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Abstract

Existing RNN-based approaches for action recognition
from depth sequences require either skeleton joints or hand-
crafted depth features as inputs. An end-to-end manner,
mapping from raw depth maps to action classes, is non-
trivial to design due to the fact that: 1) single channel map
lacks texture thus weakens the discriminative power; 2) rel-
atively small set of depth training data. To address these
challenges, we propose to learn an RNN driven by privi-
leged information (PI) in three-steps: An encoder is pre-
trained to learn a joint embedding of depth appearance and
PI (i.e. skeleton joints). The learned embedding layers are
then tuned in the learning step, aiming to optimize the net-
work by exploiting PI in a form of multi-task loss. How-
ever, exploiting PI as a secondary task provides little help
to improve the performance of a primary task (i.e. classi-
fication) due to the gap between them. Finally, a bridging
matrix is defined to connect two tasks by discovering la-
tent Pl in the refining step. Our Pl-based classification loss
maintains a consistency between latent Pl and predicted
distribution. The latent PI and network are iteratively es-
timated and updated in an expectation-maximization proce-
dure. The proposed learning process provides greater dis-
criminative power to model subtle depth difference, while
helping avoid overfitting the scarcer training data. Our ex-
periments show significant performance gains over state-
of-the-art methods on three public benchmark datasets and
our newly collected Blanket dataset.

1. Introduction

Action recognition from depth sequences [57, 34} 29|
44, 49] has attracted significant interest recently due to the
emergence of low-cost depth sensors. Human action refers
to a temporal sequence of primitive movements carried out
by a person [S5]. Recurrent neural network (RNN) [17]
is naturally suited for modeling temporal dynamics of hu-
man actions as it can be used to model joint probability

distribution over sequences, especially in the case of long
short-term memory (LSTM) [[18] which is capable of mod-
eling long-term contextual information of complex sequen-
tial data.

RNN-based approaches become the dominant solution
(61} 142} 9L [27]] for action recognition from depth sequence
recently. However, these approaches require either skele-
ton joints [61} 9} 22] or hand-crafted depth features [42] as
inputs in both training and testing. Skeleton-based action
recognition assumes that a robust tracker can estimate body
joints accurately in the testing stage. This often does not
hold in practice, especially when a human body is partly
in view or the person is not in an upright position. Hand-
crafted features with heuristic parameters are designed for
task-specific data. This often requires multi-stage process-
ing phases, each of which needs to be carefully designed
and tuned.

An end-to-end trainable model from raw video frames
[8]] is desired to extract spatio-temporal features and model
complex sequences in a unified framework. This learn-
ing pipeline typically combines a deep convolutional neu-
ral network (CNN) [23]] as visual feature extractor and an
RNN [17] to model and recognize temporal dynamics of
sequential data. Unfortunately, these conventional end-to-
end manners (CNN+RNN) are difficult to be applied to ac-
tion recognition from depth sequences due to the fact that:
1) Color and texture are precluded in depth maps, which
weaken the discriminative power of the representation cap-
tured by the CNN model. 2) Existing depth data of human
actions are considered as a small-scale dataset compared to
publicly available RGB image dataset. These conventional
pipelines are purely data-driven that learn its representation
directly from the pixels. Such model is likely at the risk of
overfitting when the network is optimized on limited train-
ing data.

To address the above-mentioned issues, we propose
a privileged information-based recurrent neural network
(PRNN) that exploits additional knowledge to obtain a bet-
ter estimate of network parameters. This additional knowl-
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Figure 1: The proposed framework of PI-based RNNs. Our approach consists of three steps: 1) The pre-training step taking
both depth maps and skeleton as input. An embedded encoder is trained in a standard CNN-RNN pipeline. 2) The trained
encoder is used to initialize the learning step. A multi-task loss is applied to exploit the PI in the regression term as a
secondary task. 3) Finally, refining step aims to discover the latent PI by defining a bridging matrix, in order to maximize the
effectiveness of the PI. The latent PI is utilized to close the gap between different information. The latent PI, bridging matrix

and the network are optimized iteratively in an EM procedure.

edge, also referred to as privileged information (PI) [41],
hidden information [S0] or side information [54}[19], is only
available during training but not available during testing.
Our model aims to encode PI into the structure or param-
eters of networks automatically and effectively during the
training stage. In this work, we consider skeleton joints
as the PI in the proposed three-step training process (see
Fig.[I). A pre-training stage is introduced that taking both
depth sequences and skeleton joints as input. The learned
embedding layers construct intermediate distributions over
the appearance of depth sequences and skeleton joints. As
our method aims to utilize only depth sequences as input
in testing stage, we then optimize our model by formulat-
ing the PI into an multi-task loss in learning step: a stan-
dard softmax classification loss as our primary task, and a
regression loss as our secondary task, which learn the map-
ping parameters to predict the skeleton joints from depth
appearance. However, We observe empirically that exploit-
ing PI as a secondary task provides little help to improve the
performance of primary task due to the gap between them.
Finally, a bridging matrix is defined to connect two tasks by
discovering latent PI in the refining step. We present a PI-
based classification loss serving as a connector to maintain
a consistency between latent PI and primary output distri-
bution by penalizing the violation of the loss inequality. We
enforces dependencies across regression and classification
targets by seeking shared information. The bridging ma-
trix, latent PI and network parameters are iteratively esti-

mated and updated in an expectation-maximization (EM)
procedure. This proposed learning process can provide
greater discriminative power to model subtle depth differ-
ence, while helping avoid overfitting the scarcer training
data. As we encode skeleton joints as PI, our model does
not require a skeleton tracker in a testing stage, showing its
better generalizability in a more challenging scenario, such
as when a human body is partly in view or the person is not
in an upright position.

We evaluate the proposed PRNN against state-of-the-arts
on the task of action recognition from depth sequences.
We demonstrate that our approach can achieve higher ac-
curacy on the three public benchmark datasets: MSR Ac-
tion3D [26], SBU Interaction dataset [59] and Cornell Ac-
tivity [39]. A larger performance gain can be obtained on
our newly collected Blanket dataset, where actions captured
from a challenging camera view-point and some actions are
partially occluded by a blanket. We also compare with sev-
eral variants of our model and show that each component
consistently contributes to the overall performance.

2. Related Work

Action recognition from depth sequence Human action
recognition using depth maps can be classified in local
or global methods. The elaborately designed features
[26] 47, [34] are typically extracted from spatio-temporal
interest points to describe the local appearance in 3D vol-
umes or the area around human joints [16]. On the other
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hand, high-level representations [56] aim to globally model
the postures and capture the temporal evolution of actions.
To model sequential state transitions in a principled way,
hidden Markov model (HMM) has attracted a lot of inter-
est [[14] in capturing the temporal structure of human action
dynamics. These HMM-based methods require that video
sequences are precisely cropped and aligned with actions of
interest, which itself is a difficult task for real-world videos.
RNNss are able to handle both variable-length input and out-
put that become the dominant model [42] 9 |61] recently,
achieving superior performance over previous approaches.
HBRNN [9] divides human skeleton into five corresponding
parts and feed them into five bidirectionally recurrently con-
nected subnets. [61] improve the model of [9]] by automat-
ically discovering the inherent correlations among skeleton
joints. Instead of assuming skeleton joints are always re-
liable in testing stages, [42]] model the dynamic evolution
of actions by measuring the salient motions from the in-
put depth appearance. The depth features are still extracted
based on hand-crafted heuristics. In this paper, we provide
an end-to-end solution to action recognition from raw depth
sequences.

Learning with PI Data-driven approaches leverage large
amounts of training data to determine the optimal model pa-
rameters in a bottom-up fashion. Purely data-driven meth-
ods are often very brittle and prone to fail when learning
with limited training data, due to overfitting or an optimiza-
tion obstacle involved. Learning with additional knowledge
is a natural solution to alleviate this issue. This knowledge,
also referred to as PI [41]], hidden information [50] or side
information [54]], which can help to provide more explana-
tions in training but will not be available at testing. Learning
with PI has been investigated in many existing algorithms.
[[L1]] incorporate PI into an objective function of a structural
SVM to improve object localization performance. [7] show
that the incorporation of additional information can enhance
the dependency between output variables and latent vari-
ables in a random forest framework. Additional knowledge
has also been considered in neural networks. [S] explore the
architecture by providing intermediate targets. [[10] demon-
strate the effectiveness of prior distribution for adjusting the
model parameters to improve its generalization. More re-
cently, [30] present a regularized RNNs with additional in-
formation for RGB video sequences. However, PI is either
pre-trained or fixed in previous methods. In this work, we
propose to optimize our end-to-end trainable model with it-
eratively estimating and updating latent PI for depth-based
action recognition.

3. Spatio-Temporal Modeling

We illustrate an overall view of our model in Figure [1}
The architecture mainly consists of an encoder, recurrent

layers and Pl-based learning. The encoder consists of sev-
eral layers of convolutions which takes as input a collection
of videos V, where each video V; is a sequence of frames
Vi = {vw : t = 1,..,T;}. The encoder produces vector
space representations X; = {x; : t = 1,...,T;} for all
frames of V;. The recurrent network is built for integrating
over time all the available information from X ;. Finally, PI
is incorporated to jointly optimize all the layer parameters
in the proposed three-step learning process.

Convolutional Neural Network The spatial appearance of
action and contextual scenes on an individual frame is cap-
tured by our encoder. The architecture of our encoder is
illustrated in Figure 2] It is inspired from VGG-VeryDeep
[37], which is slightly modified from the 11 weights layer
version by considering the depth maps and smaller train-
ing data. The network comprises five convolutional lay-
ers, five max-pooling layers. The rectified linear unit [25]]
is adopted as the activation function. Compared to the
widely used CNN encoder for RGB data [30} [37]], our en-
coder is more compact and effective for depth sequences.
It is used to extract a feature vector from an input frame.
Given an input depth frame v; € R?24%224 an activation
map f5 € R7X7*512 can be obtained from “outMap6”
layer. We apply a linear transformation between the acti-
vation map and feature vectors by x; = tanh(W f5 +59).
This “map to sequences” operation generates an input vec-
tor z; € R1X1990 for recurrent layers in refining step.
Recurrent Neural Network RNNs are neural networks
with feedback loops that produce the recurrent connection
in the unfolded network [6l 33} 28]]. Given an input se-
quence from the above encoder X,,, the hidden states of
a recurrent layer h; = (h, : ¢t = 1,...,T};) are defined as
h; = tanh(W'ax; + U"h;_ +b"). Here W",U" are pa-
rameters of an affine transformation which update the con-
nection weights among input layer, hidden layer. RNNs suf-
fer from the vanishing and the exploding gradient problem
[4]. We adopt LSTM [[18]] to address the problem of learn-
ing long-range dependencies, where a memory cell vector
c; is maintained at each time step t. LSTM contains one
self-connected memory cell ¢ and three multiplicative units,
i.e. the input gate ¢, the forget gate f and the output gate o,
which can store and access the long range contextual infor-
mation of a temporal sequence. Please refer to [18]] for the
precise form of the update.

4. PI-Based RNNs

Standard recurrent neural networks do not provide a
mechanism to exploit the PI when it is available at training
time. We first present a pre-training strategy. The learned
encoder is applied to the learning step and tuned together
with RNNs by formulating the PI into a multi-task loss. In
the final refining step, latent PI is discovered and iteratively
updated with network parameters.
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4.1. Pre-training with PI

A pre-training strategy is proposed to learn a joint em-
bedding by taking both depth sequences V; and skeleton
joints annotation E = {ey, ..., eg} as input. Each e, € R?
has 3 coordinates. In this stage, a; is not directly applied to
RNNs. Instead, the additional layer transforms x4 together
with F to derive an embedding space :

x, = tanh(W'z; + W, E +b") (1)

where W, is the weight matrix connecting the skeleton
joints. The resulting a; have the same dimensionality
(1000) as x;. This is followed by RNNs to model the dy-
namics of sequential data. Finally, similar to most RNNs
for classification task, a softmax layer is adopted to trans-
form the hidden state vector into the probability distribution
of action classes.

The key insight of the pre-training stage is to learn a
depth encoder that optimizes the embedding over both depth
appearance and skeleton joints. The learned encoder serves
as an initialization in the next learning stage. This pre-
training stage leads to a significant improvement in both
efficiency and effectiveness.

4.2. Learning with PI

Multi-task loss. To obtain the class predictions of an input
sequence X ;, the hidden state can be mapped to an out-
put vector y; = (y; : t = 1,...,7;). During training, we
measure the deviation between groundtruth and last mem-
ory cell at the frame T for classification loss, since LSTMs
have the ability to memorize the content of an entire se-
quence. For regression loss, we accumulate the loss of each
frame t across the T frame sequence. The final objective
function in the learning step is to minimize the cumulative
maximum-likelihood loss over all training sequences:

ZECT] +AZZ£’”H ()

j=1t=1

There are .J sequences in the training set £2. The hyper-
parameter \ in Eqn. [2]controls the balance between the two
losses. The classification loss and regression loss are de-
fined as follows:

Classification loss. y; € RX represents an 1-of-K en-
coding of the confidence scores on K classes of actions,
which can be derived as y; = tanh(Wvh; + b¥). This
output vector can be transformed into a vector of prob-
abilities p(yx) for each class k by softmax function as
p(yr) = evtr/ ZzI; e¥t. To learn the model parameters
of our model, cross entropy loss between the predicted dis-
tribution p(y;) and target class g; is defined as

K
— > 6(k — g:) log p(yjen)

k=1

LE(t, j)(=

for the sample ¢ of the j-th video, where §(+) is the Dirac
delta function, and g; denotes the groundtruth label of the
sample ¢.

Regression loss. Besides classification output, our model
has another sibling output layer as regression term. We
define a skeleton regression targets for groundtruth key-
points E, = {é11, ..., é1s} and predicted locations B; =
{bi1,...,bis} at each time step t. We select E as a sub-
set of the skeleton annotations E, because this is secondary
target and an accurate estimation of all skeleton joints is not
needed in testing. Each instance is accompanied with a set
of keypoint {é%,,é}.}5_, locations, which are normalized
with respect to the center and the width and height of the
input region. The loss associated with the task of measur-
ing the skeleton estimation can be expressed as

s=S

1

‘C’T(taj) §

™

((éjz'ts - b§t5)2 + (é?ts - bz]{ts)2)

where we use Lo distance between the normalized key-
points location to quantify the dissimilarity. This loss func-
tion and regression layer only appear in the training stage
for optimizing the neural network with additional informa-
tion.

This extension, known as multi-task learning [32]], utilize
the task relationships to learn all individual tasks simultane-
ously, such that information can be shared in the common
structure of the model to benefit all tasks. Similar as [12]], it
will help the classification prediction by considering the re-
gression aspects. During testing, the regression component
will be disabled.

4.3. Refining with PI

However, the conventional multi-task loss in the last step

does not consider any relationship between two tasks. We
observe empirically that purely exploiting PI as a secondary
task provides little help to improve the performance of pri-
mary task due to the gap between them. To maximize the
effectiveness of PI for helping primary task, we propose to
discover latent PI from the secondary task in this refining
step. The latent PI is utilized in the primary task to opti-
mize the network. The updated network is further used to
refine latent PI iteratively in an EM procedure.
Latent PI modeling We define latent PI as a informative
distribution which is jointly modeled by secondary task and
a bridging matrix. The bridging matrix M aim to cap-
ture the underlying dependencies between primary and sec-
ondary task. The log-likelihood of the defined model can be
expressed as:

J K
= o> p'1X;;
=1 k=1

O)p(g;ly’; M)), (3)
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where © is the set of parameters of the network in re-
fining step. Given ®, which initialized by the model from
the learning step, we can predict the skeleton joints B of a
depth frame. We concatenate the predicted skeleton of ev-
ery frame to a single vector B = {By, ..., By, }. ¢/ is then
calculated as a fully connected layer: y’ = WY B+,
WY and b is part of ©, but they are trained from scratch.
During the training of the refining step, our model aims to
maximize the likelihood function by optimizing both the
bridging matrix and network parameter iteratively in an EM
procedure.
Estimating latent PI The explicit expression of latent PI is
as follows:

uy, = p(y| B, g; Wy, M)
_ plglyis M)p(yi| B Wy)
K ool M)p(y|B: W)
_ My eXp(W,i"B +by)
X5 Migexp(WYB +by)

“4)

p(y,.|B; W) is a predicted probability of the class k by
observing the predicted skeleton joints B of a input depth
sequences. The bridging matrix M aims to transform the
predicted distribution to a latent distribution that can be ef-
fectively used in optimizing the network.
Updating model with latent PI The distribution of latent
PI p(4;) of an input sequence X is defined by p(u;) =
u;z¢, where z; € RX is randomly generated for each frame
t from a Multinoulli distribution {§ ~ P(a),z5 = 1,2 =
0,Vl # g}, where P(a) is defined as p, = 1 — £=2a
and p; = %a, where « is to control how strongly the
prior distribution is pushed to classification loss, and g is
the groundtruth label. We replace the groundtruth label by
the probabilities of latent PI to formulate the PI-based clas-
sification loss in refining step:

J K
LR = — Z (Zp(ﬁjk) log p(yj7k)

j=1 Nk=1

K
—BY (k- g;) logp(z,ék)> (5)

k=1

a standard softmax loss is also included in £® to update
the parameters (e.g. WY, b¥") from the branch of secondary
task. Apart from optimizing network parameters, the bridg-
ing matrix of modeling latent PI can be updated iteratively
by a closed-form solution in the M-step of EM procedure
[311136} 13]:

S ud(l — gy)

Mkl(Q) = ZU . 3

kle{l,.. K}
(6)

Algorithm 1: PI-based RNNs
Input: A collection of videos V), skeleton joints
annotation F, subset of skeleton joints E,
groundtruth class label g.
Output: Network parameters, bridging matrix M
Pre-training:
Eq/[I] taking both « of depth sequences V' and
skeleton joints E,
A encoder is trained by minimize the standard
softmax loss.

end

Learning:

Taking the subset of skeleton joints E in the
regression term.

The parameters of network are optimized by
minimizing the multi-task loss Eq. 2]

end

Refining:

while not converge do

E-step:

Estimating and updating the latent PI by

Eq.[]
end

M-step:

The parameters of network are optimized
by PI-based classification loss Eq.

The bridging matrix M is updated with

Eq.[q

end

end
end

Discussion on latent PI Latent PI can be treated as a suffi-
cient information to act as a teacher network [24}40]. How-
ever, our latent PI is obtained in the same framework rather
than trained from a separate model. Our model further re-
fines latent PI according to the feedback of the network in
each iteration. This updating process us two benefits: (1)
The formulation strikes a good balance between the class
distributions learned from depth appearance and skeleton
information. This is similar in spirit to [35]], where a weight
distribution is utilized to improve the learning process of
random forest. Sun et al. [38] also incorporate prior infor-
mation (e.g. human height) to enhance the dependency be-
tween output variables and latent variables, where the prior
can help to split data effectively. The skeleton and raw depth
sequence should share relevant and complementary infor-
mation. Here, we measure the loss by partially considering
the posterior obtained from skeleton joints. We show that
this learning process improves the discriminative power of
the network. (2) Apart from learning better depth represen-
tation, our PI-based classification loss provides an effective
way to prevent overfitting. Since the prior label is not per-
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Figure 2: The architecture of the encoder. The convolutional layers (from COV1 to COVS5) with kernel size 3x3 and a stride
of 1. The padding implements same convolution (and pooling), where the input and output maps have the same spatial extent.
max-pooling is performed from COV1 to COVS5 over 2x2 spatial windows with stride 2.

fectly trained, the noise is introduced when we switch to
the prior label according to «. This term can be treated as a
regularizer similar as [53]], where they intentionally gener-
ate incorrect training labels at the loss layer. Our loss func-
tion also seeks to minimize the confusion between the two
distributions.

4.4. Model Training

We summarize the whole training process of the pro-
posed PI-based RNNs in Algorithm[I] Note that the learn-
ing step and refining step can be potentially preformed alter-
natively to improve the effectiveness of the trained model.
In our experiments, we show that one round of learning
and refining step achieves significant improvements. While
small improvements can be further obtained with more
rounds, which has been verified on SBU dataset, we fix to
one round of learning and refining for all experiments with
the good trade-off between accuracy and efficiency. In re-
fining step, the EM procedure is still run iteratively until
convergence.

For all three steps, the error differentials measured by
the last layer of the recurrent neural network will be back-
propagated to feature sequences and feed back to the con-
volutional layers across every frame in the videos. Our ap-
proach is an end-to-end trainable network that jointly learns
the parameters of the CNN and the RNN. We train each
model with stochastic gradient descent on the negative log-
likelihood using the Adam optimizer, with a learning rate of
0.001 for MSR Action3D and 0.0001 for the rest. A mini-
batch size of 10 is applied to all datasets. We use early
stopping when the validation error starts to increase.

5. Experiments

We compare the performance of our model with state-of-
the-art methods and baselines on four datasets: MSR Ac-
tion3D Dataset [26] (Action3D), SBU Interaction dataset
[59]] (SBU), Cornell Activity Dataset [39](CAD60), and the
proposed Blanket dataset (Blanket). We also analyze each
component of our model and the computational efficiency.
Datasets: Action3D is an action dataset of depth sequences
captured by a depth camera. This dataset consists of 20

actions performed by 10 subjects. Every action was per-
formed by ten subjects three times each. All sequences are
captured in 15 FPS, and each frame in a sequence contains
20 skeleton joints. Altogether, the dataset has 557 valid
action sequences with 23797 frames of depth maps. SBU
consists of 282 pre-segmented sequences, which includes 8
classes depicting two-person interaction. Each action is per-
formed by 21 pairs of subjects. CAD60 consists of 68 video
clips captured by Microsoft Kinect device. Each video is of
length about 45s. Four different subjects performed 14 dif-
ferent activities in five locations: office, kitchen, bedroom,
bathroom and living room. Blanket contains 120 depth
video clips. There are 12 different action classes performed
by 10 subjects. Our dataset contains more static actions (e.g.
lying and sitting). This dataset is very challenging, as some
actions are partially occluded by a blanket. For example,
one actor is sitting on the bed while he is covered by a blan-
ket (please refer to our supplementary video for all actions).

Implementation details: We implemented the network us-
ing TensorFlow [[1]. The architecture of convolutional lay-
ers (see Fig. |2)) is slightly modified from VGG-VeryDeep
[37] (with 11 weight layers) for depth maps. We initial-
ize the weights without pre-training by using the normal-
ized initialization procedure [13]]. Unlike images which can
be rescaled and randomly cropped to a fixed size, spatio-
temporal consistency has to be considered for video se-
quences. Each input video frame is scaled to 227x227 from
the whole frame. We did not perform the operation of ran-
domly cropped and flipped for utilizing PI easily. The depth
values are normalized to [-1,1]. Our model has a stack of 2
LSTMs of 1000 hidden units each. To reduce the computa-
tion cost, we sample each video of CAD60 with a maximum
length of 200 frames. We do not sample frames from MSR
Action3D, SBU and Blanket dataset. We unroll the LSTM
to a maximum length of 200 time steps for CAD60, 300
time steps for Blanket and 100 time steps for the rest during
training, which is a good trade-off between accuracy and
complexity.

We mainly consider the skeleton joints as our PI. The
prior class distribution is obtained by training DURNN-L
[9] with all available skeletons. In our regression loss, we
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Figure 3: Examples of depth maps on four datasets.

use only six joints (i.e. head, hand left, hand right, foot left,
foot right, hip center) as this secondary target is formulated
for helping classification accuracy. For our Blanket dataset,
we annotate the six joints for both pre-training and refining
stage because of the special camera view-point. We normal-
ize 3D joint coordinates to a unified coordinate system from
the world coordinate system by placing the hip center at the
origin [43]. Similar as [9], we apply a simple Savitzky-
Golay smoothing filter to smooth the skeleton annotations.

5.1. Comparison to the State-of-the-art

The experimental results are shown in Table |1} Existing
state-of-the-art methods can be partitioned into two groups:
using 1) only the depth sequences or 2) at least skeleton
information in the testing stage.

Results on Action3D : We follow a similar evaluation pro-
tocol from [45] 146]. In this setting, the dataset is divided
into two sets, where half of the subjects are used for train-
ing and the other half are used for testing. Compared to
another protocol [9] that splits classes into three subsets,
this setting is more challenging as all actions are evaluated
together. The average accuracy corresponds to the mean
of the confusion matrix diagonal of all classes. Note that
10 skeleton sequences were not used [47]] because of miss-
ing data. We compare the proposed model PRNN with Xia
et al. |52], Oreifej et al. [34], and Yang et al. [56]. All
theses methods require only depth maps as input during
testing. We can see that our proposed PRNN achieves the
best average accuracy (94.9 %) compared with them. For
a complete comparison, we also list those skeleton-based
approach in the lower part of the Table |I} Skeleton-based
approaches demonstrate slightly better performance by as-
suming a robust skeleton tracker is available in testing. Our
method aims to provide a more general framework allow-
ing us to learn the model directly from raw observations of
depth videos, rather than explicitly modeling skeletal joints
[9] or local appearance [42]. Many of these methods either
focus on modeling spatio-temporal structure with a certain
assumption [34], or exploit the trajectories of human joints
[421160] in the testing stage which rely on accurate skeleton
joints detection.

SBU : We follow the experimental setting of [59, |61] and
use five-fold cross-validation. All action categories are
composed of interactions between actors, involving human
acting and reacting. This dataset is very challenging, espe-
cially in our setting where skeleton information is not avail-
able in testing. We summarize the results in Table[I] We can

Method [[ Action3D [[ SBU [[ CAD60 [ Blanket

Xia et al. [52] 89.3 43.69 || - 40.6

g Oreifej et al. [34] 88.9 77.0 ||72.7 42.8

3 Yang et al. [57] 93.45 - - 41.2
PRNN 94.9 89.2 || 87.6 53.5
Vemulapalli ez al. [43] || 89.48 - - -
Veeriah et al. [42] 92.03 - - -
Hu et al. [20] - - 84.1 -

= Koppula et al. [23] - - 714 -

% Duetal. |9 - 80.35 || - -

S [Wang et al. [48] 96.9 - - -

“ ['Wang er al. [45] 91.40 - - -
Zhu et al. [61] - 90.41 || - -
Gori et al. [15] 95.38 93.08 || - -
Wang et al. [47] 88.2 - 74.7 -

Table 1: Comparison with state-of-the-art methods on four

datasets for action recognition. ’-’ indicates no result was
reported and no code is available for implementation.

see that our method achieves superior performance to the
depth-based approaches and perform close to the skeleton-
based approaches.

CADG60 : We follow the same experimental setting as in
[47,120] by adopting the leave-one-person-out cross valida-
tion. i.e. the model was trained on three of the four people,
and tested on the fourth. Table [I] compares the results on
CAD60. We can see that the proposed PRNN achieves the
87.6% accuracy with only seeing the depth maps, compar-
ing against previous works which utilize multiple cues (i.e.
RGB frames, depth maps and the tracked skeleton joint po-
sitions) in testing. Some different human actions of CAD60
share similar body motions such as “chopping” and “stir-
ring”. Our model takes advantage of the PI-based learn-
ing process, which allows to distinguish the subtle motions
from depth maps [21].

Blanket: Similar to CAD60, we follow the protocol as [47]]
and perform cross-validation on our proposed dataset. We
compare our model with three baseline methods: Xia et al.
[52], Oreifej et al. [34], Yang et al. [S7]. We use their
publicly available codes and train their model with vary-
ing their parameters, so as to report the best results for fair
comparison. The experimental results are shown in Table T}
The proposed PRNN obtains the state-of-the-art accuracy of
53.5%. Our collected data is more difficult to learn than the
existing dataset. Although each basic action is simple like
“sitting” and “lying down”, the actor (i.e. patient) is either
partially occluded by a blanket or in a suffering status when
he performs these actions. It introduces severe noise (e.g.
shaking his body, trembling) to the basic actions. More-
over, this special camera view-point (see Figure [3) and the
occlusion by a blanket will cause difficulties for skeletal es-
timation. As expected, a larger performance gap is seen be-
tween our model and other approaches. This demonstrates
the potential of our model in representing and modeling the
dynamics of actions directly from depth maps.

In brief, we show the competitive performance of the
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Method [ Action3D [ SBU | CAD60 [ Blanket

CNN-RNN (vanilla) | 87.3 792 [815  [378
PRNN-NoPreTrain_| 89.2 85.6 | 786 | 478
PRNN-NoRefine | 83.4 716 | 705 | 403
PRNN [949  [892 [876 [535

Table 2: Contribution of each model component

proposed PRNN on four human action datasets. Our model
provides an effective end-to-end solution for modeling tem-
poral dynamics in action sequences by exploiting the PI in
training time. Unlike most of the previous works that are
based on a certain assumption about the structure of the
depth maps or the availability of a robust skeleton tracker,
our model automatically learns features from raw depth
maps irrespective of any assumptions [58} 51]] on the struc-
ture of video sequences .

5.2. Model Analysis

Evaluation of individual components To verify the ef-
fect of individual components in our framework and demon-
strate that if each of them contributes to the performance
boost, we evaluate three variants of our approach: (1)
PRNN-NoPreTrain discards the pre-training strategy as
shown in Sec. 1] Instead, the CNN encoder is trained
from the scratch in the learning stage. (2) PRNN-NoRefine
ignores the last refining step as described in Sec. The
final model is trained by pre-train and learning steps. Note
that the learning step in Sec.[d.2]can not be removed individ-
ually, because the latent PI is obtained based on the regres-
sion term of the learning step. We report the performance of
a vanilla CNN-RNN pipeline. This is similar to our model
in pre-training step, except that skeleton is not a part of
the input during training. Note that our pre-training stage
(taking both depth and skeleton as input) is specifically de-
signed for our learning stage (with classification and regres-
sion loss). We tried to initialize vanilla CNN-RNN (depth
input with classification loss) with our pretrained model. It
performs much worse than learning from scratch.

We show the average accuracy of all stripped-down ver-
sions of our model in Table Overall, our method con-
sistently achieves better performance with integrating each
individual component, suggesting that each one of them
contributes to the final performance. Without exploiting PI
in the pre-training step, our model performs poorly due to
the ineffective initialization. The vanilla CNN-RNN also
suffers from the relatively small number of training data,
and thus cannot take full advantage of the end-to-end man-
ner. By considering the latent PI information in the refining
step, this overfitting problem can be greatly alleviated from
CNN-RNN and PRNN-NoRefine. It is clear that the per-
formance has been substantially improved (PRNN) when
combining these steps together.

Qualitative analysis We compare our approach with three
variants in Figure [ which illustrates the real-time predic-

e
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[
IS
T

=~ PRNN
PRNN-NoPreTrain

~®-CNN-RNN

49— PRNN-NoRefine

0 I I I I I
80% 100%

Confidence Score

o
)
T

o
Fraction of Temporal Length

Figure 4: Qualitative comparison of real-time prediction as
time evolves for the action “falling from the bed”

tion of an example sequence on every 15 time steps. The
groundtruth action label is “falling from the bed”. All meth-
ods give a low confidence to the correct action class at the
beginning. As time evolves, we find that our approach first
correctly predict the action labels. We attribute this faster
learning ability to the mechanism of encoding PI [2], which
allows us to distinguish the subtle depth difference across
successive frames.

Computational efficiency We take the Action3D as an
example to discuss the efficiency of our approach. With
Python and C++ implementation on a NVIDIA Titan X
GPU, our three-steps learning process takes about 11 hours
to converge after continuously decreasing over 200k SGD
iterations. Gradients are averaged over each minibatch
in every training iteration. During testing, it can achieve
real-time performance (=~ 38 FPS). Compared with multi-
stage models, the efficiency of our approach is mainly at-
tributed to its end-to-end property without preprocessing
step. Please refer to our supplementary video for real-time
testing performance.

6. Conclusion and Future Work

In this paper, we propose to learn a recurrent neural
network with PI. The presented learning process provides
threefold benefits: 1) The pre-training stage provides a mid-
level embeddings which can be effectively tuned in the fur-
ther stage. 2) In learning stage, a multi-task loss is formu-
lated to exploit PI as a secondary task. 3) The learned in-
formation is further modeled to a latent PI, which is defined
to close the gap between two tasks. The latent PI is used
to enhance the discriminative power of the learned repre-
sentation by closing two distributions. The latent PI is also
updated iteratively in an EM fashion. In addition, the ran-
domly sampled classification loss operates as a regularizer
to reduce the tendency for overfitting. We apply our model
to the problem of action recognition from depth sequences,
and achieve better performance on three publicly available
datasets and our newly collected dataset. In the future, we
will consider to investigate more different types of PI and
seek to model this information in the intermediate level of
neural network [5]].
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