
Learning and Refining of Privileged Information-based RNNs for Action

Recognition from Depth Sequences

Zhiyuan Shi, Tae-Kyun Kim

Department of Electrical and Electronic Engineering,

Imperial College London

{z.shi,tk.kim}@imperial.ac.uk

Abstract

Existing RNN-based approaches for action recognition

from depth sequences require either skeleton joints or hand-

crafted depth features as inputs. An end-to-end manner,

mapping from raw depth maps to action classes, is non-

trivial to design due to the fact that: 1) single channel map

lacks texture thus weakens the discriminative power; 2) rel-

atively small set of depth training data. To address these

challenges, we propose to learn an RNN driven by privi-

leged information (PI) in three-steps: An encoder is pre-

trained to learn a joint embedding of depth appearance and

PI (i.e. skeleton joints). The learned embedding layers are

then tuned in the learning step, aiming to optimize the net-

work by exploiting PI in a form of multi-task loss. How-

ever, exploiting PI as a secondary task provides little help

to improve the performance of a primary task (i.e. classi-

fication) due to the gap between them. Finally, a bridging

matrix is defined to connect two tasks by discovering la-

tent PI in the refining step. Our PI-based classification loss

maintains a consistency between latent PI and predicted

distribution. The latent PI and network are iteratively es-

timated and updated in an expectation-maximization proce-

dure. The proposed learning process provides greater dis-

criminative power to model subtle depth difference, while

helping avoid overfitting the scarcer training data. Our ex-

periments show significant performance gains over state-

of-the-art methods on three public benchmark datasets and

our newly collected Blanket dataset.

1. Introduction

Action recognition from depth sequences [57, 34, 29,

44, 49] has attracted significant interest recently due to the

emergence of low-cost depth sensors. Human action refers

to a temporal sequence of primitive movements carried out

by a person [55]. Recurrent neural network (RNN) [17]

is naturally suited for modeling temporal dynamics of hu-

man actions as it can be used to model joint probability

distribution over sequences, especially in the case of long

short-term memory (LSTM) [18] which is capable of mod-

eling long-term contextual information of complex sequen-

tial data.

RNN-based approaches become the dominant solution

[61, 42, 9, 27] for action recognition from depth sequence

recently. However, these approaches require either skele-

ton joints [61, 9, 22] or hand-crafted depth features [42] as

inputs in both training and testing. Skeleton-based action

recognition assumes that a robust tracker can estimate body

joints accurately in the testing stage. This often does not

hold in practice, especially when a human body is partly

in view or the person is not in an upright position. Hand-

crafted features with heuristic parameters are designed for

task-specific data. This often requires multi-stage process-

ing phases, each of which needs to be carefully designed

and tuned.

An end-to-end trainable model from raw video frames

[8] is desired to extract spatio-temporal features and model

complex sequences in a unified framework. This learn-

ing pipeline typically combines a deep convolutional neu-

ral network (CNN) [25] as visual feature extractor and an

RNN [17] to model and recognize temporal dynamics of

sequential data. Unfortunately, these conventional end-to-

end manners (CNN+RNN) are difficult to be applied to ac-

tion recognition from depth sequences due to the fact that:

1) Color and texture are precluded in depth maps, which

weaken the discriminative power of the representation cap-

tured by the CNN model. 2) Existing depth data of human

actions are considered as a small-scale dataset compared to

publicly available RGB image dataset. These conventional

pipelines are purely data-driven that learn its representation

directly from the pixels. Such model is likely at the risk of

overfitting when the network is optimized on limited train-

ing data.

To address the above-mentioned issues, we propose

a privileged information-based recurrent neural network

(PRNN) that exploits additional knowledge to obtain a bet-

ter estimate of network parameters. This additional knowl-
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Figure 1: The proposed framework of PI-based RNNs. Our approach consists of three steps: 1) The pre-training step taking

both depth maps and skeleton as input. An embedded encoder is trained in a standard CNN-RNN pipeline. 2) The trained

encoder is used to initialize the learning step. A multi-task loss is applied to exploit the PI in the regression term as a

secondary task. 3) Finally, refining step aims to discover the latent PI by defining a bridging matrix, in order to maximize the

effectiveness of the PI. The latent PI is utilized to close the gap between different information. The latent PI, bridging matrix

and the network are optimized iteratively in an EM procedure.

edge, also referred to as privileged information (PI) [41],

hidden information [50] or side information [54, 19], is only

available during training but not available during testing.

Our model aims to encode PI into the structure or param-

eters of networks automatically and effectively during the

training stage. In this work, we consider skeleton joints

as the PI in the proposed three-step training process (see

Fig. 1). A pre-training stage is introduced that taking both

depth sequences and skeleton joints as input. The learned

embedding layers construct intermediate distributions over

the appearance of depth sequences and skeleton joints. As

our method aims to utilize only depth sequences as input

in testing stage, we then optimize our model by formulat-

ing the PI into an multi-task loss in learning step: a stan-

dard softmax classification loss as our primary task, and a

regression loss as our secondary task, which learn the map-

ping parameters to predict the skeleton joints from depth

appearance. However, We observe empirically that exploit-

ing PI as a secondary task provides little help to improve the

performance of primary task due to the gap between them.

Finally, a bridging matrix is defined to connect two tasks by

discovering latent PI in the refining step. We present a PI-

based classification loss serving as a connector to maintain

a consistency between latent PI and primary output distri-

bution by penalizing the violation of the loss inequality. We

enforces dependencies across regression and classification

targets by seeking shared information. The bridging ma-

trix, latent PI and network parameters are iteratively esti-

mated and updated in an expectation-maximization (EM)

procedure. This proposed learning process can provide

greater discriminative power to model subtle depth differ-

ence, while helping avoid overfitting the scarcer training

data. As we encode skeleton joints as PI, our model does

not require a skeleton tracker in a testing stage, showing its

better generalizability in a more challenging scenario, such

as when a human body is partly in view or the person is not

in an upright position.

We evaluate the proposed PRNN against state-of-the-arts

on the task of action recognition from depth sequences.

We demonstrate that our approach can achieve higher ac-

curacy on the three public benchmark datasets: MSR Ac-

tion3D [26], SBU Interaction dataset [59] and Cornell Ac-

tivity [39]. A larger performance gain can be obtained on

our newly collected Blanket dataset, where actions captured

from a challenging camera view-point and some actions are

partially occluded by a blanket. We also compare with sev-

eral variants of our model and show that each component

consistently contributes to the overall performance.

2. Related Work

Action recognition from depth sequence Human action

recognition using depth maps can be classified in local

or global methods. The elaborately designed features

[26, 47, 34] are typically extracted from spatio-temporal

interest points to describe the local appearance in 3D vol-

umes or the area around human joints [16]. On the other
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hand, high-level representations [56] aim to globally model

the postures and capture the temporal evolution of actions.

To model sequential state transitions in a principled way,

hidden Markov model (HMM) has attracted a lot of inter-

est [14] in capturing the temporal structure of human action

dynamics. These HMM-based methods require that video

sequences are precisely cropped and aligned with actions of

interest, which itself is a difficult task for real-world videos.

RNNs are able to handle both variable-length input and out-

put that become the dominant model [42, 9, 61] recently,

achieving superior performance over previous approaches.

HBRNN [9] divides human skeleton into five corresponding

parts and feed them into five bidirectionally recurrently con-

nected subnets. [61] improve the model of [9] by automat-

ically discovering the inherent correlations among skeleton

joints. Instead of assuming skeleton joints are always re-

liable in testing stages, [42] model the dynamic evolution

of actions by measuring the salient motions from the in-

put depth appearance. The depth features are still extracted

based on hand-crafted heuristics. In this paper, we provide

an end-to-end solution to action recognition from raw depth

sequences.

Learning with PI Data-driven approaches leverage large

amounts of training data to determine the optimal model pa-

rameters in a bottom-up fashion. Purely data-driven meth-

ods are often very brittle and prone to fail when learning

with limited training data, due to overfitting or an optimiza-

tion obstacle involved. Learning with additional knowledge

is a natural solution to alleviate this issue. This knowledge,

also referred to as PI [41], hidden information [50] or side

information [54], which can help to provide more explana-

tions in training but will not be available at testing. Learning

with PI has been investigated in many existing algorithms.

[11] incorporate PI into an objective function of a structural

SVM to improve object localization performance. [7] show

that the incorporation of additional information can enhance

the dependency between output variables and latent vari-

ables in a random forest framework. Additional knowledge

has also been considered in neural networks. [5] explore the

architecture by providing intermediate targets. [10] demon-

strate the effectiveness of prior distribution for adjusting the

model parameters to improve its generalization. More re-

cently, [30] present a regularized RNNs with additional in-

formation for RGB video sequences. However, PI is either

pre-trained or fixed in previous methods. In this work, we

propose to optimize our end-to-end trainable model with it-

eratively estimating and updating latent PI for depth-based

action recognition.

3. Spatio-Temporal Modeling

We illustrate an overall view of our model in Figure 1.

The architecture mainly consists of an encoder, recurrent

layers and PI-based learning. The encoder consists of sev-

eral layers of convolutions which takes as input a collection

of videos V , where each video Vj is a sequence of frames

Vj = {vt : t = 1, ..., Tj}. The encoder produces vector

space representations Xj = {xt : t = 1, ..., Tj} for all

frames of Vj . The recurrent network is built for integrating

over time all the available information from Xj . Finally, PI

is incorporated to jointly optimize all the layer parameters

in the proposed three-step learning process.

Convolutional Neural Network The spatial appearance of

action and contextual scenes on an individual frame is cap-

tured by our encoder. The architecture of our encoder is

illustrated in Figure 2. It is inspired from VGG-VeryDeep

[37], which is slightly modified from the 11 weights layer

version by considering the depth maps and smaller train-

ing data. The network comprises five convolutional lay-

ers, five max-pooling layers. The rectified linear unit [25]

is adopted as the activation function. Compared to the

widely used CNN encoder for RGB data [30, 37], our en-

coder is more compact and effective for depth sequences.

It is used to extract a feature vector from an input frame.

Given an input depth frame vt ∈ R
224×224, an activation

map f6
t ∈ R

7×7×512 can be obtained from “outMap6”

layer. We apply a linear transformation between the acti-

vation map and feature vectors by xt = tanh(W 6f6
t + b6).

This “map to sequences” operation generates an input vec-

tor xt ∈ R
1×1000 for recurrent layers in refining step.

Recurrent Neural Network RNNs are neural networks

with feedback loops that produce the recurrent connection

in the unfolded network [6, 33, 28]. Given an input se-

quence from the above encoder Xn, the hidden states of

a recurrent layer hj = (ht : t = 1, ..., Tj) are defined as

ht = tanh(W hxt +Uhht−1 + bh). Here W h,Uh are pa-

rameters of an affine transformation which update the con-

nection weights among input layer, hidden layer. RNNs suf-

fer from the vanishing and the exploding gradient problem

[4]. We adopt LSTM [18] to address the problem of learn-

ing long-range dependencies, where a memory cell vector

ct is maintained at each time step t. LSTM contains one

self-connected memory cell c and three multiplicative units,

i.e. the input gate i, the forget gate f and the output gate o,

which can store and access the long range contextual infor-

mation of a temporal sequence. Please refer to [18] for the

precise form of the update.

4. PI-Based RNNs

Standard recurrent neural networks do not provide a

mechanism to exploit the PI when it is available at training

time. We first present a pre-training strategy. The learned

encoder is applied to the learning step and tuned together

with RNNs by formulating the PI into a multi-task loss. In

the final refining step, latent PI is discovered and iteratively

updated with network parameters.
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4.1. Pre­training with PI

A pre-training strategy is proposed to learn a joint em-

bedding by taking both depth sequences Vj and skeleton

joints annotation E = {e1, ..., eS} as input. Each es ∈ R3

has 3 coordinates. In this stage, xt is not directly applied to

RNNs. Instead, the additional layer transforms xt together

with E to derive an embedding space :

x′

t = tanh(W 7xt +WeE + b7) (1)

where We is the weight matrix connecting the skeleton

joints. The resulting x′

t have the same dimensionality

(1000) as xt. This is followed by RNNs to model the dy-

namics of sequential data. Finally, similar to most RNNs

for classification task, a softmax layer is adopted to trans-

form the hidden state vector into the probability distribution

of action classes.

The key insight of the pre-training stage is to learn a

depth encoder that optimizes the embedding over both depth

appearance and skeleton joints. The learned encoder serves

as an initialization in the next learning stage. This pre-

training stage leads to a significant improvement in both

efficiency and effectiveness.

4.2. Learning with PI

Multi-task loss. To obtain the class predictions of an input

sequence Xj , the hidden state can be mapped to an out-

put vector yj = (yt : t = 1, ..., Tj). During training, we

measure the deviation between groundtruth and last mem-

ory cell at the frame T for classification loss, since LSTMs

have the ability to memorize the content of an entire se-

quence. For regression loss, we accumulate the loss of each

frame t across the T frame sequence. The final objective

function in the learning step is to minimize the cumulative

maximum-likelihood loss over all training sequences:

LL(Ω) =

J
∑

j=1

Lc(T, j) + λ

J
∑

j=1

T
∑

t=1

Lr(t, j) (2)

There are J sequences in the training set Ω. The hyper-

parameter λ in Eqn. 2 controls the balance between the two

losses. The classification loss and regression loss are de-

fined as follows:

Classification loss. yt ∈ R
K represents an 1-of-K en-

coding of the confidence scores on K classes of actions,

which can be derived as yt = tanh(W yht + by). This

output vector can be transformed into a vector of prob-

abilities p(ytk) for each class k by softmax function as

p(ytk) = eytk/
∑K

l=1
eytl . To learn the model parameters

of our model, cross entropy loss between the predicted dis-

tribution p(yt) and target class gt is defined as

Lc(t, j)(= −

K
∑

k=1

δ(k − gt) log p(yjtk)

for the sample t of the j-th video, where δ(·) is the Dirac

delta function, and gt denotes the groundtruth label of the

sample t.
Regression loss. Besides classification output, our model

has another sibling output layer as regression term. We

define a skeleton regression targets for groundtruth key-

points Êt = {êt1, ..., êtS} and predicted locations Bt =

{bt1, ..., btS} at each time step t. We select Ê as a sub-

set of the skeleton annotations E, because this is secondary

target and an accurate estimation of all skeleton joints is not

needed in testing. Each instance is accompanied with a set

of keypoint {êxts, ê
y
ts}

S
s=1

locations, which are normalized

with respect to the center and the width and height of the

input region. The loss associated with the task of measur-

ing the skeleton estimation can be expressed as

Lr(t, j) =
1

S

s=S
∑

s=1

((êxjts − bxjts)
2 + (êyjts − byjts)

2)

where we use L2 distance between the normalized key-

points location to quantify the dissimilarity. This loss func-

tion and regression layer only appear in the training stage

for optimizing the neural network with additional informa-

tion.

This extension, known as multi-task learning [32], utilize

the task relationships to learn all individual tasks simultane-

ously, such that information can be shared in the common

structure of the model to benefit all tasks. Similar as [12], it

will help the classification prediction by considering the re-

gression aspects. During testing, the regression component

will be disabled.

4.3. Refining with PI

However, the conventional multi-task loss in the last step

does not consider any relationship between two tasks. We

observe empirically that purely exploiting PI as a secondary

task provides little help to improve the performance of pri-

mary task due to the gap between them. To maximize the

effectiveness of PI for helping primary task, we propose to

discover latent PI from the secondary task in this refining

step. The latent PI is utilized in the primary task to opti-

mize the network. The updated network is further used to

refine latent PI iteratively in an EM procedure.

Latent PI modeling We define latent PI as a informative

distribution which is jointly modeled by secondary task and

a bridging matrix. The bridging matrix M aim to cap-

ture the underlying dependencies between primary and sec-

ondary task. The log-likelihood of the defined model can be

expressed as:

Q(Θ,M) =

J
∑

j=1

log(

K
∑

k=1

p(y′|Xj ;Θ)p(gj |y
′;M)), (3)
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where Θ is the set of parameters of the network in re-

fining step. Given Θ, which initialized by the model from

the learning step, we can predict the skeleton joints Bt of a

depth frame. We concatenate the predicted skeleton of ev-

ery frame to a single vector B = {B1, ...,BTn
}. y′ is then

calculated as a fully connected layer: y′ = W y′

B + by
′

.

W y′

and by
′

is part of Θ, but they are trained from scratch.

During the training of the refining step, our model aims to

maximize the likelihood function by optimizing both the

bridging matrix and network parameter iteratively in an EM

procedure.

Estimating latent PI The explicit expression of latent PI is

as follows:

uk = p(y′k|B, g;Wy′ ,M)

=
p(g|y′k;M)p(y′k|B;Wy′)

∑K

l=1
p(g|y′l;M)p(y′k|B;Wy′)

=
Mkg exp(W

y′

k B + by′)
∑K

l=1
Mlg exp(W

y′

k B + by′)
(4)

p(y′k|B;Wy′) is a predicted probability of the class k by

observing the predicted skeleton joints B of a input depth

sequences. The bridging matrix M aims to transform the

predicted distribution to a latent distribution that can be ef-

fectively used in optimizing the network.

Updating model with latent PI The distribution of latent

PI p(ûj) of an input sequence Xj is defined by p(ûj) =
ujzt, where zt ∈ R

K is randomly generated for each frame

t from a Multinoulli distribution {ĝ ∼ P(α), zĝ = 1, zl =
0, ∀l 6= g}, where P(α) is defined as pg = 1 − K−1

K
α

and pl = 1

K
α, where α is to control how strongly the

prior distribution is pushed to classification loss, and g is

the groundtruth label. We replace the groundtruth label by

the probabilities of latent PI to formulate the PI-based clas-

sification loss in refining step:

LR = −

J
∑

j=1

( K
∑

k=1

p(ûjk) log p(yjTk)

−β

K
∑

k=1

δ(k − gj) log p(y
′

jk)

)

(5)

a standard softmax loss is also included in LR to update

the parameters (e.g. W y′

, by
′

) from the branch of secondary

task. Apart from optimizing network parameters, the bridg-

ing matrix of modeling latent PI can be updated iteratively

by a closed-form solution in the M-step of EM procedure

[31, 36, 3]:

Mkl(Ω) =

∑J

j=1
ujkδ(l − gj)
∑

ujk

, k, l ∈ {1, ...,K}

(6)

Algorithm 1: PI-based RNNs

Input: A collection of videos V , skeleton joints

annotation E, subset of skeleton joints Ê,

groundtruth class label g.

Output: Network parameters, bridging matrix M

Pre-training:
Eq.1 taking both x of depth sequences V and

skeleton joints E,

A encoder is trained by minimize the standard

softmax loss.
end

Learning:

Taking the subset of skeleton joints Ê in the

regression term.

The parameters of network are optimized by

minimizing the multi-task loss Eq. 2

end

Refining:

while not converge do

E-step:
Estimating and updating the latent PI by

Eq. 4

end

M-step:
The parameters of network are optimized

by PI-based classification loss Eq. 5.

The bridging matrix M is updated with

Eq. 6

end

end

end

Discussion on latent PI Latent PI can be treated as a suffi-

cient information to act as a teacher network [24, 40]. How-

ever, our latent PI is obtained in the same framework rather

than trained from a separate model. Our model further re-

fines latent PI according to the feedback of the network in

each iteration. This updating process us two benefits: (1)

The formulation strikes a good balance between the class

distributions learned from depth appearance and skeleton

information. This is similar in spirit to [35], where a weight

distribution is utilized to improve the learning process of

random forest. Sun et al. [38] also incorporate prior infor-

mation (e.g. human height) to enhance the dependency be-

tween output variables and latent variables, where the prior

can help to split data effectively. The skeleton and raw depth

sequence should share relevant and complementary infor-

mation. Here, we measure the loss by partially considering

the posterior obtained from skeleton joints. We show that

this learning process improves the discriminative power of

the network. (2) Apart from learning better depth represen-

tation, our PI-based classification loss provides an effective

way to prevent overfitting. Since the prior label is not per-
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Figure 2: The architecture of the encoder. The convolutional layers (from COV1 to COV5) with kernel size 3×3 and a stride

of 1. The padding implements same convolution (and pooling), where the input and output maps have the same spatial extent.

max-pooling is performed from COV1 to COV5 over 2×2 spatial windows with stride 2.

fectly trained, the noise is introduced when we switch to

the prior label according to α. This term can be treated as a

regularizer similar as [53], where they intentionally gener-

ate incorrect training labels at the loss layer. Our loss func-

tion also seeks to minimize the confusion between the two

distributions.

4.4. Model Training

We summarize the whole training process of the pro-

posed PI-based RNNs in Algorithm 1. Note that the learn-

ing step and refining step can be potentially preformed alter-

natively to improve the effectiveness of the trained model.

In our experiments, we show that one round of learning

and refining step achieves significant improvements. While

small improvements can be further obtained with more

rounds, which has been verified on SBU dataset, we fix to

one round of learning and refining for all experiments with

the good trade-off between accuracy and efficiency. In re-

fining step, the EM procedure is still run iteratively until

convergence.

For all three steps, the error differentials measured by

the last layer of the recurrent neural network will be back-

propagated to feature sequences and feed back to the con-

volutional layers across every frame in the videos. Our ap-

proach is an end-to-end trainable network that jointly learns

the parameters of the CNN and the RNN. We train each

model with stochastic gradient descent on the negative log-

likelihood using the Adam optimizer, with a learning rate of

0.001 for MSR Action3D and 0.0001 for the rest. A mini-

batch size of 10 is applied to all datasets. We use early

stopping when the validation error starts to increase.

5. Experiments

We compare the performance of our model with state-of-

the-art methods and baselines on four datasets: MSR Ac-

tion3D Dataset [26] (Action3D), SBU Interaction dataset

[59] (SBU), Cornell Activity Dataset [39](CAD60), and the

proposed Blanket dataset (Blanket). We also analyze each

component of our model and the computational efficiency.

Datasets: Action3D is an action dataset of depth sequences

captured by a depth camera. This dataset consists of 20

actions performed by 10 subjects. Every action was per-

formed by ten subjects three times each. All sequences are

captured in 15 FPS, and each frame in a sequence contains

20 skeleton joints. Altogether, the dataset has 557 valid

action sequences with 23797 frames of depth maps. SBU

consists of 282 pre-segmented sequences, which includes 8

classes depicting two-person interaction. Each action is per-

formed by 21 pairs of subjects. CAD60 consists of 68 video

clips captured by Microsoft Kinect device. Each video is of

length about 45s. Four different subjects performed 14 dif-

ferent activities in five locations: office, kitchen, bedroom,

bathroom and living room. Blanket contains 120 depth

video clips. There are 12 different action classes performed

by 10 subjects. Our dataset contains more static actions (e.g.

lying and sitting). This dataset is very challenging, as some

actions are partially occluded by a blanket. For example,

one actor is sitting on the bed while he is covered by a blan-

ket (please refer to our supplementary video for all actions).

Implementation details: We implemented the network us-

ing TensorFlow [1]. The architecture of convolutional lay-

ers (see Fig. 2) is slightly modified from VGG-VeryDeep

[37] (with 11 weight layers) for depth maps. We initial-

ize the weights without pre-training by using the normal-

ized initialization procedure [13]. Unlike images which can

be rescaled and randomly cropped to a fixed size, spatio-

temporal consistency has to be considered for video se-

quences. Each input video frame is scaled to 227x227 from

the whole frame. We did not perform the operation of ran-

domly cropped and flipped for utilizing PI easily. The depth

values are normalized to [-1,1]. Our model has a stack of 2

LSTMs of 1000 hidden units each. To reduce the computa-

tion cost, we sample each video of CAD60 with a maximum

length of 200 frames. We do not sample frames from MSR

Action3D, SBU and Blanket dataset. We unroll the LSTM

to a maximum length of 200 time steps for CAD60, 300

time steps for Blanket and 100 time steps for the rest during

training, which is a good trade-off between accuracy and

complexity.

We mainly consider the skeleton joints as our PI. The

prior class distribution is obtained by training DURNN-L

[9] with all available skeletons. In our regression loss, we
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Figure 3: Examples of depth maps on four datasets.

use only six joints (i.e. head, hand left, hand right, foot left,

foot right, hip center) as this secondary target is formulated

for helping classification accuracy. For our Blanket dataset,

we annotate the six joints for both pre-training and refining

stage because of the special camera view-point. We normal-

ize 3D joint coordinates to a unified coordinate system from

the world coordinate system by placing the hip center at the

origin [43]. Similar as [9], we apply a simple Savitzky-

Golay smoothing filter to smooth the skeleton annotations.

5.1. Comparison to the State­of­the­art

The experimental results are shown in Table 1. Existing

state-of-the-art methods can be partitioned into two groups:

using 1) only the depth sequences or 2) at least skeleton

information in the testing stage.

Results on Action3D : We follow a similar evaluation pro-

tocol from [45, 46]. In this setting, the dataset is divided

into two sets, where half of the subjects are used for train-

ing and the other half are used for testing. Compared to

another protocol [9] that splits classes into three subsets,

this setting is more challenging as all actions are evaluated

together. The average accuracy corresponds to the mean

of the confusion matrix diagonal of all classes. Note that

10 skeleton sequences were not used [47] because of miss-

ing data. We compare the proposed model PRNN with Xia

et al. [52], Oreifej et al. [34], and Yang et al. [56]. All

theses methods require only depth maps as input during

testing. We can see that our proposed PRNN achieves the

best average accuracy (94.9 %) compared with them. For

a complete comparison, we also list those skeleton-based

approach in the lower part of the Table 1. Skeleton-based

approaches demonstrate slightly better performance by as-

suming a robust skeleton tracker is available in testing. Our

method aims to provide a more general framework allow-

ing us to learn the model directly from raw observations of

depth videos, rather than explicitly modeling skeletal joints

[9] or local appearance [42]. Many of these methods either

focus on modeling spatio-temporal structure with a certain

assumption [34], or exploit the trajectories of human joints

[42, 60] in the testing stage which rely on accurate skeleton

joints detection.

SBU : We follow the experimental setting of [59, 61] and

use five-fold cross-validation. All action categories are

composed of interactions between actors, involving human

acting and reacting. This dataset is very challenging, espe-

cially in our setting where skeleton information is not avail-

able in testing. We summarize the results in Table 1. We can

Method Action3D SBU CAD60 Blanket

d
ep

th

Xia et al. [52] 89.3 43.69 - 40.6

Oreifej et al. [34] 88.9 77.0 72.7 42.8

Yang et al. [57] 93.45 - - 41.2

PRNN 94.9 89.2 87.6 53.5

sk
el

et
o
n

Vemulapalli et al. [43] 89.48 - - -

Veeriah et al. [42] 92.03 - - -

Hu et al. [20] - - 84.1 -

Koppula et al. [23] - - 71.4 -

Du et al. [9] - 80.35 - -

Wang et al. [48] 96.9 - - -

Wang et al. [45] 91.40 - - -

Zhu et al. [61] - 90.41 - -

Gori et al. [15] 95.38 93.08 - -

Wang et al. [47] 88.2 - 74.7 -

Table 1: Comparison with state-of-the-art methods on four

datasets for action recognition. ’-’ indicates no result was

reported and no code is available for implementation.

see that our method achieves superior performance to the

depth-based approaches and perform close to the skeleton-

based approaches.

CAD60 : We follow the same experimental setting as in

[47, 20] by adopting the leave-one-person-out cross valida-

tion. i.e. the model was trained on three of the four people,

and tested on the fourth. Table 1 compares the results on

CAD60. We can see that the proposed PRNN achieves the

87.6% accuracy with only seeing the depth maps, compar-

ing against previous works which utilize multiple cues (i.e.

RGB frames, depth maps and the tracked skeleton joint po-

sitions) in testing. Some different human actions of CAD60

share similar body motions such as “chopping” and “stir-

ring”. Our model takes advantage of the PI-based learn-

ing process, which allows to distinguish the subtle motions

from depth maps [21].

Blanket: Similar to CAD60, we follow the protocol as [47]

and perform cross-validation on our proposed dataset. We

compare our model with three baseline methods: Xia et al.

[52], Oreifej et al. [34], Yang et al. [57]. We use their

publicly available codes and train their model with vary-

ing their parameters, so as to report the best results for fair

comparison. The experimental results are shown in Table 1.

The proposed PRNN obtains the state-of-the-art accuracy of

53.5%. Our collected data is more difficult to learn than the

existing dataset. Although each basic action is simple like

“sitting” and “lying down”, the actor (i.e. patient) is either

partially occluded by a blanket or in a suffering status when

he performs these actions. It introduces severe noise (e.g.

shaking his body, trembling) to the basic actions. More-

over, this special camera view-point (see Figure 3) and the

occlusion by a blanket will cause difficulties for skeletal es-

timation. As expected, a larger performance gap is seen be-

tween our model and other approaches. This demonstrates

the potential of our model in representing and modeling the

dynamics of actions directly from depth maps.

In brief, we show the competitive performance of the
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Method Action3D SBU CAD60 Blanket

CNN-RNN (vanilla) 87.3 79.2 81.5 37.8

PRNN-NoPreTrain 89.2 85.6 78.6 47.8

PRNN-NoRefine 83.4 71.6 70.5 40.3

PRNN 94.9 89.2 87.6 53.5

Table 2: Contribution of each model component

proposed PRNN on four human action datasets. Our model

provides an effective end-to-end solution for modeling tem-

poral dynamics in action sequences by exploiting the PI in

training time. Unlike most of the previous works that are

based on a certain assumption about the structure of the

depth maps or the availability of a robust skeleton tracker,

our model automatically learns features from raw depth

maps irrespective of any assumptions [58, 51] on the struc-

ture of video sequences .

5.2. Model Analysis

Evaluation of individual components To verify the ef-

fect of individual components in our framework and demon-

strate that if each of them contributes to the performance

boost, we evaluate three variants of our approach: (1)

PRNN-NoPreTrain discards the pre-training strategy as

shown in Sec. 4.1. Instead, the CNN encoder is trained

from the scratch in the learning stage. (2) PRNN-NoRefine

ignores the last refining step as described in Sec. 4.3. The

final model is trained by pre-train and learning steps. Note

that the learning step in Sec. 4.2 can not be removed individ-

ually, because the latent PI is obtained based on the regres-

sion term of the learning step. We report the performance of

a vanilla CNN-RNN pipeline. This is similar to our model

in pre-training step, except that skeleton is not a part of

the input during training. Note that our pre-training stage

(taking both depth and skeleton as input) is specifically de-

signed for our learning stage (with classification and regres-

sion loss). We tried to initialize vanilla CNN-RNN (depth

input with classification loss) with our pretrained model. It

performs much worse than learning from scratch.

We show the average accuracy of all stripped-down ver-

sions of our model in Table 2. Overall, our method con-

sistently achieves better performance with integrating each

individual component, suggesting that each one of them

contributes to the final performance. Without exploiting PI

in the pre-training step, our model performs poorly due to

the ineffective initialization. The vanilla CNN-RNN also

suffers from the relatively small number of training data,

and thus cannot take full advantage of the end-to-end man-

ner. By considering the latent PI information in the refining

step, this overfitting problem can be greatly alleviated from

CNN-RNN and PRNN-NoRefine. It is clear that the per-

formance has been substantially improved (PRNN) when

combining these steps together.

Qualitative analysis We compare our approach with three

variants in Figure 4, which illustrates the real-time predic-
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Figure 4: Qualitative comparison of real-time prediction as

time evolves for the action “falling from the bed”

tion of an example sequence on every 15 time steps. The

groundtruth action label is “falling from the bed”. All meth-

ods give a low confidence to the correct action class at the

beginning. As time evolves, we find that our approach first

correctly predict the action labels. We attribute this faster

learning ability to the mechanism of encoding PI [2], which

allows us to distinguish the subtle depth difference across

successive frames.

Computational efficiency We take the Action3D as an

example to discuss the efficiency of our approach. With

Python and C++ implementation on a NVIDIA Titan X

GPU, our three-steps learning process takes about 11 hours

to converge after continuously decreasing over 200k SGD

iterations. Gradients are averaged over each minibatch

in every training iteration. During testing, it can achieve

real-time performance (≈ 38 FPS). Compared with multi-

stage models, the efficiency of our approach is mainly at-

tributed to its end-to-end property without preprocessing

step. Please refer to our supplementary video for real-time

testing performance.

6. Conclusion and Future Work

In this paper, we propose to learn a recurrent neural

network with PI. The presented learning process provides

threefold benefits: 1) The pre-training stage provides a mid-

level embeddings which can be effectively tuned in the fur-

ther stage. 2) In learning stage, a multi-task loss is formu-

lated to exploit PI as a secondary task. 3) The learned in-

formation is further modeled to a latent PI, which is defined

to close the gap between two tasks. The latent PI is used

to enhance the discriminative power of the learned repre-

sentation by closing two distributions. The latent PI is also

updated iteratively in an EM fashion. In addition, the ran-

domly sampled classification loss operates as a regularizer

to reduce the tendency for overfitting. We apply our model

to the problem of action recognition from depth sequences,

and achieve better performance on three publicly available

datasets and our newly collected dataset. In the future, we

will consider to investigate more different types of PI and

seek to model this information in the intermediate level of

neural network [5].
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