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Abstract

Accurate estimation of camera matrices is an important

step in structure from motion algorithms. In this paper we

introduce a novel rank constraint on collections of funda-

mental matrices in multi-view settings. We show that in

general, with the selection of proper scale factors, a matrix

formed by stacking fundamental matrices between pairs of

images has rank 6. Moreover, this matrix forms the sym-

metric part of a rank 3 matrix whose factors relate directly

to the corresponding camera matrices. We use this new

characterization to produce better estimations of fundamen-

tal matrices by optimizing an L1-cost function using Iter-

ative Re-weighted Least Squares and Alternate Direction

Method of Multiplier. We further show that this procedure

can improve the recovery of camera locations, particularly

in multi-view settings in which fewer images are available.

1. Introduction

Accurate reconstruction of 3D scenes from multiview

stereo images is one of the primary goals of computer vi-

sion. Current techniques use point correspondences to es-

timate either the essential or fundamental matrices between

pairs of images, and then use the estimated matrices to

recover the camera matrices and structure. Notable suc-

cess was achieved when sequential methods were intro-

duced [1, 21]. These methods first recover camera matrices

and structure from two images. Then, adding one image at

a time, they apply bundle adjustment to estimate the camera

matrix (and structure) of the new image. Recent work at-

tempts to further improve recovery by simultaneously con-

sidering subsets of images and recovering camera matrices

that are consistent over each entire subset. In-addition a

number of papers have focused on the consistent recovery of

either camera orientation or location [2, 20, 19, 25, 26, 17].
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with F = A+AT and rank(A) = 3.

Figure 1: Illustration of our rank constraint. Collections of fun-

damental matrices {F̂ij} estimated for pairs of images (top) are

arranged in a matrix F̂ (bottom). This matrix should be equal (up

to noise) to a matrix F or properly scaled collection of fundamen-

tal matrices, which in turn forms the symmetric part of a rank 3

matrix A.

This paper introduces new constraints to enable the con-

sistent recovery of fundamental and essential matrices. This

is potentially advantageous since those matrices capture si-

multaneously the location and orientation of the cameras,

along (in the case of fundamental matrices) with their inter-

nal calibration parameters. For configurations of cameras

that are not all collinear, our main result establishes that,

when scaled properly, the matrix formed by appending all

pairwise fundamental matrices in a multiview setting is of

rank 6. More tightly, this matrix forms the symmetric part

of a rank 3 matrix whose factors relate directly to the entries

of the corresponding camera matrices. We further show that

collinear cameras yield a matrix of rank 4 or less.

We use this characterization to develop an optimization

formulation for estimating consistent sets of fundamental

matrices. Our formulation can accept sets of estimated fun-

damental matrices in which some are noisy, some are out-
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liers, and some cannot be estimated at all from image pairs

(i.e., missing data). In solving this optimization we seek

a set of scaled fundamental matrices that satisfy our con-

straints and fit the estimated fundamental matrices. Our for-

mulation uses an L1 cost function, which is optimized with

Iterative Re-weighted Least Squares (IRLS) [12], to remove

outliers, and uses Alternate Direction Method of Multipliers

(ADMM) [4] to incorporate rank constraints.

Our work is related to a variety of approaches to struc-

ture from motion (SfM) that utilize rank constraints. Tomasi

and Kanade [23] showed that under an orthographic pro-

jection, and after centering, projected points form a rank

3 matrix. Sturm and Triggs [22, 24] extended this to per-

spective projection by showing that projected points, when

scaled properly, form a rank 4 matrix. Unlike their work,

which uses rank constraints on tracks of points in images,

our work only considers fundamental matrices, and so in

multiview settings it gives rise to systems with many fewer

variables. Our approach, which seeks to recover a consis-

tent set of fundamental matrices, is analogous to rotation or

translation averaging and to loop closure [10, 6, 7]. In fact,

obtaining consistent fundamental matrices can be regarded

as simultaneous averaging of rotation, translation and cam-

era calibration and as a way to close all loops. Our exper-

iments indicate that such joint averaging performs better

than a separate averaging of rotation and translation. [14]

developed algebraic constraints that can be used to prove

that, for cameras in general positions, certain graph con-

figurations of fundamental matrices consistently predict the

remaining fundamentals.

A number of algorithms have recently been proposed for

solving unconstrained, low rank systems with outliers and

missing data (e.g., [5, 13, 18]) with remarkable success. Ex-

tending such techniques to incorporate SfM constraints is an

important next step.

When thousands of images are available, existing meth-

ods that use pairwise epipolar constraints or tri-focal tensors

can exploit highly over-determined systems to handle noise

and outliers quite accurately. However, when fewer images

are available the importance of rank constraints grows, and

their introduction can potentially yield more accurate esti-

mation of camera parameters. Indeed, we provide exper-

iments that show that using our characterization, essential

matrices can be estimated more accurately than with current

state-of-the-art methods, and these in turn can be translated

to better estimates of camera locations.

2. Low-Rank Characterization of Fundamen-

tal Matrices in Multiview Settings

2.1. Background

We first introduce notations and give a short summary

of the relevant concepts in multi-view geometry. An ex-

tensive discussion of this topic can be found in [11]. Let

I1, ..., In denote a collection of n images of a scene and

let ti ∈ R
3 and Ri ∈ SO(3) denote the location and ori-

entation of the i’th camera in a global coordinate system.

Let the 3 × 3 Ki denote the intrinsic camera calibration

matrix for Ii. Ki is nonsingular and is typically specified

in the form Ki =

[

fx α u0

0 fy v0
0 0 1

]

, where fx and fy respec-

tively are the focal lengths in the x and y direction, (u0, v0)
form the principal point and α represents the skew coeffi-

cient. Let P = (X,Y, Z)T be a scene point in the global

coordinate system. Its projection onto Ii (expressed in ho-

mogeneous coordinates) is given by pi = Pi/Zi, where

Pi = (Xi, Yi, Zi)
T = KiR

T
i (P − ti). We therefore asso-

ciate with Ii the 3× 4 camera matrix Ci = KiR
T
i

[

I,−ti
]

,

where I is a 3 × 3 identity matrix, noting that scaling Ci

does not affect projection.

Next, we consider the relations between pairs of im-

ages, Ii and Ij . We can express the camera rotation

and translation relating two images by Rij = RT
i Rj and

tij = RT
i (ti − tj). Clearly, Rji = RT

ij and tji =

−RT
ijtij . Two images are further related by epipolar

line constraints, which are expressed by pT
i Fijpj = 0,

where Fij denotes the fundamental matrix relating Ii to

Ij . Fij can be estimated up to scale from point corre-

spondences. Fij is related to the rotation and translation

between Ii and Ij and to their respective calibration ma-

trices by Fij = K−T
i [tij ]×RijK

−1
j , where [tij ]× denotes

the skew-symmetric matrix corresponding to cross-product

with tij . In cases in which the cameras are calibrated

we set Ki = Kj = I and replace the fundamental ma-

trix with the essential matrix Eij = [tij ]×Rij . Therefore,

Fij = K−T
i EijK

−1
j .

To derive our rank constraint we will need to express

the essential and fundamental matrices relative to a global

coordinate system. [27] derived an expression in terms

of the camera matrices Ci and Cj . Here we will use the

more recent derivation of [2] that, as we shall see below, is

amenable to factorization:

Eij =RT
i (Ti − Tj)Rj , (1)

Fij =K−T
i RT

i (Ti − Tj)RjK
−1
j , (2)

where Ti = [ti]×.

2.2. Low­rank Construction

We next introduce our main result, which includes a low

rank characterization of the collection of fundamental ma-

trices in multiview settings. For our result we will construct

a matrix of size 3n × 3n, denoted F , in which each of the

3 × 3 blocks includes a fundamental matrix Fij (see Fig-

ure 1), where we assume that each of the pairwise funda-

mental matrices in F is scaled properly. We further define
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Fii = 0 for all 1 ≤ i ≤ n, and note that this is consistent

with (2). Likewise we define the 3n × 3n matrix E from

the essential matrices Eij . We refer to F (resp. E) as the

multiview matrix of fundamentals (essentials).

Claim 1: F (and likewise E) is symmetric and rank(F ) ≤
6. Moreover,

1. If F is produced by n cameras whose centers are not all

collinear then rank(F ) = 6 and there exists a 3n× 3n
matrix A with rank(A) = 3 such that F = A+AT .

2. If F is produced by n cameras whose centers are all

collinear then rank(F ) ≤ 4 and there exists a matrix

A with rank(A) ≤ 2 such that F = A+AT .

Proof: To prove the claim we begin by defining the matrix

A as follows. Let Ui = K−T
i RT

i Ti, Vi = K−T
i RT

i , and

Aij = UiV
T
j . Ui, Vi, and Aij are 3 × 3 matrices. Observ-

ing (2) and recalling that Ti is skew-symmetric we see that

Fij = Aij +AT
ji.

Next we construct the 3n× 3 matrices U and V as :

U =

[

U1

...
Un

]

and V =

[

V1

...
Vn

]

and set A = UV T . Clearly,

by construction, rank(A) ≤ 3. Moreover, F = A + AT ,

and so F is symmetric and rank(F ) ≤ 6.

Case 1: We show next that unless the cameras are all

collinear rank(A) = 3. Clearly rank(V ) = 3. There-

fore we need to show that also rank(U) = 3. We prove this

by contradiction. Assume rank(U) < 3. Then ∃ t ∈ R
3,

t 6= 0, s.t. Ut = 0. This implies that ti × t = 0 for all

1 ≤ i ≤ n. Thus, all the ti’s are parallel to t, violating our

assumption that not all camera locations are collinear. Con-

sequently rank(U) = 3 and therefore also rank(A) = 3.

Next we show that when the cameras are not all collinear

rank(F ) = 6. We recall that Fij = K−T
i EijK

−1
j where

Ki and Kj are non-singular. We can therefore write F =
KTEK where the 3n×3n matrix K is block diagonal with

blocks formed by {K−1
i }ni=1 and so has full rank. This im-

plies that rank(F ) = rank(E), and so we are left to show

that rank(E) = 6.

We assume WLOG that the camera locations are cen-

tered at the origin, i.e.,
∑n

i=1 ti = 0 (since E is invariant

to global translation of the cameras). We further argue that

each column of U is orthogonal to each column of V . This

is evident from the following identities

V TU =

n
∑

i=1

V T
i Ui =

n
∑

i=1

Ti =

[

n
∑

i=1

ti

]

×

= 03×3. (3)

Let Ã denote the matrix A where we substitute Ki = I, ∀i
(so that E = Ã+ ÃT .) Denote by Ã = ÛΣV̂ T the SVD of

Ã (Û and V̂ are 3n×3 and Σ is 3×3). Since Ã = UV T we

have that span(U) = span(Û) and span(V ) = span(V̂ ).
Now we can decompose E as :

E = Ã+ ÃT = ÛΣV̂ T + V̂ ΣÛT = [ Û V̂ ][Σ Σ ]
[

V̂ T

ÛT

]

(4)

Since the columns of U are orthogonal to those of V , the

matrix
[

Û V̂
]

is column orthogonal. Thus, (4) is the SVD

of E. And since Ã is rank 3, Σ is full rank. Consequently,

rank(F ) = rank(E) = 6.

Case 2: Suppose all camera centers are collinear. WLOG

assume that the origin of the global coordinate system is

also collinear with the n cameras (since F is unaffected by

global translation), and so we can write ti = αit for 1 ≤
i ≤ n where αi ∈ R and t ∈ R

3. Let T = [t]×, then clearly

Ui = αiK
−T
i RT

i T . Define Ũi = αiK
−T
i RT

i (so Ui =
ŨiT ) and let the 3n × 3 matrix Ũ be formed by stacking

U1, U2, ... on top of each other. Then

A = UV T = ŨTV T .

Since T is skew-symmetric its rank is at most 2 and so is

rank(A). It follows that rank(F ) ≤ 4. �

2.3. Tightness of our constraints

Claim 1 provides two constraints on the 3n× 3n matrix

F : (1) F = A + AT and rank(A) = 3. (2) The diagonal

block of F vanishes, i.e., Fii = 0.

We now investigate how tight these constraints are . We

show that the number of degrees of freedom allowed by

these constraints is equal to the number of degrees of free-

dom in the camera matrices. However, we find that there

exist matrices that are allowed by these constraints, but do

not produce valid fundamental matrices.

Counting arguments show that our constraints allow

12n−15 degrees of freedom (DOFs) in defining F . Specifi-

cally, since A is rank 3 it can be written as A = UV T where

U and V are 3n× 3, so together they have 18n entries. The

constraint F = A + AT , however, gives rise to a 15 DOF

ambiguity that should be subtracted from the number of en-

tries of U and V , as we explain in the next paragraph. The

constraint that Fii = 0 requires UiV
T
i to be skew symmet-

ric, yielding 6n more constraints on the entries of U and V ,

yielding together 12n− 15 DOFs.

To calculate the DOFs in the ambiguity of F = A+AT

note that we can write F as F = [U, V ]J [U, V ]T , where J
is a 6 × 6 permutation matrix defined as J = [ 0 I

I 0
] (so

J [U, V ]T = [V, U ]T ). With this notation the ambiguity

in factorizing F is obtained by introducing a 6 × 6 matrix

Q such that QJQT = J so that [U, V ]QJQT [U, V ]T =
[U, V ]J [U, V ]T = F . Q has 36 entries, but the constraints

QJQT = J reduce its degrees of freedom to 15. De-

note Q =
[

Q11 Q12

Q21 Q22

]

these constraints restrict the products

Q11Q12 and Q21Q22 to be skew symmetric and the sum

4800



Q11Q22+Q12Q21 = I , providing altogether 21 constraints

on the 36 entries of Q, leaving 15 DOFs.

The number of DOFs in factoring F is equal to the DOFs

in defining n cameras. In general, the number of DOFs in

defining n perspective cameras is 11n− 15. However, each

camera matrix can be scaled arbitrarily and each choice of

scale will (inversely) scale the respective row and column

of F . In other words, n camera matrices, C1, ..., Cn, scaled

arbitrarily by non zeros 1/s1, ..., 1/sn, produce a collec-

tion of equivalent multiview fundamental matrices defined

by SFS with S = diag{s1, , s2, ..., sn}, si 6= 0. The free-

dom in choosing the entries of S accounts for the n missing

DOFs.

We note however that although the DOFs in factoring F
with our constraints are equal to the DOFs in defining n
camera matrices there exist matrices that satisfy our con-

straints but cannot be realized with n cameras. Specifically,

these constraints do not guarantee that all the pairwise fun-

damental matrices Fij are rank deficient. The constraint

Fii = 0 restricts UiV
T
i to be skew-symmetric, implying

that either Ui or Vi is rank deficient. If all Ui’s (or equiva-

lently all Vi’s) are chosen to be rank deficient then so are all

the Fij . If however some of the Ui’s and some of the Vi’s

are chosen to be full rank then they may produce Fij blocks

that are rank 3 and so they are not legal fundamental matri-

ces. Note that the skew-symmetry of UiV
T
i guarantees that

no more than 1/4 of the Fij’s can be of full rank. Indeed,

our experiments (in Section 4) often produce Fij’s that are

near rank 2; in a typical run the average ratio of the third

to second largest singular value ≈ 7 × 10−8 , presumably

because the problem is so over-constrained.

In conclusion, while our constraints provide a neces-

sary but not sufficient conditions for consistency, count-

ing considerations indicate that our constraints are nearly

tight. Below we develop an optimization scheme that uti-

lizes these constraints to infer the missing scale factors for

collections of estimated pairwise fundamental matrices, to

recover missing fundamentals and to correct noisy ones.

3. Low-rank Constrained Optimization to Re-

cover Fundamental Matrices

In this section we formulate an optimization problem

that uses the constraints derived in Section 2 to achieve

a better recovery of pairwise fundamental matrices. As-

sume we are given a set of fundamental matrices F̂ij , where

(i, j) ∈ Ω and Ω denotes the subset of image pairs for which

fundamental matrices have been estimated. (We will further

assume (i, j) ∈ Ω =⇒ (j, i) ∈ Ω.) We use these matrices

to construct our measurement matrix F̂ whose (i, j)’th 3×3
block contains F̂ij if (i, j) ∈ Ω and is zero otherwise. Note

that in the absence of errors each non-zero block is related

by an unknown scale factor λij to the corresponding block

in the sought multiview matrix of fundamentals F , where

λij depends on the distance between the i’th and j’th cam-

eras. Recovering these scale factors is essential in order to

apply our constraints. Our task therefore can be expressed

as:

min
F,{λij}

∑

(i,j)∈Ω

‖F̂ij − λijFij‖F , (5)

where F is constrained to fulfill the constraints in Claim 1.

Here we have chosen to minimize over the sum of Frobe-

nius norms of each 3 × 3 block. Such mixed L1-L2 norm

minimization is expected to be robust to outliers.

We note that the formulation (5) is bilinear in F and the

scale factors. We could avoid this bilinearity by minimizing

instead ‖λijF̂ij − Fij‖F . Such minimization, however, is

subject to a zero trivial solution and so it requires an addi-

tional constraint such as
∑

ij λ
2
ij = 1. Our experience with

such a formulation is that it is quite sensitive to errors.

Expressing (5) with the constraints results in the follow-

ing problem:

min
A,{λij}

1

2

∑

(i,j)∈Ω

‖F̂ij − λij(Aij +AT
ji)‖F

s.t. rank(A) = 3, Aii +AT
ii = 0, λij = λji (6)

where Aij denotes each 3× 3 sub-block of A. Our solution

for F then is F = A+AT .

(6) introduces a number of challenges, including the

mixed L1-Frobenius norms, the bilinearity, and the rank

constraint. This problem is non-convex due to the latter

two challenges. Below we describe how we approach these

challenges with IRLS and ADMM. Our algorithm is sum-

marized in Algorithm 1.

3.1. Handling Outliers with IRLS

We begin by addressing the mixed L1-Frobenius norm

in the cost function. We approach this with Iterative Re-

weighted Least Squares (IRLS) [12]. IRLS converts the

problem to weighted least squares where the weights are

updated from one iteration to the next. At each iteration t
of the IRLS we replace the cost function in (6) with

min
A,{λij}

1

2

∑

(i,j)∈Ω

wt
ij‖F̂ij − (Aij +AT

ji)λij‖
2
F , (7)

where

wt
ij =











1/max(δ, ‖F̂ij − λt−1
ij (At−1

ij + (At−1
ji )T )‖F ),

if (i, j) ∈ Ω

0 otherwise.

δ is a regularization parameters (we use δ = 10−3).

To clarify presentation we simplify our notations as fol-

lows. Let W and Λ be 3n × 3n matrices. Denoting their
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3 × 3 sub-blocks by Wij and Λij , we set Wij = wij1 and

Λij = λij1, where 1 is a 3× 3 matrix with all 1’s. We fur-

ther use the subscript WF to denote the weighted Frobenius

norm, i.e., ‖v‖2WF = trace(vTWv) and use ⊙ to denote

element-wise product of matrices. Therefore, in each IRLS

iteration we seek to solve

min
A,Λ

1

2
‖F̂ − Λ⊙ (A+AT )‖2WF (8)

s.t. rank(A) = 3, Aii +AT
ii = 0, Λij = λij1, λij = λji.

3.2. Optimization using ADMM

Next, we wish to solve the non-convex optimization

problem in (8), including the bilinearity and the rank con-

straint. To this end we will use a scaled version of Alternate

Direction Method of Multiplier (ADMM) [4, 9]. We main-

tain a second copy of A, which we denote as B, and form

the augmented Lagrangian of (8) as:

max
Γ

min
A,B,Λ

1

2
‖F̂ − Λ⊙ (A+AT )‖2WF +

τ

2
‖B −A+ Γ‖2F

s.t. rank(B) = 3, Aii +AT
ii = 0, Λij = λij1, λij = λji.

(9)

The last term in this objective, τ
2‖B − A + Γ‖2F denotes

the Lagrangian penalty; τ is a constant, and Γ is a matrix of

Lagrange multipliers of the same size as A that is updated

in the ADMM steps. We next describe the ADMM steps,

which are applied iteratively.

Step 1: Solving for (A,Λ).
In each iteration, k, we solve the following sub-problems:

min
A,Λ

1

2
‖F̂ − Λ⊙ (A+AT )‖2WF +

τ

2
‖A− (B + Γ)‖2F

s.t. Aii +AT
ii = 0, Λij = λij1, λij = λji. (10)

Since (10) is non-convex we will solve it by alternative min-

imization of A and Λ

1. Optimize w.r.t. A:

Because of the form of (10) it is useful to separate A
into its symmetric and anti-symmetric parts, As and

An, so that A = 1
2 (As + An) with As = A + AT

and An = A − AT . Let G = B + Γ; Gs and Gn

respectively denote its symmetric and anti-symmetric

part. We can approximate (10) in terms of As and An

and separately solve for them as follows:

A(k+1)
s = argmin

As

1

2
‖F̂ − Λ(k) ⊙As‖

2
WF

+
τ

8
‖As −G(k)

s ‖2F s.t. (As)ii = 0, (11)

A(k+1)
n = argmin

An

τ

8
‖An −G(k)

n ‖2F = G(k)
n . (12)

To solve (11) we take the derivative w.r.t. As and

equate to 0. Thus we update As according to

A(k+1)
s = W ⊙ Λ(k) ⊙ F̂ +

τ

4
G(k)

s (13)

⊘ (W ⊙ Λ(k) ⊙ Λ(k) +
τ

4
)

(A(k+1)
s )ii = 0 (14)

where ⊘ denotes element-wise division.

2. Optimize w.r.t. Λ: We minimize the following sub-

problem

Λ(k+1) = argmin
Λ

‖F̂ − Λ⊙A(k+1)
s ‖2WF

s.t. Λij = λij1, λij = λji. (15)

We can solve (15) separately for each block as follows,

λ
(k+1)
ij = argmin

λij

‖F̂ij − λij(A
(k+1)
s )ij‖

2
WF , i < j

= trace(F̂T
ij (A

(k+1)
s )ij)/‖(A

(k+1)
s )ij‖

2
F (16)

Note that λ
(k+1)
ii = 0, λ

(k+1)
ji = λ

(k+1)
ij and Λ

(k+1)
ij =

λ
(k+1)
ij 1.

Step 2: Solving for B.

This part of the ADMM deals with the rank constraint. It

requires a solution to

B(k+1) = argmin
B

τ

2
||B −A(k+1) + Γ(k)||2F s.t. rank(B) = 3.

This is solved by:

B(k+1) = SV P (A(k+1) − Γ(k), 3), (17)

where SV P (X, r) denotes the Singular Value Projection

(SVP) of X into space the of rank-r matrices. To perform

SV P (X, r) we compute the SVD of X and keep its top r
singular values and the corresponding singular vectors.

Step 3: Update of Γ.

Γ(k+1) = Γ(k) + (B(k+1) −A(k+1)). (18)

Iteration
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Figure 2: Convergence of our

optimization algorithm.

The three steps above

form one ADMM itera-

tion. To optimize (9),

for every iteration of

the IRLS we run these

ADMM steps repeatedly

till convergence. In

experiments we observe

monotonic convergence

of the cost function de-

fined in (6) with each

IRLS iteration, see an example in Figure 2.
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Algorithm 1 IRLS-ADMM solver

Input: Estimated fundamentals in F̂ and Ω.

Output: Recovered F .

# IRLS: Solve (6).

Initialize Λ and A.

Create weights for IRLS, w0
ij = 1 if (i, j) ∈ Ω and w0

ij = 0
otherwise. Set t = 1.

while not converged do

# Solve (7) using ADMM formulation (9).

Set k = 0, τ =
∑

wij , Γ0 = 0. B = A.
while not converged do

# Alternative minimization of (10).

Update A using (12) and (14).

Update Λ using (16).

Update B using (17) .

Update Γ using (18) .

k = k + 1.

end while

Update Weights wt
ij using (7).

t = t+ 1.

end while

F = A+AT .

Êij

Rotation Solver
~RLUD
i

Solve camera

directions from

pairs of images

Translation Solver

~tLUD
i

Construct ~ELUD
ij

Pipeline of LUD

our

IRLS-ADMM

algorithm

~EOur
ij

~γLUD
ij

Solve for

camera

directions

Translation Solver

~γOur
ij

~tOur
i

Pipeline of Our

Figure 3: SfM pipelines for LUD (left) and our method (right).

4. Experiments

To demonstrate the utility of our method we tested it in

the problem of estimating essential matrices and camera lo-

cations from multiple images. Current iterative and global

approaches to Structure from Motion (SfM) are often tested

on large datasets when many pairwise essential matrices can

be estimated, achieving outstanding performance. We ar-

gue that imposing rank constraints can be useful particu-

larly when the number of images is relatively small. To

demonstrate this we run our method on subsets of images

of different sizes showing improved performance relative to

the existing methods particularly with smaller subsets.

In many common SfM pipelines the intrinsic calibration

parameters are recovered separately. Therefore, in our main

experiment below we assume that the cameras are calibrated

and so we apply our optimization algorithm to essential ma-

trices. Note that our derivations in Sections 2 and 3 hold

also for essential matrices by setting Ki = I . Later in this

section we also show the results of a smaller experiment

with uncalibrated cameras.

We next describe the tested methods:

LUD [19]: Figure 3 shows the pipeline used by LUD to es-

timate camera locations and orientations from pairs of im-

ages. Starting from pairwise essential matrices estimated

with SIFT [16] and RANSAC [3], this method first solves

for camera orientations, denoted by R̃LUD
i in Figure 3, by

iteratively applying [6] while rejecting outliers. Using cam-

era orientations it then returns to the image keypoints to es-

timate pairwise camera directions, denoted by γ̃LUD
ij . Using

these pairwise directions it applies IRLS to solve for cam-

era locations (t̃LUD
i ), which we compare to our method. In

addition, we use the estimated camera locations and orien-

tations to reconstruct the pairwise essential matrices ẼLUD
ij .

ShapeKick [8]: For this method we use the same pipeline

as used with LUD, except that we replace the translation re-

covery part of LUD with ShapeKick. ShapeKick formulates

the location recovery problem as a convex optimization and

solves it with ADMM. They achieved comparable perfor-

mance to LUD on the dataset of [26].

1DSfM [26]: This method uses a pre-processing technique,

based on projection in many random directions, to remove

outliers in the original pairwise direction measurements.

We use their software, which uses the pipeline described

in [26] and only provides camera locations.

Our method: Figure 3 shows the pipeline used by our

method. From the pairwise essential matrices we minimize

(6) using the IRLS-ADMM summarized in Algorithm 1.

Since our method is not convex it requires a good initial-

ization. We initialize it with essential matrices produced

by the LUD method of Ozyesil et al. [19], denoted ẼLUD
ij .

Specifically ẼLUD
ij is used to initialize Λ and A in Algo-

rithm 1. Our algorithm improves these essential matrix es-

timates, producing a collection of new pairwise estimates

in E, denoted ẼOur
ij . To further produce camera locations

we first use ẼOur
ij and the rotations obtained by the LUD

pipeline, R̃LUD
i , to solve for the pairwise camera directions

γ̃Our
ij . Then we apply the translation solver of LUD to γ̃Our

ij

with (i, j) ∈ Ω to produce camera locations t̃Our
i . As is

shown below, our improved estimates of essential matrices

lead in turn to improved estimates of camera locations com-
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pared to the LUD pipeline.

We tested these methods on real image collections from

[26], which come with ‘ground truth’ estimates of camera

locations and essential matrices produced with a sequential

method similar to [21]. (These ground truth estimates are

used also in [26, 19, 8].) For our experiments we used 14

different scenes from the dataset. For each scene we ran-

domly selected 5 different sub-samples of N images from

the dataset. We used N = 50, 100, and 150 images, result-

ing in 70 different trials for each N . In each trial we com-

pared the quality of the essential matrix recovered by our

method to that recovered by LUD and ShapeKick. Like-

wise, we compared the quality of our recovered camera lo-

cations to those obtained by the three competing methods.
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Figure 4: These graphs show a comparison of the recovery error

of essential matrices achieved with our method compared to LUD

(in blue) and ShapeKick (in yellow), for collections of 50, 100, and

150 images from [26], The graphs on the left show the amount of

relative improvement and the ones on the right show the fraction

of improved trials.

Figures 4-5 show our results. Each graph summarizes the

results of 70 trials with each value of N . Figure 4 shows the

quality of our essential matrix estimates compared to those

obtained with LUD and ShapeKick, and Figure 5 shows the

quality of our camera location estimates compared to those

achieved by the three competing algorithms. We measure

these as follows. In each experiment k we consider the

collection of pairwise essential matrices produced by our

method. We first normalize each matrix and measure its er-

ror to the respective (normalized) ground truth matrix. We

then take the mean (or median) of this error over all essen-

tial matrices. Denote this error by eOur
k . We then produce

similar error measures for each competing algorithm, de-

noted eOther
k . We then report:

Relative Improvement (in %): Here we report for each
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Figure 5: A comparison of the recovery error of camera locations

achieved with our method compared to LUD (in blue) and Shape-

Kick (in yellow), and 1DSfM (in red) for collections of 50, 100,

and 150 images from [26].

N and competing algorithm the average of (eOther
k −

eOur
k )/eOther

k over all experiments.

Percent of Improved Trials: This provides the percentage

of trials in which our algorithm achieved more accurate re-

sults than a competing algorithm, i.e., 1
K

∑K

k=1 I(e
Our
k <

eOther
k ), where I(.) is the indicator function and K denotes

the total number of trials.

We provide similar measures to assess the quality of our

camera location estimates. In Figure 6 we further show the

median error of camera location estimates for all methods

in all trials for N = 50.

It can be seen overall that our method leads to improved

estimation of essential matrices and of camera locations.

With 50 images, compared to, e.g., LUD, our algorithm

improves the median essential matrix estimates by 17.69%.

With 150 images a smaller overall improvement of 6.68%

is achieved. This suggests that our constraints are more ef-

fective when smaller numbers of images are used. Interest-

ingly, however, despite this reduction the fraction of trials in

which our method achieved more accurate estimates com-

pared to LUD in fact increased slightly from 87% with 50

images to 98% with 150 images, indicating that our method

remains effective also with larger number of images (al-

beit yielding smaller improvement). Similar results are ob-

served for camera location estimation. With 50 and 150 im-

ages our algorithms improves the median camera location

error by 19.73% and 8.77% respectively, while the fraction

of trials in which our method achieved more accurate esti-

mates than LUD increased slightly from 84% with 50 im-

ages to 90% with 150 images.
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Figure 6: Median camera location error obtained by the four algorithms for 5 subsets of 50 images for 14 different scenes (‘Notre Dame’,

‘Montreal Notre Dame’, ‘Alamo’, ‘Piazza del Popolo’, ‘Piccadilly’, ‘NYC Library’, ‘Yorkminster’, ‘Union Square’, ‘Madrid Metropolis’,
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Figure 7: Improvement of our

method over LUD using funda-

mental matrix (in blue) and essen-

tial matrix (yellow) for 50 images.

In our previous ex-

periments we applied

our optimization algo-

rithm to essential ma-

trices, assuming cali-

bration is given. Be-

low we further ap-

ply our algorithm to

fundamental matrices

in an uncalibrated set-

ting. Since not all the

entries of a 3× 3 fundamental matrix are of same orders of

magnitude, we normalize each of the input pairwise funda-

mental matrices by centering all the images and scaling their

widths and heights uniformly to within the [1, 1] square and

then compute a normalized fundamental matrix. This does

not affect our rank constraint and can be inverted at the end

of the process. We tested our method on 5 subsamples of

50 images for 14 different scenes and compared it to LUD.

To evaluate the quality of the recovered fundamental matri-

ces we convert them to essential matrices by applying the

known calibration matrices and further use these to recover

camera locations. The results can be seen in Figure 6. Using

our method to recover fundamentals (in blue) yielded com-

parable accuracies to our results for essential matrix recov-

ery (yellow) and both our approaches improve significantly

(10-20%) over LUD as shown in Figure 7.

We further performed bundle adjustment (using [15]) ini-

tialized by the camera parameters obtained with our method

and LUD. After bundle adjustment compared to LUD our

method improved camera location estimates on average by

11.52%, 3.13% and 5.43%, improving in 70.59%, 64.29%

and 63.77% of all trials for 50, 100 and 150 images respec-

tively in terms of median translation error. These results in-

dicate that our method maintains improved accuracies over

LUD also after bundle adjustment.

With 50 images the recovery of essential matrices with

our method requires roughly 20 iterations of IRLS and 1000

iterations of ADMM. These take overall about 2 minutes on

a 2.7 GHz Intel Core i5 computer.

To conclude, these experiments indicate that our charac-

terization of fundamental matrices in multiview settings can

be used to improve fundamental and essential matrix as well

as camera location estimates. The advantage of these con-

straints appear to be particularly pronounced when fewer

images are available.

5. Conclusion

We have introduced in this paper novel rank constraints

on fundamental matrices in multiview settings. We have

shown in particular that with non-collinear cameras the ma-

trix that depicts the pairwise fundamentals is of rank 6 and

forms the symmetric part of a rank 3 matrix whose factors

are related directly to the entries of the respective camera

matrices. We have used these constraints to develop an opti-

mization framework to efficiently recover fundamental ma-

trices for all pairs of images and to estimate their proper

scale factors. Our experiments indicate that our method

is able to provide improved estimates of essential matri-

ces and camera locations in global SfM settings. Moreover,

these experiments suggest that our constraints are particu-

larly useful when fewer images are available.
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