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Abstract

We consider the problem of depth-based robust 3D facial

pose tracking under unconstrained scenarios with heavy oc-

clusions and arbitrary facial expression variations. Un-

like the previous depth-based discriminative or data-driven

methods that require sophisticated training or manual in-

tervention, we propose a generative framework that unifies

pose tracking and face model adaptation on-the-fly. Par-

ticularly, we propose a statistical 3D face model that owns

the flexibility to generate and predict the distribution and

uncertainty underlying the face model. Moreover, unlike

prior arts employing the ICP-based facial pose estimation,

we propose a ray visibility constraint that regularizes the

pose based on the face model’s visibility against the input

point cloud, which augments the robustness against the oc-

clusions. The experimental results on Biwi and ICT-3DHP

datasets reveal that the proposed framework is effective and

outperforms the state-of-the-art depth-based methods.

1. Introduction

Robust 3D facial pose tracking is an important topic

in the fields of computer vision and computer graphics,

with applications in facial performance capture, human-

computer interaction, immersive 3DTV and free-view TV,

as well as virtual reality and augmented reality. Tradi-

tionally, the facial pose tracking has been successfully per-

formed on RGB videos [22, 3, 16, 4, 14, 15, 21, 33, 42]

for well-constrained scenes, challenges posed by illumina-

tion variations, shadows, and substantial occlusions hamper

RGB-based facial pose tracking systems from being em-

ployed in more typical unconstrained scenarios. The uti-

lization of depth data from commodity real-time range sen-

sors has led to more robust 3D facial pose tracking, not only

by enabling registration along the depth axis, but also by

providing cues for the occlusion reasoning.

Although promising results have been demonstrated by

leveraging both RGB and depth data in unconstrained facial

pose tracking, existing approaches are not yet able to reli-

ably cope when the RGB data is poor due to inconsistent

(a) (b)

Figure 1. Our identity-adaptive facial pose tracking system is ro-

bust to occlusions and expression distortions. (a) Poses are esti-

mated with heavy occlusions. The face models are overlaid with

the input point clouds with the visible face points marked by red.

(b) Poses are tracked under varying expressions. The estimated

face identities are not interfered by the expressions.

or poor lighting conditions. Furthermore, RGB data may

not always be available in scenarios when privacy is a ma-

jor concern. Therefore, it is meaningful to study robust 3D

facial pose tracking using depth data alone, as a comple-

mentary alternative to traditional tracking systems.

Some of the new challenges that we want to address

when solely tracking on depth data include: (1) coping

with complex self-occlusions and other occlusions caused

by hair, accessories, hands and etc.; (2) sustaining an

always-on face tracker that can dynamically adapt to any

user without manual calibration; and (3) providing stabil-

ity over time to variations in user expressions. Unlike

previous depth-based discriminative or data-driven meth-

ods [35, 7, 28, 18, 17, 30, 20] that require complex training

or manual calibration, in this paper we propose a framework

that unifies pose tracking and face model adaptation on-the-

fly, offering highly accurate, occlusion-aware and uninter-

rupted 3D facial pose tracking, as shown in Fig. 1.

The contributions of this work are threefold. First, we

introduce a novel analytical probabilistic formulation for a

generative 3D face model, advancing the earlier 3D mul-

tilinear tensor model [12, 38] and encouraging groupwise

pose estimation and expression-invariant face model up-

dating. Second, we propose an occlusion-aware pose es-

timation mechanism based on minimizing an information-
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theoretic ray visibility score that regularizes the visibility of

the face model in the current depth frame. This is based

on an underlying intuition that the visible face model points

must either be co-located with the observed point cloud as

visible points, or be located behind the point cloud as oc-

cluded points. Our pose estimation method does not need

explicit correspondences to accurately estimate facial pose

while handling occlusions well. Third, we present a tightly

coupled online identity adaptation method which gradually

adapts the face model to the captured user with sequential

input depth frames. This is done by tracing the identity dis-

tribution during the tracking process in a generative process.

2. Related Work

With the popularity of the consumer-level depth sen-

sors, apart from the RGB based facial pose tracking sys-

tems [22, 3, 16, 4, 14, 15, 21, 33, 42], a variety of 3D fa-

cial pose tracking and model personalization frameworks

have been proposed. One category of approaches employed

depth features, such as facial features defined by surface

curvatures [35], nose detector [7], or triangular surface

patch descriptors [28]. However, these methods may fail

when such features cannot be detected under conditions of

highly noisy depth data, extreme poses or large occlusions.

Another type of methods applied the discriminative

methods based on the random forests [18, 17], the deep

Hough network [30], or finding the dense correspondence

field between the input depth image and a predefined canon-

ical face model [20, 40]. Although these methods are

promising and accurate, they require extensive and sophis-

ticated supervised training with large scale datasets.

Another approach involves rigid and non-rigid registra-

tion of 3D face models to input depth images, either through

the use of 3D morphable models [1, 11, 10, 9, 13, 29, 8,

6, 19, 26, 24, 34], or brute-force per-vertex 3D face re-

construction [37, 41, 23]. Although such systems may

be accurate, most require offline initialization or user cal-

ibration to create face models specific to individual users.

There are also some subsequent methods that gradually

refine the 3D morphable model over time during active

tracking [24, 26, 6, 19, 36]. Our proposed method falls

into this category. Other than the existing multilinear face

model [12, 38] that is discriminatively applied for tracking,

we enhance this face model through a novel and complete

probabilistic framework, in which the uncertainty due to ex-

pression variation is explicitly modeled while retaining user

identity, thus increasing the stability of tracking.

A related problem is dealing with occlusion that arise

during tracking. While occlusions may be discriminatively

labeled through face segmentation [19, 32] or patch-based

feature learning [17, 18, 30, 20], ICP-based face model reg-

istration frameworks do not handle correspondence ambi-

guities well when typical distance measures or normal vec-

tor compatibility criteria are used [31, 19, 41, 23]. Possible

remedies include particle swarm optimization [27] for op-

timizing delicate objective functions [26]. Recently, Wang

et al. [39] catered for partial registration of general mov-

ing subjects and handled occlusions better by considering

multi-view visibility consistency. Our proposed ray visibil-

ity score incorporates a similar visibility constraint between

the face model and the input point cloud but with a proba-

bilistic formulation, which is able to more robustly handle

uncertainties in the 3D face model, and is thus less vulnera-

ble to local minima that are frequently encountered in ICP.

3. Probabilistic 3D Face Parameterization

In this section, we introduce the 3D face model with a

probabilistic interpretation, which acts as an effective prior

for facial pose estimation and face identity adaptation.

3.1. Multilinear Face Model

We apply the multilinear model [12, 38] to parametri-

cally generate arbitrary 3D faces that are adaptive to dif-

ferent identities and expressions. It is controlled by a

three dimensional tensor C 2 R
3NM⇥Nid⇥Nexp that each

dimension corresponds to shape, identity and expression,

respectively. The multilinear model represents a 3D face

f = (x1, y1, z1, . . . , xNM
, yNM

, zNM
)> consisting of NM

vertices (xn, yn, zn)
> as

f = f̄ + C ⇥2 w
>
id ⇥3 w

>
exp, (1)

where wid 2 R
Nid and wexp 2 R

Nexp are linear weights for

identity and expression, respectively. ⇥i denotes the i-th

mode product. f̄ is the mean face in the training dataset. The

tensor C, or called the core tensor, encoding the subspaces

that span the shape variations of faces, is calculated by high-

order singular value decomposition (HOSVD) to the train-

ing dataset, i.e., C = T ⇥2 Uid ⇥3 Uexp. Uid and Uexp

are unitary matrices from the mode-2 and mode-3 HOSVD

to the data tensor T 2 R
3NM⇥Nid⇥Nexp . T is a 3D tensor

that collects the offsets against the mean face f̄ from face

meshes with varying identities and expressions in the train-

ing dataset. We employ the FaceWarehouse dataset [12]

as the training dataset since it contains thousands of face

meshes with a comprehensive set of expressions and a vari-

ety of identities including different ages, genders and races.

3.2. Proposed Statistical Face Model

Unlike conventional approaches, we do not employ a sin-

gle face template with heuristically determined parameters

to fit the target point cloud or track its motion, as doing

so may lead to poor fitting to the user or be incompatible

with local expression variations. Instead, we propose a face

model in which the face shape can be probabilistically gen-

erated from a computed distribution, with the dynamics of
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Figure 2. The statistics of the face model trained in the FaceWare-

house dataset [12]. (a) Overall shape variation. (b)–(c) Shape vari-

ations by wid and wexp, respectively. (d) Shape variation by the

residual term in Eq. (2). The shape variation is set as one standard

deviation of the marginalized per-vertex distribution.

the tracked face reliably predicted. Such a model essentially

provides probabilistic priors for robust face pose tracking.

3.2.1 Identity and Expression Priors

It is reasonable to assume the identity weight wid and ex-

pression weight wexp follow two independent Gaussian dis-

tributions, wid = µid +✏id, ✏id ⇠ N (✏id|0,Σid) and wexp =
µexp + ✏exp, ✏exp ⇠ N (✏exp|0,Σexp). These prior distribu-

tions can be estimated from the training data. In particular,

we learn that µid = 1
Nid

U>
id1 and µexp = 1

Nexp
U>

exp1. The

variance matrices are set to identity matrices with scales,

i.e., Σid = σ2
idI, and Σexp = σ2

expI, where σ2
id = 1

Nid
and

σ2
exp = 1

Nexp
are empirically learned from the training set.

Note that µid (or µexp) should not be 0 as it will possibly let

the face model f insensitive to wexp (or wid) [5].

3.2.2 Multilinear Face Model Prior

The canonical face modelM with respect to wid and wexp

can be written in the form

f = f̄ + C ⇥2 µid ⇥3 µexp + C ⇥2 ✏id ⇥3 µexp

+ C ⇥2 µid ⇥3 ✏exp + C ⇥2 ✏id ⇥3 ✏exp.
(2)

The last term in (2) is usually negligible on the shape vari-

ation, as visualized in Fig. 2. Therefore,M approximately

follows a Gaussian distribution as

pM(f) = N (f |µM,ΣM), (3)

where its neutral face is µM = f̄ + C ⇥2 µid ⇥3 µexp,

and its variance matrix is given by ΣM = PidΣidP
>
id +

PexpΣexpP
>
exp. The projection matrices Pid and Pexp for

identity and expression are defined as: Pid = C ⇥3 µexp 2

R
3NM⇥Nid ,Pexp = C ⇥2 µid 2 R

3NM⇥Nexp . µM is

nearly the same as the mean face f̄ , since kµM − f̄k2 =
1

NidNexp
kC ⇥2 (U

>
id1) ⇥3 (U

>
exp1)k2 ' 0. It means that the

priors of wid and wexp do not add biases to the face model

M for the representation of the training dataset.

We are also interested in the identity adaptation that is

invariant to the expression variations. The joint distribution

of the face model and the identity parameter is

p(f ,wid) = pM(f |wid)p(wid)

= N (f |f̄ +Pidwid,ΣE)N (wid|µid,Σid), (4)

where the variance of the expression ΣE = PexpΣexpP
>
exp is

captured in the likelihood p(f |wid). It is therefore robust to

local shape variations led by expression, and the posterior

of wid will be less affected by the user’s current expression.

On the other hand, once the identity is adapted to current

user, it will help adjust the expression variance ΣE and thus

increases the robustness in pose estimation.

As shown in Fig. 2, the overall shape variation (repre-

sented as per-pixel standard deviation) is, unsurprisingly,

most significant in the facial region as compared to other

parts of the head. We further observe that this shape vari-

ation is dominated by differences in identities, as encoded

by ΣI = PidΣidP
>
id . While as expected, the shape uncer-

tainties by the expressions ΣE are usually localized around

the mouth and chin, as well as the regions around cheek

and eyebrow. More importantly, the variation by the resid-

ual term in Eq. (2) has a much lower magnitude than those

caused solely by identity and expression.

4. Probabilistic Facial Pose Tracking

In this section, we present our probabilistic facial pose

tracking. Fig. 3 shows the overall architecture, which con-

sists of two main components: 1) robust facial pose track-

ing, and 2) online identity adaptation. The first component

is to estimate the rigid facial pose ✓, given an input depth

image and the probabilistic facial model pM(f). The pose

parameters ✓ include not only the rotation angles ! and

translation vector t, but also the scale s, as the face model

may not match the input point cloud due to scale differ-

ences. The purpose of the second component is to update

the distribution of the identity parameter wid and the prob-

abilistic face model pM(f), given the previous face model,

the current pose parameter and the input depth image.

4.1. Robust Facial Pose Tracking

Prior to tracking or after tracking failure, we need to de-

tect the position of the face in the first frame. We employ

the head detection method by Meyer et al. [26], and crop the

input depth map to get a depth patch centered at the detected

head center within a radius of r = 100 pixels. Denote the

point cloud extracted from this depth patch as P .

The pose parameters ✓ = {!, t, ↵} indicate the rotation

angles, translation vector, and the logarithm of the scale s,

i.e., s = e↵ > 0, 8↵ 2 R. A canonical face model point fn
is rigidly warped into qn, n 2 {1, . . . , NM} as

qn = T(✓) ◦ fn = e↵R(!)fn + t, (5)
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Figure 3. Overview of the propose probabilistic framework, which consists of two components: robust facial pose estimation and online

identity adaptation. For both components, the generative model p
(t)
M

(f) acts as the key intermediate and it is updated immediately with

the feedback of the identity adaptation. The input to the system is the depth map while the output is the rigid pose parameter θ(t) and the

updated face identity parameters {µ
(t)
id ,Σ

(t)
id } that encode the identity distribution p(t)(wid). Note that the color image is for illustration

but not used in our system.

Figure 4. Samples of the occluded faces.

where the transformation T(✓) ◦ fn describes this rigid

warping, while R(!) is the rotation matrix. Thus, the

warped face model Q owns a similar distribution for each

qn 2 Q that is closely related to (3):

pQ(qn;✓) = N (qn|T(✓) ◦ µM,[n], e
2↵Σ

(ω)
M,[n]), (6)

where µM,[n] and Σ
(ω)
M,[n] are the mean vector and the ro-

tated variance matrix for point fn in µM and ΣM, respec-

tively. Moreover, we have Σ
(ω)
M,[n] = R(!)ΣM,[n]R(!)>.

To find an optimal pose that matches the warped face

model Q and the input point cloud P , we expect the sur-

face distribution of P to be within the range spanned by

the distribution of face model Q. However, in practical un-

controlled scenarios, we often encounter self-occlusions or

object-to-face occlusions, where the occluded human faces

are always behind the occluding objects, like hair, glasses

and fingers/hands, as shown in Fig. 4. In these scenarios,

even if the face model Q and the input point cloud P are

correctly aligned, Q only partially fits a subset point cloud

in P with the remaining points in Q are occluded.

Therefore, it is necessary to identify the non-occluded

or visible parts of Q that overlap with P , based on which

we can robustly track the facial pose. For identifying vis-

ible parts, we did not follow a strict correspondence-based

method like distance thresholding and normal vector com-

patibility check [19], since finding reliable correspondence

is itself challenging. Instead, we propose a ray visibility

constraint (RVC) to regularize the visibility of each face

model point, based on our developed statistical face prior.

4.1.1 Ray Visibility Constraint

Formally we can specify the ray connecting the camera cen-

ter to a face model point qn as ~v(qn,pn), by identifying pn

as the point in P nearest to this ray. This point can be

found by matching pixel locations with qn via a lookup-

table [19, 23]. If qn is visible, it should be closely located

to the local surface extracted from P . If qn is not visible,

it must be occluded by the surface and thus located further

away than the surface. However, if qn is in front of the sur-

face point along the ray, it should suffer obligatory penalty

that will push the face model Q farther away so as to let

qn be around the surface of P . Eventually, the face model

will tightly and/or partially fit P while leaving the rest of

the points as occlusions. Please take Fig. 5 as examples.

The surface of P is locally defined by fitting planes to

neighboring points. Thus if qn is linked to pn through the

ray ~v(qn,pn), the signed distance of qn to the surface is

∆(qn;pn) = n>(qn − pn) (7)

where nn is the normal vector of the local plane centered

at point pn. Based on (6), the distribution of the signed

distance pQ!P(yn;✓) can be modeled as

N
⇣

yn|∆(T(✓) ◦ µM,[n];pn), σ
2
o + e2↵n>

nΣ
(ω)
M,[n]nn

⌘

,

(8)

where σ2
o is the data noise variance of P taking into account

the surface modeling error and the sensor’s systematic error.

According to the ray visibility constraint, we can classify

the point qn with the label γn = {0, 1}:
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(a) Case-I (b) Case-II (c) Case-III

Face point is visible Face point is occludedγn = 1 γn = 0

Figure 5. Illustration of the ray visibility constraint. A profiled

face model and a curve on the point cloud are in front of a depth

camera. (a) A part of face points fit the curve, while the rest points

are occluded. (b) The face model is completely occluded. (c) An

unrealistic case that the face model occludes the point cloud.

i) qn is visible (γn = 1). If the point qn is visible along

the ray ~v(qn;pn), qn should be around or in front of the sur-

face centered at pn. That is ∆(T(✓) ◦ µM,[n];pn) should

be within the bandwidth of pQ!P(yn) or negative1:

∆(T(✓) ◦ µM,[n];pn) 
q

σ2
o + e2↵n>

nΣ
(ω)
M,[n]nn.

ii) qn is occluded (γn = 0). Similarly, the point qn is

assumed to be occluded when its signed distance is positive

and beyond the confidence interval of pQ!P(yn;✓):

∆(T(✓) ◦ µM,[n];pn) >
q

σ2
o + e2↵n>

nΣ
(ω)
M,[n]nn.

Theoretically, we are able to compute the posteriors for

{γn}
NM

n=1 so as to favor a full Bayesian framework for pose

estimation. But in practice, we find the binary labels are

efficient and will not degrade performance too much.

4.1.2 Ray Visibility Score

Here we develop a ray visibility score (RVS) to measure the

compatibility between the distributions of face model points

Q and the input point cloud P .

Consider a ray ~v(qn,pn) connecting a model point qn

and input point pn. Assume Q is correctly aligned, via the

signed distance yn, the distribution of pn is modeled as

pP(yn) = N (yn|0, σ
2
o)

γnUO(yn)
1−γn , (9)

where UO(yn) = UO is a uniform distribution. (9) takes

into account the visibility labels. When qn is visible, pn

has a compatible surface distribution ofN (yn|0, σ
2
o). How-

ever, if qn is occluded, pn can be arbitrary as long as it

is in front of qn, which we model as a uniform distribu-

tion UO(yn). Similarly, given P , we can project the face

1We keep nn pointing to the captured scene. Thus the negative signed

distance yn means qn is in front of the surface.

Algorithm 1: Robust 3D Facial Pose Tracking

Input : Input depth frame Dt;

Previous pose parameters θ(t−1);

Output: Current pose parameters θ(t) ;

1 θ0 ← θ(t−1);

2 if tracking failed then θ0 ← head detect(Dt);
3 P ← extract point cloud(Dt,θ0);

4 generate particles {φ
i
}
Nparticle

i=1 around initial pose θ0;

5 for τ ← 1 to Niter do

6 for i ← 1 to Nparticle do

7 update φ
i

by optimizing S(Q,P;φ
i
) in Sec. 4.1.3

8 particle swarm update of all particles

9 θ(t) ← φbest where S(Q,P;φbest) has the minimum score

model pQ(qn;✓) onto the local surface of pn’s, just as

pQ!P(yn;✓). pP(yn) can be regarded as a noisy face mea-

surements contaminated by occlusions, while pQ!P(yn;✓)
denotes the face model with its own uncertainties, both of

which are projected on the surfaces of P .

The ray visibility score S(Q,P;✓) is to measure the

similarity between pP(y) =
QNM

n=1 pP(yn) and pQ(y;✓) =
QNM

n=1 pQ!P(yn;✓) by the Kullback-Leibler divergence,

S(Q,P;✓) = DKL [pQ(y;✓)||pP(y)] (10)

so that the more similar pP(y) and pQ(y;✓) are, the smaller

S(Q,P;✓) is. Thus, the optimal pose parameter ✓⇤ is the

one minimizing the ray visibility score:

✓⇤ = argmin
θ,γ
S(Q,P;✓). (11)

Note that (10) does not only account for the visible points

but also penalizes occluded points to some extent, which

avoids a degenerate solution with only a trivial number of

perfectly aligned visible points, while the bulk of the points

are labeled as occluded.

4.1.3 Rigid Pose Estimation

Solving (11) is challenging since S(Q,P;✓) is highly non-

linear with no off-the-shelf closed-form solution. In this

work, we apply a recursive estimation method to solve this

problem. In particular, in each iteration, we alternatively

estimate the intermediate ✓(t) and γ(t). In the first subprob-

lem, we apply the quasi-Newton update ✓(t) = ✓(t−1)+∆✓

using the trust region approach for S(Q,P;✓(t−1)) under

the previous γ(t−1). The second one is to update the vis-

ibility label set γ(t) = {γ
(t)
n }

NM

n=1 by examining the ray

visibility constraint to all point pairs {~v(qn,pn)}
NM

n=1 from

the current pose ✓(t) and face model p
(t)
M
(f). The process

repeats until convergence or beyond the predefined itera-

tion numbers. Moreover, the particle swarm optimization
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Nseq Nfrm Nsubj Difficulties ωmax

BIWI [18] 24 ∼15K 25
occlusions ±75

◦ yaw

expressions ±60
◦ pitch

ICT-3DHP [1] 10 ∼14K 10
occlusions ±75

◦ yaw

expressions ±45
◦ pitch

Table 1. Facial Pose Datasets Summarization

(PSO) [27, 26] is further introduced to effectively elimi-

nate the misalignment problem due to poor initialization,

and rectify the wrong estimation when the optimization gets

stuck in bad local minima of the RVS. A sketch of the rigid

facial pose tracking is listed in Algorithm 1.

4.2. Online Identity Adaptation

In parallel with the rigid pose tracking, the face model is

also progressively updated to adapt the user’s identity. Be-

cause the identity is initially unknown when a new user first

appears in the sensors, we begin with a generic face model,

and then the identity is gradually personalized. In this work,

local shape variations by expressions are effectively sepa-

rated in our probabilistic model, thus the estimated identity

is robust to the interferences by expression variations.

As depicted in Sec. 3.2, the face model is personalized

by the identity distribution p?(wid) = N (wid|µ
?
id,Σ

?
id).

However, the exact p?(wid) is unknown if no adequate

depth samples are available. Thus the face identity re-

quires sequential update such as the assumed-density filter-

ing (ADF) [2], to approximate p(t)(wid) from the posterior

induced by the current likelihood pL(y
(t)|wid;✓

(t)) and the

previous best estimate p(t−1)(wid).

The likelihood pL(y
(t)|wid;✓

(t)) that models the dis-

tances from the visible face model points to the surface of

P , as well as the distances for the occluded points:

NM
Y

n=1

pQ!P(y
(t)
n |wid;✓

(t))γnUO(y
(t)
n )1−γn , (12)

where the projection distribution pQ!P(y
(t)
n |wid;✓

(t)) is

similar to pQ!P(y
(t)
n ;✓(t)) in (8) but with a different

mean mn = ∆̃
⇣

T(✓(t)) ◦ (f̄n +Pidwid);pn

⌘

and vari-

ance ⇠2n = σ2
o + e2↵

(t)

n
(t)>
n Σ

(t−1)
E,[n] n

(t)
n . To eliminate the

quantization errors in the input point cloud, we modify that

∆̃(qn;pn) = sign(∆(qn;pn))max{|∆(qn;pn)| − ", 0}.

The identity distribution p(t)(wid) = N (wid|µ
(t)
id ,Σ

(t)
id )

is estimated by minimizing DKL[p
(t)(wid)||p(wid|y

(t))]
[2]. Particularly, we compute the posterior following

p(wid|y
(t)) ⇠ pL(y

(t)|wid;✓
(t))p(t−1)(wid). (13)

The parameters of p(t)(wid) are estimated through the vari-

ational Bayes framework [2]. We empirically find that this

process converges within 3 ⇠ 5 iterations.

To fast capture a new user when the face model has been

personalized, we add a relaxation to the variance matrix of

p(t)(wid) as Σ
(t)
id  (λ+1)Σ

(t)
id immediately after the iden-

tity adaptation. This process is analogous to adding more

variances to µ
(t)
id from the identity space Σ

(t)
id , so that it will

neither lose the ability to describe a new face, nor fail to

preserve the shape of the estimated identity space.

5. Experiments and Discussions

5.1. Datasets And System Setup

We evaluate the proposed method on two public depth-

based benchmark datasets, i.e., the Biwi Kinect head pose

dataset [18] and ICT 3D head pose (ICT-3DHP) dataset [1].

The dataset summaries are listed in Tab. 1.

Biwi Dataset: Biwi dataset contains over 15K RGB-D im-

ages of 20 subjects (different genders and races) in 24 se-

quences, with large ranges in rotations and translations. The

recorded faces suffer the occlusions from hair and acces-

sories and shape variations from facial expressions.

ICT-3DHP Dataset: 10 Kinect RGB-D sequences includ-

ing 6 males and 4 females are provided by the ICT-3DHP

dataset. The data contain similar occlusions and distortions

like Biwi dataset. Each subject in this dataset also involves

arbitrary expression variations.

System Setup: We implemented the proposed 3D facial

pose tracking algorithm in MATLAB. The results reported

in this paper were measured on a 3.4 GHz Intel Core i7 pro-

cessor with 16GB RAM. No GPU acceleration was applied.

The dimension of the face model is NM = 11510, Nid =
150, Nexp = 47. In practice, we employ a truncated multi-

linear model with smaller dimensions as Ñid = 28, Ñexp =
7. We set the noise variance as σ2

o = 25, and the outlier

distribution is characterized by UO(y) = UO = 1
2500

2. λ is

empirically set to 0.25.

Our method adapts the identity for a period of frames and

it continues until the adapted face model converges, i.e., the

average point-wise difference between adjacent face models

is smaller than a given threshold (e.g., 5 mm). The online

face adaptation is performed every 10 frames to avoid over-

fitting to partial facial scans.

5.2. Comparisons with the state-of-the-arts

We compare our method with a number of prior arts [18,

26, 25, 1, 28, 27, 24] for depth-based 3D facial pose track-

ing on the Biwi [18] and ICT-3DHP [1] datasets. Tab. 2

shows the average absolute errors for the rotation angles and

the average Euclidean errors for the translation on the Biwi

dataset. The rotational errors were further quantified with

respect to the yaw, pitch and roll angles, respectively. Sim-

ilarly in Tab. 3, we evaluate the average rotation errors on

2Note that the measurement unit used in this paper is millimeter (mm)
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(a) Biwi dataset (b) ICT-3DHP dataset

Figure 6. (a) Tracking results on the Biwi dataset with the personalized face models. (b) Tracking results on the ICT-3DHP dataset. The

extracted point clouds of the head regions are overlaid with the personalized face models. Our system is robust to the profiled faces and

occlusions, and is also effective to the facial expression variations.

Method
Errors

Yaw (◦) Pitch (◦) Roll (◦) Translation (mm)

ours 2.3 2.0 1.9 6.9

RF [18] 8.9 8.5 7.9 14.0

Martin [25] 3.6 2.5 2.6 5.8

CLM-Z [1] 14.8 12.0 23.3 16.7

TSP [28] 3.9 3.0 2.5 8.4

PSO [27] 11.1 6.6 6.7 13.8

Meyer [26] 2.1 2.1 2.4 5.9

Li? [24] 2.2 1.7 3.2 −

Table 2. Evaluations on Biwi dataset

Method
Errors

Yaw (◦) Pitch (◦) Roll (◦)

ours 3.4 3.2 3.3

RF [18] 7.2 9.4 7.5

CLM-Z [1] 6.9 7.1 10.5

Li? [24] 3.3 3.1 2.9

Table 3. Evaluations on ICT-3DHP dataset

the ICT-3DHP dataset. Note that the results of the reference

methods are taken directly from those reported by their re-

spective authors in literature.

On the Biwi dataset, the proposed method produces the

overall lowest errors for rotation among the depth-based

head pose tracking algorithms [18, 1, 25, 28, 24, 27, 26].

Although no appearance information is used, the proposed

approach performs comparable with the state-of-the-art

method [24] (marked with ? in Tab. 2 and 3) that employed

both RGB and depth data. Similar conclusions can also

be drawn on the ICT-3DHP dataset, where the proposed

method also achieves a superior performance on estimat-

ing the rotation parameters in comparison with the random

forests [18] and CLM-Z [1]. Our performance is similar to

Li [24] even though no color information is used.

As for the translation parameters, the proposed method

also achieves very competitive performance on the Biwi

Figure 7. Examples of identity adaptation. Our method success-

fully adapts the generic model to different identities.

dataset3. The sight degradation against Meyer et al. [26]

shown in Tab. 2 may be because of the incompatibility of

model configurations between the groundtruth face model

in Biwi dataset and the proposed statistical multilinear face

model based on [12, 38].

5.3. Visual Results

Fig. 6 shows some tracking results on Biwi and ICT-

3DHP datasets based on the gradually adapted face models.

Although using generic model can already achieve good

performance over challenging cases like occlusions and ex-

pression variations with poor initial poses, as shown in

Fig. 9, using personalized face model achieves even better

results in both the rotation and translation metrics. More-

over, the personalized shape distributions enables the face

model to fit compactly with the input point cloud, while the

personalized expression distribution makes the estimated

facial pose robust to changes in the personalized expres-

sions. Fig. 7 reports a few personalized face models to vi-

sually validate the performance.

3Groundtruth translations are not available for ICT-3DHP datasets [1].
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(a) Color image (b) Point cloud (c) Initial alignment 

(d) ICP (e) RVC + ML (f) RVS (g) RVS + PSO 

Figure 8. Comparison of the rigid pose estimation methods with

the generic face model. (a) and (b): color image and its corre-

sponded point cloud. (c): two views of the initial alignment. (d):

result of ICP [31]. (e): result by maximizing the log-likeligood

log pQ!P(y;θ). (f): result by minimizing the RVS. (g): the aug-

mented RVS method by PSO (RVS+PSO).

As for the rigid pose tracking, our method efficiently in-

fers the occlusions caused by hairs, accessories and hand,

as well as the self-occlusions like profiled faces, as shown

in Fig. 6 by personalized face models, and Fig. 9 and 8 by

generic face models. Fig. 1(a) also visualizes the visibility

masks on the personalized face models, telling that the pro-

posed method can effectively prune the occlusions out of

the pose estimation as well as the face model adaptation.

In comparison with common techniques like iterative

closest points (ICP) [31], the proposed method only needs

the set of rays V = {~v(qn,pn)}
NM

n=1 but do not require

explicit correspondences during estimation. In contrast,

ICP [31] and its variants are not able to check the visibility

of each matched point pair, thus cannot guarantee a reason-

able pose. For example, as shown in Fig. 8(d), ICP matches

the face model with the hairs but has not been aware of

the fact that the face cannot occlude the input point cloud.

Moreover, the RVS is less vulnerable to bad local minima,

since it rewards a higher overlap of the probability distri-

butions pP(y) and pQ!P(y;✓) of depth data points and

model points, respectively, rather than attempting to com-

pute the maximum likelihood (ML) or maximum a poste-

riori (MAP) estimate, which is more sensitive to accurate

estimation of distribution parameters. For example, max-

imizing the likelihood pQ!P(y;✓) in (8) may just seek a

local mode that fails to catch the major mass of the distribu-

tion, as shown in Fig. 8(e). On the contrary, the Kullback-

Leibler divergence in RVS ensures the face model distri-

bution with the optimal ✓ covers the bulk of information

conveyed in pP(y). Fig. 8 and 9 reveal the superiority of

the RVS and RVS+PSO methods in handling unconstrained

facial poses with large rotations and heavy occlusions, even

with the generic face model.

(a) Color image (b) Point cloud (c) Initial alignment (d) Ours 

Figure 9. Examples of our rigid pose estimation by the generic

face model. (a)–(b): color images and the corresponded point

clouds. (c): initial alignment provided by the head detection

method [26]. (d): the proposed rigid pose estimation results.

5.4. Limitations

The proposed system is inevitably vulnerable when the

input depth video is contaminated by heavy noise, outliers

and quantization errors. On the other hand, effective clues

like facial landmarks are inaccessible due to the missing of

the color information. Thus, difficult facial poses (with ex-

treme large rotational angles or occlusions) receiving less

confidence from the ray visibility constraint may still be

unreliable. However, this problems could be relieved by

constraining the temporal coherency of facial poses among

adjacent frames like Kalman filtering and etc.

6. Conclusions

We propose a robust 3D facial pose tracking for com-

modity depth sensors that brings about the state-of-the-art

performances on two popular facial pose datasets. The pro-

posed generative face model and the ray visibility constraint

ensure a robust 3D facial pose tracking that effectively han-

dles heavy occlusions, profiled faces and expression varia-

tions, as well as online adapts face model without the inter-

ference from the face expression variations.
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