum learning [6],

the samples need to be stratified by difficulty prior to train-

ing. Followed our previous findings, we define the diffi-

culty level as the displacement value in the ground truth and

increase the maximum displacement of the sample pool in

each epoch which we call curriculum by displacement.

Another curriculum implementation, which we call cur-
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riculum by distance, would be to use samples with all dis-

placement values for each epoch, and to start the training

using false samples that have a large euclidean distance in

the image from the true matching. Decreasing that distance

with training should provide harder false samples with time.

We also implement a self-paced model by learning only

from the easy samples in each epoch. Easiness here is mea-

sured per sample by requiring a loss that is lower than a

threshold. The threshold increases over the training.

5.1. Interleaving learning

We present a novel learning method for machine learn-

ing, motivated by the cognitive literature.

Both the curriculum learning approach as well as the self-

paced one utilize the difficulty diversification of the sam-

ples and suggest to learn from easy to hard. While this

idea might seem appealing, and does work in many ma-

chine learning problems, it could cause the network to be-

come overly adapted to different aspects of the problem at

different training stages. In optical flow, models must ex-

cel in the low displacement task in order to be competitive.

Therefore, the shift of attention to harder and harder tasks

is potentially detrimental. In addition, if different strategies

are required, the carryover from the easy task to the more

challenging ones is not obvious.

Our approach is motivated by psychological research.

Kornell and Bjork, psychology researchers, found that for

some cases, interleaving exemplars of different categories

can enhance inductive learning [21]. Their tests showed that

people learn better to distinguish classes, e.g. bird species,

by learning in an interleaving sample order rather than

blocks of the same class. Another example would be sports

training, in which it is common to interleave simple basic

exercises with more complex ones, incorporating at least

part of the complex movements from very early, and going

back to the basic movements even after these are mastered.

The idiomatic way of training ML models is to random-

ize the feeding order of the samples. When perceptual

strategies and difficulty levels are unrelated, the random

process might be sufficient. However, when the samples

that require some strategy A are consistently harder than

the ones required for strategy B, the frequent loss related to

the samples associated with A would mean that the strategy

B would be deprived of a training signal.

To preserve a random order of strategies, and, at the

same time, facilitate the penalty of harder samples, we sug-

gest that the learning process should consider the difficulty

of each sample. This could be done by either taking the

difficulty of the sample into account while computing the

penalty or, when training by pairs or triplets of samples, by

controlling the composition of these small reference groups.

Figure 5. Illustration of the false sample collecting methodology

for interleaving learning. p and pT represent a location in the first

frame and its true matching from the second frame respectively.

pL is sampled along the motion line (p → pT ). The false sam-

ple (pF ) is randomly chosen from inside the dashed area that is

8 pixels from pL. The dotted gray line represents the log-normal

distribution from which pL is taken (mostly closer to p).

5.2. Interleaving learning for optical flow

The implementation of our method was done by using

further patches as false samples for larger displacements.

Thus, for the harder case of large displacements, we se-

lect false samples that should be easier to distinguish from

the true ones and normalize the overall difficulty. From the

strategy point of view, by presenting further away negatives

for large displacements, the model learns to rely more on

context and less on appearance changes for large displace-

ments and conversely for small ones.

The chosen false sample distance is determined by:

d = v(1−X) X ∼ logN (µ, σ) (3)

P (X = x) =
1

σx
√
2π

e(−
(ln(x)−µ)2

2σ2 ) (4)

where v is the displacement of the matching pixels and X

is sampled from a log-normal distribution [31].

Using a log-normal distribution, allows us to take sam-

ples mostly relative to the exemplar motion while also pro-

viding a small amount of harder samples. We used µ = 0
and σ = 1 as parameters and after sampling values for all

of the batch samples, they were normalized to [0, 1].
To implement this method in our learning process, we

collect the false sample along the line connecting the orig-

inal and the destined coordinates of the patch. Specifically,

we randomly select a sample from a radius of up to 8 pix-

els from the point with distance d from the true match on

that line, in the direction of the position in the first image

(see Fig. 5). Interestingly, for the purpose of creating dual

strategy descriptors, it does not matter whether the samples

are from along the motion line. However, in our experi-

ments, it turned out that sampling this way slightly helps

the subsequent PM step. This is probably because PM ini-

tially searches in a random distance from the original patch

position. By taking a false match that is closer to the origi-

nal location, we help eliminate those samples.

5.3. Self­Paced Curriculum Interleaving learning

Given the interleaving learning method, which, unlike

curriculum learning employs all samples at once, we can ex-
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Model / Learning Error percent Distractors amount by displacement range

method post PM post EF 0-5 5-10 10-20 20-30 30-45 45-60 60-90 90-∞ All

CENT [13] 9.93% 5.19% 3.31 15.34 16.87 27.61 48.28 69.19 92.62 209.13 32.86

CENT+SD [13] 8.91% 4.85% 4.33 16.7 12.29 19.92 38.20 60.69 81.22 216.02 28.67

CENT+SD / Inter 8.75% 4.70% 2.61 10.50 8.64 15.29 30.38 42.87 66.16 137.81 20.73

Hinge 7.78% 5.18% 1.93 8.14 5.81 10.98 31.95 50.97 73.24 185.81 21.40

Hinge+SD 7.74% 4.85% 2.32 7.32 5.32 9.38 25.21 50.43 67.32 216.39 20.51

Hinge+SD / Neg-mining 7.53% 5.00% 3.06 6.19 5.41 10.52 26.88 51.33 70.29 210.34 20.96

Hinge+SD / Cur. by disp 7.67% 4.83% 2.71 8.61 5.26 10.26 14.76 48.88 65.15 220.13 20.67

Hinge+SD / Cur. by dist 7.47% 4.93% 2.83 8.66 5.25 10.35 23.62 45.82 63.69 197.82 19.70

Hinge+SD / Self-Paced 8.75% 5.23% 2.88 9.35 6.84 13.74 34.09 57.46 80.8 198.97 23.93

Hinge+SD / Anti-Inter 14.53% 8.30% 2.98 9.12 13.36 20.63 37.69 42.41 81.41 132.03 24.11

Hinge+SD / Inter 6.60% 4.41% 1.41 5.57 3.07 6.31 15.6 28.52 43.46 127.65 12.61

Hinge+SD / SPCI 6.64% 4.37% 1.40 5.04 3.46 6.56 15.11 27.13 42.72 130.17 12.50

Hinge+SD+PS71 7.34% 4.76% 1.96 5.44 5.28 11.8 22.76 42.3 67.27 190.3 18.91

Hinge+SD+PS71 / Inter 6.17% 4.35% 1.00 3.96 2.22 4.11 11.33 20.87 32.53 119.74 9.80

Hinge+SD+PS71 / SPCI 6.12% 4.27% 1.02 3.42 2.16 3.52 10.55 21.28 32.17 119.98 9.54

Table 2. Architecture and learning method comparison by the output error of the PatchMatch and EpicFlow steps in the pipeline and by

distractors amount. SD symbols the addition of the standard deviation to the loss function, PS71 is for using a patch size of 71× 71 pixels.

Neg-mining was implemented as described in [33] with a factor of 2. See Section 5 for an explanation of the other learning methods. The

error is the percent of pixels in the validation set with euclidean error > 3 pixels. Distractors are calculated as described in Section 4.

pand it by adding a dynamic control on the difficulty level.

In order to maintain the category diversity, we simply mod-

ify the distance equation for epoch i to:

di = v(1−X −Ri) (5)

where Ri is define as:

Ri =
i

m
︸︷︷︸

curriculum

·max(0, 1− li−1

linit
)

︸ ︷︷ ︸

self-paced

(6)

and m is the total epoch amount, li is the validation loss on

epoch i and linit is some initial loss to compare. We defined

linit as the loss on epoch number 5. Until that epoch, self-

pacing is not applied.

The curriculum addition enhances the global difficulty of

false samples in each iteration by shorting the taken distance

and, therefore, integrates an instructor-driven approach as-

suming the student will handle more difficult tasks with

time. To add a student-driven portion, we use the self-paced

component which allows a feedback from the model to in-

fluence the difficulty of the next iteration. Integrating all of

this together, we get a learning method that learns all strate-

gies simultaneously and in which the difficulty is increased

over iterations and with a success feedback.

6. Experiments

We perform two families of experiments. First, MNIST

recognition experiments are presented as a testbed for the

learning schemes. Then, the main set of experiments is per-

formed on the specific problem of optical flow.

6.1. MNIST

In order to validate our learning methods on a task dif-

ferent from optical flow, we used the MNIST handwritten

digit database [25]. This data set consists of images show-

ing a digit from 0 to 9 with their true label. We divided

the data into two different classes – class L contains digits

0..4 and class H contains 5..9 . To enable difficulty differ-

entiation between samples, random noise was added to the

top half of the images of H and to the bottom part of the

L images. Furthermore, images from class H were rotated

by a random angle of [0, 45] degrees with correlation to the

noise amount, such that, samples that are more noisy are

also rotated in larger angles.

While referring noisier samples as harder, we trained

a model using several methods. As curriculum learning,

harder samples were added to the training pool in each

epoch. In the self-paced model, the hardness of the sam-

ples to learn from was derived from the loss. Interleaving

was implemented by using all of the noise range level in

each epoch with a fewer noised samples for the harder H

class against more for L class. An integration of interleav-

ing with Curriculum and Self-Paced methods was also used

by increasing the the amount of the noised H samples in

each epoch. As can be seen in Tab. 3, interleaving produced

the greatest improvement and SPCI attained the best results.

6.2. Optical flow

To evaluate our work, we use the three most com-

petitive optical flow benchmarks - KITTI2012 [15],

KITTI2015 [29] and MPI-Sintel [8]. We use their data to
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Method L H

Random order 97.98% 82.24%

Curriculum 98.10% 87.89%

Self-Paced 98.26% 88.33%

Interleaving 98.26% 95.00%

Interleaving+Curriculum 98.30% 95.62%

Interleaving+SP 98.14% 95.31%

SPCI 98.38% 96.33%

Table 3. The improvement of results on the MNIST experiment

using interleaving methods. Column L shows the results on dig-

its [0, 4] with random noise on the image bottom, and column H

shows the results on digits [5, 9] rotated randomly by 0 to 45 de-

grees with random noise at the top of the image .

conduct a series of experiments to measure the effect of

each of our contributions and to submit our best results to

compare with other methods.

By training the different models on a subset of 80% from

the KITTI2012 dataset for 500 epochs and testing the results

on the remaining 20% image pairs, we show a compari-

son of the models summarized in Tab. 2. Note that lower

PatchMatch (PM) error is not always correlated with lower

EpicFlow (EF) error because of the bidirectional consis-

tency check that excludes some inconsistent results to gen-

erate a sparse flow as an input for EF.

Observing Tab. 2, one can notice that the use of the

Hinge loss instead of CENT [13], improved the PM results

and has no such effect on the final EF output. However,

combining with the batch standard deviation term (SD) and

our interleaving learning (Inter) leads to an advantage of

the Hinge loss. Our interleaving learning method outper-

forms both Curriculum learning and Self-Paced learning.

The SPCI technique contributes an additional improvement.

Integrating all of our architecture modifications with

SPCI produces the lowest error percent on the validation

set with a major improvement on the initial baseline. More-

over, the amount of nearby distractors with descriptors that

are more similar to the original patch than the true match is

reduced to one third of the baseline.

As a sanity-check experiment we evaluate an Anti-

Interleaving method. In this method, negative matches from

different ranges were also used. However, the ratio was in-

verted – true matches of small displacements were matched

with false samples with large distances and vice versa. The

high error of this model, as can be seen in Tab. 2, implies

that the use of different ranges for false matches was not the

main benefit of the interleaving method and it is the corre-

lation with the displacement values that is the crucial factor.

We also experimented with hard-negative mining [33]

and concluded that its benefits are limited because, unlike

the interleaving method, it might neglect some displace-

ment ranges during the train.

Method 5 - 10 10 - 40 40 - ∞
Baseline 95.01% 97.61% 97.83%

Cur. by displacement* 96.82% 98.56% 101.04%

Cur. by distance* 98.40% 98.32% 100.29%

Self-Paced* 93.66% 93.67% 99.78%

Anti-Interleaving 105.29% 116.34% 103.26%

Interleaving 97.32% 94.67% 93.71%

Interleaving+Cur.** 96.40% 95.39% 95.24%

Interleaving+SP** 95.82% 95.38% 93.61%

SPCI 96.02% 92.66% 90.11%

Table 4. Learning method comparison by descriptor sensitivity to

location movement for different displacement ranges, measured by

dividing the average distance of the descriptors of 5 pixels neigh-

bor patches associated with a certain displacement range with the

average obtained at for displacements smaller than 5 pixels. Meth-

ods marked with * were implemented as described in the begin-

ning of Section 5 and the ones marked with ** were trained like

SPCI, but applying only one multiplier in Eq. 6. Using only grad-

ual methods seems not to have any tendency relating to displace-

ment value. In contrast, the interleaving models have learned to

progressively decrease sensitivity for larger values.

6.2.1 Sensitivity to appearance change

Part of what the networks learn is to behave differently

to patches with different expected displacements. Those

patches that are similar to patches that are associated with

small displacements are treated differently than those which

were associated, in the training set, with large displace-

ments. To illustrate this, and compare the various learning

methods, we explore the model behavior on nearby patches

from the same image for varied displacement ranges. First,

we measure the average distance d̄0−5 of a patch descriptor

from that of a patch that is 5 pixels away for pixels which

undergo a displacement of up to 5 pixels. Note that for a

51 × 51 patch, only 18% of the pixels were completely re-

placed in such a small displacement. Then, we repeat this

to patches from various displacement ranges, taking again

the average distance from a patch of 5 pixels away. To nor-

malize, we divide this average distance by the first average
d̄L−H

d̄0−5
, for (L,H) ∈ {(5, 10), (10, 40), (40, inf)}.

The results in Tab. 4 show that while the PatchBatch

original model reacts almost similarly for all displacement

ranges, interleaving trained models have learned to be less

sensitive to appearance changes for larger displacements.

Moreover, using only gradual learning, leads to high sensi-

tivity across all ranges. This can be the result of the carry-on

from the early learning stages on small displacements where

appearance sensitivity is more valuable.

6.2.2 Benchmarks results

We train our model on three datasets and submit the results

of each benchmark on the respectively trained model. Our
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Method Out-Noc

Imp. PatchBatch+SPCI 4.65%

CNN-HPM [3] 4.89%

Imp. PatchBatch 4.92%

PatchBatch+PS71 [13] 5.29%

PatchBatch [13] 5.44%

PH-Flow [40] 5.76%

FlowFields [2] 5.77%

CPM-Flow [18] 5.79%

Table 5. Top 8 published KITTI2012 Pure Optical Flow meth-

ods as of the submission date. Imp. PatchBatch denotes the PB

pipeline with the improvements described in Section 3. Out-Noc

is the percentage of pixels with euclidean error > 3 pixels out of

the non-occluded pixels.

Method Fl-bg Fl-fg Fl-all

Imp. PatchBatch+SPCI 17.25% 24.52% 18.46%

CNN-HPM [3] 18.90% 24.96% 19.44%

PatchBatch [13] 19.98% 30.24% 21.69%

DiscreteFlow [30] 21.53% 26.68% 22.38%

CPM-Flow [18] 22.32% 27.79% 23.23%

FullFlow [9] 23.09% 30.11% 24.26%

EpicFlow [32] 25.81% 33.56% 27.10%

DeepFlow [39] 27.96% 35.28% 29.18%

Table 6. Top 8 published KITTI2015 Pure Optical Flow meth-

ods as of the submission date. Imp. PatchBatch denotes the PB

pipeline with the improvements described in Section 3. Fl-all is

the percentage of outliers (pixels with euclidean error > 3 pixels).

Fl-bg, Fl-fg are the percentage of outliers only over background

and foreground regions respectively.

results are directly comparable with the PatchBatch model,

since we use the same procedure as theirs – Training the

CNN for 4000 epochs on 80% of the training set and choos-

ing the best configuration by selecting the one with the low-

est validation error on samples from the remaining 20% of

the data.

The results can be seen in Tab. 5, 6, 7. We succeed in

improving results in all three benchmarks and achieve state

of the art results for KITTI2012 [15] and KITTI2015 [29].

We evaluate our method only against methods not us-

ing additional information for the flow estimation, including

those methods which used semantic segmentation.

On KITTI2015, as can be seen on Tab. 6, we reduced

the error of both foreground and background areas, obtain-

ing the lowest error for both cases. The increased accuracy

for both regions is correlated with our previous experiments

and corroborate our claim of extracting better descriptors

for all scenarios.

In contrast to the error percent measurement of the

KITTI benchmarks, MPI-Sintel uses an end-point-error

(EPE) one. Compared to the original PatchBatch model,

(Tab. 7) we succeed in preserving a low EPE for small dis-

Method EPE Fl s0-10 s40+

FlowFields+ [2] 5.71 8.14% 1.31 34.17

DeepDiscreteFlow [16] 5.73 7.30% 0.96 35.82

SPM-BPv2 [26] 5.81 9.17% 1.05 35.12

FullFlow [9] 5.90 9.55% 1.14 35.59

CPM-Flow [18] 5.96 8.31% 1.15 35.14

GlobalPatchCollider [38] 6.04 10.21% 1.10 36.45

DiscreteFlow [30] 6.08 9.52% 1.07 36.34

Imp. PatchBatch+Inter 6.22 8.11% 0.91 39.91

Imp. PatchBatch+SPCI 6.24 7.89% 0.88 40.07

EpicFlow [32] 6.28 11.26% 1.13 38.02

FGI [27] 6.61 12.34% 1.15 39.98

TF+OFM [20] 6.73 11.35% 1.51 39.76

Deep+R [12] 6.77 13.71% 1.16 41.69

PatchBatch [13] 6.78 8.66% 0.72 45.86

Table 7. Comparison of our models with the top methods for the

MPI-Sintel benchmark as of the submission date. Imp. Patch-

Batch denotes the PB pipeline with the improvements described

in Section 3. The EPE (end-point-error) is averaged over all the

pixels and the two right columns contain only the EPE of pixels

within the displacement range mentioned in the title. The Fl col-

umn presents an evaluation of the the outlier percentage, which,

although not provided by this benchmark, was calculated from the

error figures presented for each scene that have higher pixel values

for larger errors. Fl is the percentage of pixels with a value larger

than 120.

placements while significantly reducing it for large ones.

Our model does not achieve the best results when using

the EPE measurement. However, when considering the per-

centage of large error displacements, as calculated from the

error images, our SPCI model is second best and our inter-

leaving model is third.

Our trained models are available on the PatchBatch

GitHub repository.

7. Conclusions

Common sense dictates that most of the perceptual tasks

are heterogeneous and require multiple strategies. The liter-

ature methods address training in accordance with the dif-

ficulty of specific samples. In our work, we show, for the

first time, how to address both multiple sub-tasks and vary-

ing difficulty. The two are not independent – some sub-tasks

are harder than others, and our interleaving methods address

this challenge.

Using the proposed novel methods, we are able to im-

prove a recently proposed optical flow model and obtain

state of the art results on the two most competitive real-

world benchmarks.
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