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Abstract

This paper describes a fast and accurate semantic image

segmentation approach that encodes not only segmentation-

specified features but also high-order context compatibil-

ities and boundary guidance constraints. We introduce a

structured patch prediction technique to make a trade-off

between classification discriminability and boundary sen-

sibility for features. Both label and feature contexts are

embedded to ensure recognition accuracy and compatibil-

ity, while the complexity of the high order cliques is re-

duced by a distance-aware sampling and pooling strate-

gy. The proposed joint model also employs a guidance CR-

F to further enhance the segmentation performance. The

message passing step is augmented with the guided filter-

ing which enables an efficient and joint training of the w-

hole system in an end-to-end fashion. Our proposed join-

t model outperforms the state-of-art on Pascal VOC 2012

and Cityscapes, with mIoU(%) of 82.5 and 79.2 respec-

tively. It also reaches a leading performance on ADE20K,

which is the dataset of the scene parsing track in ILSVRC

2016. The code is available at https://github.com/

FalongShen/SegModel.

1. Introduction

Semantic segmentation is a fundamental but difficult

problem in computer vision. Compared with image classi-

fication, it provides a pixel-wise semantic understanding of

the image, through which the scene is parsed in terms of ob-

ject categories, locations and shapes. Deep networks have

made a series of breakthroughs on the task of image classi-

fication [18, 14, 13]. Convolutional neural networks (CN-

N) controlled by varying depth and breadth provide power-

ful models, and the integrated multi-level hierarchical fea-

tures and classifiers embed mostly correct prior knowledge

about statistics and dependencies among pixels for prevent-

ing overfitting.

Recent advances in semantic segmentation mainly re-
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Figure 1: The belief-frequency ambiguity when transferring

model from classification to segmentation. The right image is a

hard example and both models produce a confusing prediction.

The left image is an easy example, the segmentation model still

produces a confusing prediction in order to make spatial predic-

tion.

ly on fully convolutional networks (FCN) and condition-

al random fields (CRF) [4, 33, 1, 31, 7]. FCN transfer-

s the recognition network in image classification by fine-

tuning position-aware feature representations for semantic

segmentation [24]. However, deeply learned features for

image classification tend to tolerate the object translation

and deformation by resolution-reducing pooling layers and

sub-sampling layers in convolutional neural networks [13],

which decreases the ability for locating and separating ob-

jects from neighboring contexts. In order to determine ob-

ject positions and boundaries, a bilinear up-sampling oper-

ation is often adopted to retrieve a pixel-wise prediction in

FCN, which leads to an interpretation ambiguity between

the degrees of belief and its frequentist counterpart.

Interpretation of Local Prediction An analysis on the

end-to-end training process of FCN in Sec. 3.1 shows that

the softmax classifier produces a distribution to represen-

t not only the degrees of belief about object categories, but

also the frequentist of the category in the patch. As shown

in Fig. 1, the interpolation routine in the up-sampling oper-

ation seems to treat the classification scores with both the

belief and the frequentist interpretation. That says, the FCN

classifier training uses a ambiguous criteria, with both im-

age region statistics and training sample likelihood. This
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double meanings interpretation is most obvious when inter-

polating classification scores across object boundaries and

predicting the difficult samples. The ambiguous prediction

prevents accurate and detailed object shapes being captured

by the latter steps in segmentation. We propose to resolve

this ambiguity by a structured patch prediction technique in

Sec. 3.

Along the other direction of literature, probability graph-

ic models have been widely used for structured prediction

tasks. In particular, CRF has observed widespread success

in semantic segmentation [19, 28, 17] thanks to their abili-

ties in encoding high order conditional dependence among

node labels given the appearances. However, learning CRF

requires many repeated inference steps, and it is time con-

suming [35, 19]. Our work focuses on fusing the aforemen-

tioned discriminative features of FCN with the structured

prediction capability of CRF, with emphases on both effec-

tive high order context constraints and scalable end-to-end

joint training efficiency.

Context Compatibility Context clue represents the

spatial-relationship between category labels and plays an

important role in structured prediction tasks. It has been

noted that context clue or high-order information is vi-

tal in object detection and semantic image segmentation

[29, 19]. Through minimizing the Gibbs energy, CRF is

widely adopted for harnessing the context clue to make

structured prediction. However, these models are quite lim-

ited due to the time cost of graph inference for the deriva-

tion of partition function in each update of gradient descen-

t [35]. Compared to the traditional CRF approach, auto-

context [29] encoded the joint statistics by a series of clas-

sifiers based on the label context. For each classifier, the

output of the last classifier is used as feature. Auto-context

made an attempt to recursively select and fuse context label

for structured prediction. Another probability of encoding

context information is learning the messages based on fea-

ture context [20, 27]. The kind of feature context methods

model the message estimator between each pair by stacking

unary features, which is more similar to traditional CRF as

they both rely on pair-wise message passing. We enforce

prior structure knowledge with both label and feature con-

texts, and propose a distance-aware sampling and pooling

strategy to reduce the complexity of high order cliques, as

discussed in Sec. 4.

Boundary Guidance Low level features, such as image

edges, texture and appearance homogeneity often help to

obtain a clear and sharp boundaries around objects. Re-

cently bilateral-filtering based CRF is popularly adopted for

boundary localization. Combined with strong recognition

capacity of convolutional neural network, bilateral CRF has

shown remarkable success in addressing the task of sharp

boundary around object [3, 25, 2]. Besides, Liu et al. [23]

proposed a filter similar to the bilateral filter which can be

processed on graphic process unit efficiently through the lo-

cally convolutional layer. We choose to augment the mes-

sage passing with the guided filtering [12, 11], not only be-

cause of its edge-preserving property, but also due to its

linear time complexity regardless of the kernel size. This

leads to a fast training process with high performance as

described in Sec. 5.

Theoretically our learning approach of context CRF re-

sembles the error-correcting iterative decoding methods in

[27, 29], since we use a series of classifiers to encode in-

teractions between each node instead of the explicit global

probability representation. From an alternative view for the

message passing in the mean field algorithm, updating the

marginal distribution is to collect messages from neighbor-

hood regions. Thus, an effective message estimator can di-

rectly model region features consisting of information from

estimated labels and deep convolutional features. This e-

quivalent message view is the key of our efficient solver to

the joint FCN and CRF model, and the details will be dis-

cussed the following sections.

The main contributions of this paper have four folds.

• We propose a joint objective to integrate segmentation-

specified features, high order context and boundary

guidance for accurate semantic segmentation. The pro-

posed model reaches leading performances on three

dominating segmentation benchmark datasets.

• A structured patch prediction technique is introduced

for spacial filling. While keeping the feature ab-

straction at a relatively high level, it substitutes the

over-smoothed interpolation operation and partially re-

solves the belief-frequency ambiguity.

• A distance-aware context is proposed to embed both

label and feature compatibility while avoiding the

price of high complexity. The corresponding context

CRF can be efficiently optimized with little time costs

while bringing large performance gains.

• We also introduce a guidance CRF to further enhance

the segmentation accuracy. The message passing step

is augmented with the guided filtering which allows

efficient joint training of the whole system in an end-

to-end fashion.

2. Our Proposed Method

Let I ∈ I denote one input image and x ∈ X is its

segmentation label assignment. Each pixel i in the label

assignment x = {xi, i = 1, ..., N} takes a value from a pre-

defined label set L = {1, ..., L}. The conditional likelihood

function of a label assignment x for an image I is

P (x|I; θ) =
1

Z(I; θ)
exp[−E(x, I; θ)], (1)
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where θ denotes the model parameters and E(x, I; θ) is the

Gibbs energy function. Z(I; θ) =
∑

x
exp[−E(x, I; θ)]

is the partition function conditioned on the image I . Our

energy function takes the form

E(x,I;θ)=Elocal(x,I;θ)+Econtext(x, I;θ)+Eedge(x,I;θ),
(2)

where Elocal(x, I; θ) denotes the unary score regard-

ing to the appearance within the local neighborhood,

Econtext(x, I; θ) encodes the context clue for structure pre-

diction, and Eedge(x, I; θ) encourages the concurrence be-

tween the segmentation boundaries and intensity edges.

The coarse segmentation feature map f(x|I) built by

FCN has a much lower resolution than the original input

image. Instead of up-sampling using a transposed convolu-

tional layer with a large filter size (e.g., 32 for 16× model),

we propose a multi-stage solution to resolution enhance-

ment. Firstly we introduce a structured patch prediction

technique (Sec. 3) for spacial filling at a certain interim res-

olution

f 7→ Elocal. (3)

The context potential is also taken into consideration at this

level to make structured prediction,

Eu(x, I; θ) = Elocal(x, I; θ) + Econtext(x, I; θ). (4)

In order to perform guidance CRF and compute per-pixel

entropy loss, we need to decouple each xi in this step,

i.e., marginal potential with regard to each xi. This task

is solved in the context CRF component (Sec. 4).

Then we further up-sample the segmentation score map

by transposed convolution with learnable parameters. Com-

bined with the edge potential, the final total energy function

is

E(x, I; θ) = E↑
u(x, I; θ) + Eedge(x, I; θ), (5)

where E↑
u(x, I; θ) is the decoupled score map from context

CRF after up-sampling. Combined with the edge poten-

tial, the segmentation score map is refined with the guid-

ance CRF (Sec. 5) and we can get a more accurate object

boundary through an end-to-end joint training.

3. Transfer Model via Structured Patch Pre-

diction

FCN combined with the hole algorithm produces a

coarse segmentation prediction, which is followed by a bi-

linear up-sampling operation to make high resolution pre-

diction. This flowchart is widely adopted in previous se-

mantic segmentation literature [24, 3]. However, it in-

evitably encounters the belief-frequency ambiguity depict-

ed in Fig. 1. We give a theoretical explanation of this ambi-

guity and provide a solution in this section.

3.1. Theoretical Analysis on Up­sampling Opera­
tion

The coarse score map is up-sampled to the original input

image size by a fixed bilinear up-sampling layer in most of

previous works. The unary feature fi from FCN for patch

i is converted to a label score qi to describe the probability

for the existence of each category in this patch. The score

qi is bilinear up-sampled 16× larger to compute pixel-wise

entropy loss with the ground truth label. It means all the

prediction results in the patch i are summarised and com-

pressed in the vector qi. Let p
j
i (one-hot vector) denote the

ground truth label in the patch i for the jth position, and let

wj be the corresponding bilinear weight. The ground truth

distribution for this patch is
∑

j wjp
j
i as shown in Fig. 2,

and thus the training target is

D(qi||
∑

j

wjp
j
i ). (6)

It is important to notice this fundamental difference between

image classification and semantic image segmentation by

FCN. The target distribution of segmentation is never a one-

hot vector for FCN. Instead, it is a weighted sum of all the

presented categories in this patch. The prediction score qi
describes not only the existence of objects in certain catego-

ry but also the portion of pixels in this category. While for

classification, qi only represents the belief for the existence

of a certain kind of object in the image.

As shown in Fig. 1, the two-fold of the probability qi in

FCN causes the ambiguity, especially on the border of the

object and for difficult input image. While the segmentation

model of FCN is expected to describe both the existence of

the category and the portions of the category in the patch, it

lacks the ability to tell the difference.

From the perspective of information flow, the bottleneck

of C × 1 × 1 coarse score block is the bridge between the

D×1×1 feature block and theC×16×16 dense score map.

The information is heavily compressed as a C-dimensional

vector where most of the spatial information has lost.

2048
21

16

16

21
21

Figure 2: The 2048-D feature vector goes through a 21-D bot-

tle neck before up-sampling to 16 × 16, which leads to heavily

information loss.
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3.2. Structured Patch Prediction

Instead of extracting as much information as possible in

the patch through aC×1×1 vector, we look forward a more

effective bridge between the unary feature and the patch la-

bel score map. However, a direct connection from the long

feature to the dense prediction needs enormous parameters

and will be difficult for training. We need to make a trade-

off between the number of parameters and representation

abilities.

We propose to model the label score map by a structured

patch prediction technique. The feature fi is used to pro-

duce a C×n×n score map1, which is a transition to pixel-

wise dense prediction. The information in the whole image

patch is coarsely depicted in a small label patch. The belief-

frequencist ambiguity is partially solved by the structured

patch prediction. As recognition and localization are basi-

cally two tasks, we explicitly divide them by introducing

more classifiers for each position of the patch.

Our intuition behind the structured patch prediction re-

lies on the fact that the FCN feature models the spatial co-

herence of a local region. Previous works have also proved

this idea [9, 26, 8]. The FCN feature can not only recoginize

the category label in the patch, but also be aware of the

context label structure. For example, R-CNN proposed to

regress a bounding box to properly crop the object, and it

also took the advantage of the spatial localization ability of

CNN features [9]. In our experiments, we directly make use

of the FCN features to assign label to each position in the

patch.

4. Context Modeling with Conditional Random

Field

Given an image I , the aforementioned structured patch

prediction technique provides a segmentation score map.

The Gibbs energy of the label assignment x ∈ LN is

Eu(x, I; θ) =
∑

i

φi(xi, Ii; θ) +
∑

c

ψc(xc, Ic; θ), (7)

where φi(xi, Ii; θ) is the singleton node potential for as-

signing xi to pixel i based on the local appearance descrip-

tor by the structured patch prediction. ψc is defined on the

high order clique c. Ii and Ic denote the local image regions

around the position i and clique c respectively.

Our goal is to estimate the marginal potentials to approx-

imate Eu(x, I; θ), which is

∑

i

φi(xi, Ii; θ)+
∑

c

ψc(xc, Ic; θ)≈
∑

i

φui (xi, Ii; θ). (8)

1In our experiments n = 2. Therefore we still need the up-sampling

operation.

(a) (b)

Figure 3: Illustration of context CRF. (a) We exploit a quite large

field (28 × 28 on the feature map) to collect context informa-

tion. The messages from neighbor regions and remote regions are

pooled with different size in order to avoid over-fitting. (b) Both

feature map and score map are exploited to produce messages.

In the following paragraphs we will introduce the construc-

tion of the high order context term ψc(xc, Ic; θ) in our for-

mulation and how to implement Equation (8) efficiently.

4.1. Distance­aware High Order Context

The context term ψc(xc, Ic; θ) provides information sur-

rounding the current patch, which is important for struc-

tured prediction. The natural images are highly spatial re-

lated, and the neighboring patches are more closely relat-

ed than remote ones. We propose a distance-aware sam-

pling strategy for context modeling as shown in Fig. 3(a).

The context patches are divided in groups according to their

distances to the centering patch. The remote patches are

pooled in large areas to accumulate the weak evidences for

a more robust representation of the correlation. We make

use of the distance prior of context in order to avoid over-

fitting in the training stage.

4.2. Message from High Order Term

Following the similar derivations of the mean field al-

gorithm [16], we employ an iteration algorithm to approxi-

mate Equation (8)

φui (xi)=φi(xi,Ii; θ)−
∑

c

Ep̂(xc\i)[ψc(xc\i,xi, Ic;θ)]. (9)

The second term is the expectation of ψc(xc\i, xi, Ic; θ)
over the estimated distribution of p̂(xc\i), which is about

the messages passed from the high order clique c to the lo-

cal node i. It is a C-dimensional vector encoding the in-

formation of label distribution, which is difficult to get a

analytical solution. Lin et al. [19] has tried to learn poten-

tial functions for each two-nodes clique, but the inference is

much slower and costs lots of memory, e.g., it requires L2

outputs for each pair-wise clique, and for a N -nodes graph

there are up to N2 pair-wise cliques. It is even much more
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difficult to learn a potential function for high order clique

with more than two nodes.

In order to model the high order clique, instead of cal-

culating the marginalization with regard to p̂(xc\i), we pro-

pose to construct the convolutional neural networks and di-

rectly learn the messages. As show in Fig. 3(b), we place

several convolutional layers on both the estimated probabil-

ity map p̂(xc) and the context feature map fc to capture the

high order pattern

Ep̂(xc\i)[ψc(xc\i, xi, Ic; θ)] = U [p̂(xc), xi, fc; θ], (10)

where U [p̂(xc), xi, fc; θ] is a scalar describing the compati-

bility of xi in the high order clique assignment xc based on

context feature fc. This message term can also be treated

as a new classifier based on the estimated probability map

from the previous iteration and the context image feature.

5. Boundary Guidance with Conditional Ran-

dom Field

We have exploited the structured patch prediction tech-

nique to enhance the density of FCN features, and we have

encoded the context information to enforce context com-

patibility. Both improvements can’t be afforded in the high

resolution due to the sensibility of patch-based features and

the complexity of high-order potentials. To obtain the de-

tailed object boundaries, we further refine the segments with

a guidance CRF at high resolution. The fully connected CR-

F with low level image features, e.g., color, coordinate, has

been successfully used to enhance the object localization

accuracy [3, 19].

Simply bilinear up-sampling the score map often lead-

s to a misalignment between predicted object boundaries

and color edges. The guided filtering is an edge-preserving

technique with nice visual quality and fast speed [12]. We

propose to combine pair-wise CRF with guided filtering and

jointly learn the whole networks to align the segmentation

with the color boundaries on images.

The guided filtering in our guidance CRF takes two in-

puts: (1) the coarse segmentation score map φu↑ to be fil-

tered and (2) the down-sampled2 color image I . The filter-

ing result is

g(xi) =
∑

j

wij(I)φ
uj↑(xj), (11)

where φuj↑(xj) is up-sampled from the output of context

CRF. The weight wij depends on the input color image I ,

which is used as the guidance image. Following the similar

2We once experimented with original image but later found down-

sampled (4×) image leads to a faster training and more stable solution.

derivations in [12], the expression of wij is

wij=
1

|ω|2

∑

k

[

1 + (Σk + ǫU)−1
3

∑

c=1

(Ici − µc
i )(I

c
j − µc

j))

]

(12)

where µk and Σk is the mean and 3 × 3 covariance matrix

of image I in window ωk, U is 3×3 identity matrix and |ω|
is the number of pixels in ωk. ǫ is a regularized parameter

and we set it to 1 throughout our experiments.

Algorithm 1 Guidance CRF

Forward

input: Down-sampled Guidance image I , segmentation s-

core map φu, compatibility matrix µ, weight parameter

λ,maximum iteration kmax, k = 0, φ0 = φu.

while k < kmax

1. qk(xi) =
1
Zi

exp[−φk(xi)]. ⊲ Softmax

2. gk(xi) =
∑

j wij(I)q
k(xj) ⊲ Guided filtering

3. mk(xi)=
∑

µ(xi,xj)g
k(xj) ⊲ Compatibility transform

4. φki (xi) = φui (xi)− λmk(xi) ⊲ Local update

5. k = k + 1

endwhile

output: marginal potential φb

Now we will introduce how to combine the pair-wise

CRF with guided filtering. From the aforementioned sec-

tions, we have

E↑
u(x, I; θ) =

∑

i

φui↑(xi). (13)

Substitute it in Equation (2), the energy of a label assign-

ment x is given by

E(x) =
∑

i

φui↑(xi) +
∑

i<j

ψp(xi, xj , Ii, Ij), (14)

where the unary potential φu↑ is the output of context CRF

and up-sampled by structured patch prediction. The pair-

wise potential ψp in the fully connected CRF has the form

ψp(xi, xj , Ii, Ij) = µ(xi, xj)k(Ii, Ij) (15)

where µ is the label compatibility function with the kernel

k(Ii, Ij) = wij defined in Equation (12). µ is initialized by

Potts model. A mean-field algorithm is used to approximate

the marginal distribution as shown in Algorithm 1.

The forward pass in the training stage performs a soft-

max layer, a message passing layer, a compatibility trans-

form layer and a local update layer in each iteration. We run

three iterations throughout our experiments by cross valida-

tion. As it is shown in Algorithm 1, all of these steps can
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be described by CNN layers. The parameters of the guided

filter depend on the spatial and appearance of the original

image. Instead of direct computation by convolutional lay-

ers, the message passing step can be executed as one guided

filtering, which can be computed very efficiently. Finally

the marginal distribution from guidance CRF is bilinear up-

sampled to the original image resolution.

To back-propagate the segmentation error differential-

s w.r.t its input and network parameters in each layer, it

is straightforward to perform back-propagation algorithm

through the local update layer, the compatibility transform

layer and the softmax layer. For the message passing layer,

the gradient w.r.t its input is

∂L

∂g
(xi) =

∑

j

wij(I)
∂L

∂q
(xj), (16)

which can also be calculated by performing guided filtering

on the error differential map ∂L
∂q

(xj).

6. Optimization

Given a training set {(I,x∗), I ∈ I,x∗ ∈ X}, the target

of FCN and CRF optimization is to learn the parameters θ∗

to maximize the posterior probability of the training data,

θ∗ = argmin
θ

∑

I

∑

i

log p̂(x∗i |I; θ) +
λ

2
||θ||22. (17)

Here I is the training image and x∗i is the ground truth seg-

mentation label for pixel i in this image; λ is the weight

decay parameter. The program can be optimized efficiently

by the standard stochastic gradient descent solver and the

whole framework is shown in Fig. 4.

Input image

FCN features
Context CRF

Patch prediction
Final output

Guidance CRF
Final Output

Input Image

Guidance CRF

1/16

Unary 

Network

Flow 2
Flow 3

Patch prediction

Flow 1

Figure 4: Schematic visualization of our model. The left figure is

the pipeline of our proposed model. The context CRF is performed

on both the coarse FCN feature map and the score map to encode

context information and produce a structured patch prediction. At

the fine level, we delineate the object boundary by guidance CRF.

The right figure depicts the network structure. Each data stream

is assigned a flow number in our library, which makes it memory-

efficient.

7. Experiments

We evaluate the proposed model on three challenging

segmentation benchmark datasets. We comparing our mod-

el with the state-of-the-art works. ADE20K is a new intro-

duced dataset in ILSVRC 2016 and our model joined in the

competition. Our models obtain leading performance on all

the three datasets while having efficient running speed. The

ablative study is done on Pascal VOC 2012 as it is the most

widely used dataset in semantic image segmentation.

7.1. Datasets and Implementation

7.1.1 Datasets

Pascal VOC 2012 [6] dataset is a popular segmentation

benchmark. It includes 20 categories plus background. The

original train set has 1464 images with pixel-wise labels.

We also use the annotations from [10], resulting in 10582

(augmented train set), 1449 (val set) and 1456 (test set) im-

ages. The accuracy is evaluated by mean IoU scores.

Cityscapes [5] dataset consists of 2975 training images

and 500 validation images . Both have pixel-wise anno-

tations. There are also another about 19,998 image with

coarse annotation. There are 19 categories in this dataset

and there is no background category. All the images are

about street scene in some European cities and are taken by

car-carried cameras. It should be noticed that the size of

every image is 1024× 2048 in this dataset.

ADE20K [36] datset is divided into 20,000 images for

training, 2000 images for validation, and another batch of

held-out images for testing. Every image in this dataset is

annotated with pixel-wise label. There are totally 150 se-

mantic categories included in the challenge for evaluation.

Auxilliary dataset. To compare with the-state-of-the-

art, sometimes we further exploit the large scale dataset MS

COCO [21] to pre-train the model, which includes 123,287

images in its trainval set with 80 categories and one back-

ground. Each image comes with pixel-wise label.

7.1.2 Implementation

We use the public Caffe [15] framework for deep learning

but we have made lots of changes. We adopt a data-flow

based memory management strategy. In the inference stage,

the data blobs in the same flow share the same pieces of G-

PU memory. In the backward pass of the training stage, the

gradient blobs in the same flow also share the GPU memory.

Training settings and parameters. We skip the sub-

sampling operation in the conv5 1 layer in Resnet-1013 and

modify the filters in the conv5 block by introducing zeros

to increase the size, which is known as “hole algorithm”

3The base model is pubic available at https://github.com/

tornadomeet/ResNet. We always use it as base model without spe-

cific notation.
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Table 1: Results on Pascal VOC 2012 test set and Cityscapes test

set. Measured by the mean IoU (%). Both of our submitted models

are fine-tuned from Resnet-101 and exploit MS-COCO.

Method PasVOC12 CityScapes

DPN[23] 77.5 66.8

Dilation10[33] - 67.1

Adelaide context[19] 77.8 71.6

Adelaide VeryDeep[31] 79.1 -

LRR 4x[7] 79.3 71.8

DeepLab-v2[4] 79.7 70.4

CentraleSupelec Deep G-CRF[1] 80.2 -

SegModel 82.5 79.2

Table 2: Results on ADE20K val set and test set. Measured by

the average of mean IoU and pixel accuracy (%). Our models are

trained on ADE20K train set, without resorting to MS-COCO or

Place365. The performance on the val set is evaluated by a single

model.

Method val test

CRFasRNN[35] - 47.0

ACRV-Adelaide[19] - 53.3

Hikvision 60.4 53.4

CASIA IVA - 54.3

SegModel 61.2 54.5

360+MCG-ICT-CAS SP - 55.6

Adelaide[31] - 56.7

SenseCUSceneParsing[34] 63.1 57.2

post competition

SegModel 61.7 -

[3]. This operation yields a stride of 16 pixels and we name

it a 16× model in this paper. It should be noticed that the

16× model is much faster than the 8× model in both the

training stage and inference stage. Weight decay parameter

is set to 0.0001 and the momentum parameter is set to 0.9.

The initial learning rate is set at 0.01 and “ploy” strategy

is adopted [22, 4]. The mini-batch size is set to 16. Half

of all pixels in each batch with larger loss are kept for loss

computation [31, 32]. We run several epoches at the end of

training stage to compute the batch normalization statistics.

Scale jittering, color altering [30] and horizontal mirror im-

ages are adopted for data augmentation. For scale jittering

in the training phase, every image is resized with random-

ly ration in range [0.5, 2.0]. We also scale the image with

different aspect ratio in range [4/5,5/4].

7.2. Comparisons with State­of­the­art

We quantitatively compare our proposed model with

state-of-art models on these three datasets and our model is

named SegModel. The segmentation results on the test set

of Pascal VOC 2012 and Cityscapes is measured by mIoU

(%). For ADE20K, the performance is measured by the av-

erage of mIoU(%) and pixel accuracy(%). We do not joint-

ly train guidance CRF for ADE20K as there are too many

(150) categories in this dataset. But guidance CRF is added

in the inference stage.

In comparison, Deeplab-v2 [4] is trained on MS COCO

trainval set and Pascal VOC 2012 augmented train set fine-

tuning from Resnet-101. It ensembles three 8× models both

in the training and testing stage and adopts bilateral CRF as

a post processing step. Our submission to Pascal VOC 2012

ensembles two 16× models. Our model shows much higher

performance than Deeplab-v2 on the test set of Pascal VOC

2012. For cityscapes, our two 16× models are ensembled to

reach the state-of-the-art. The 1024 × 2048 images can be

easily feed into the network and segmented in a single run

for one scale in our library. For detailed results on the two

datasets please refer to Table 1. As shown in Table 2, our

proposed model also has leading performance on ADE20K,

which is the dataset of ILSVC2016 scene parsing track. We

fine-tune the 16× model from Resnet-152 during the com-

petition but we find Resnet-101 gives a similar performance.

7.3. Ablative Studies

We conduct the evaluations of each components in our

model on the Pascal VOC 2012 val set (1449 images), train-

ing on the augmented train set (10582 images). Each of our

proposed parts is gradually added to model to do a ablation

learning. We train for up to 36 epochs on Pascal VOC 2012

augmented train set and the training curves are shown in

Fig. 7. To fairly show the effectiveness of each component,

all these models are trained from the same base model for

same training epoches. The whole training costs about 12

hours for Guide on two modern GPU cards. The final per-

formance in Table 3 verifies the effectiveness of each com-

ponent in our model and Table 4 displays the inference time

of each model.

To classify the center pixel in a patch, feature context and

label context provide a high-level understanding of a large

region in the image and promote a smoothness between la-

bels. Context brings a improvement of 6.8 percent on mean

IoU at the cost of 14% more times to inference comparing

to Unary. Adding the structured patch prediction part in

context CRF further brings up the mean IoU while have lit-

tle more time cost. Patch has also improved the boundary

quality as shown in Fig. 6. After integrated with guidance

Table 3: Results on Pascal VOC 2012 val set. Context: Employ-

ing context CRF. Patch: Replace unary prediction in context CRF

with structured patch prediction. Guidance: Add guidance CRF

part to align the results. Joint: Jointly trained with MS-COCO.

MS: multi-scale testing images.

Unary Context Patch Guide Joint MS

mIoU(%) 69.5 76.3 76.8 77.7 79.5 80.9
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(a) Input (b) Truth (c) Prediction

Figure 5: Some visual results of Cityscapes val set. It costs about 0.5s for a 2048× 1024 color image.

CRF, our full model Guide reaches a mean IoU of 77.7%
on Pascal VOC 2012 val set. Bilateral CRF is widely adopt-

ed to delineate the object boundary in most previous works,

guidance CRF has similar performance both visually and

quantitatively as shown in Fig. 6 but it needs at much less

time cost in the training stage and test stage. Finally, further

exploiting MS-COCO and multi-scale testing, our model

reaches 80.9% on the Pascal VOC 2012 val set.

Turning to implementation aspects, context CRF can be

efficiently performed by box-filtering and hole algorithm.

We use box filters with different kernel size on feature map

and label map to average the context information in differ-

ent size of regions. These averaged context information are

put together via hole algorithm. For structured patch pre-

diction, the convolutional layer is adopted to produce a long

dimensional vector and re-arrange it in spatial dimensions.

Both parts can be executed efficiently in CUDA.

Time complexity. All the code is optimized by CUDA

and the time cost is measured on one GTX TITAN X. For

a typical 300 × 500 color image, as it is shown in Table

4, it costs about 54.4ms in total to compute the segmenta-
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Figure 6: (a)top-right: bilateral CRF on Patch. bottom-left: Con-

text. bottom-right: Guide. (b) Pixel mean IoU around the object

boundaries. The x-axis is the band width of the trimap.
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Figure 7: Training curves.

part time(ms)

Unary 43.7

Context 49.8

Patch 50.0

Guide 54.4

Table 4: Inference time

for a 500 × 300 color im-

age.

tion score map on models fine-tuned from the Resnet-101,

while the unary layers cost 43.7ms. Our proposed con-

text CRF and structured patch prediction costs little more

time while bringing large performance gains. The bilateral-

filtering based fully connected CRF is widely used for sharp

object boundary in previous works [3, 4]. The bilateral CR-

F with a recently optimized implementation of fast bilateral

filtering [17] takes about one second for 10 mean field itera-

tions on CPU. As shown in Table 4 and Fig. 6, the guidance

CRF layer costs only 4.4ms on one modern GPU card while

having similar performance alongside the object boundary

comparing to bilateral CRF. Some visual results are shown

in Fig. 5.

8. Conclusion

In this paper, we have proposed a deep coarse-to-fine

model with structured patch prediction, high order con-

text and guided filtering for semantic image segmenta-

tion. Experiments on the Pascal VOC 2012, cityscapes and

ADE20K show that our model achieves the state-of-the-art

performance with appealing running speed.
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