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Abstract

Temporal action localization is an important yet chal-

lenging problem. Given a long, untrimmed video consist-

ing of multiple action instances and complex background

contents, we need not only to recognize their action cate-

gories, but also to localize the start time and end time of

each instance. Many state-of-the-art systems use segment-

level classifiers to select and rank proposal segments of pre-

determined boundaries. However, a desirable model should

move beyond segment-level and make dense predictions at

a fine granularity in time to determine precise temporal

boundaries. To this end, we design a novel Convolutional-

De-Convolutional (CDC) network that places CDC filters

on top of 3D ConvNets, which have been shown to be effec-

tive for abstracting action semantics but reduce the tempo-

ral length of the input data. The proposed CDC filter per-

forms the required temporal upsampling and spatial down-

sampling operations simultaneously to predict actions at

the frame-level granularity. It is unique in jointly model-

ing action semantics in space-time and fine-grained tem-

poral dynamics. We train the CDC network in an end-to-

end manner efficiently. Our model not only achieves su-

perior performance in detecting actions in every frame, but

also significantly boosts the precision of localizing temporal

boundaries. Finally, the CDC network demonstrates a very

high efficiency with the ability to process 500 frames per

second on a single GPU server. Source code and trained

models are available online at https://bitbucket.

org/columbiadvmm/cdc.

1. Introduction

Recently, temporal action localization has drawn consid-

erable interest in the computer vision community [25, 15,

39, 65, 26, 67, 53, 47, 43, 73, 9, 18, 36]. This task involves

two components: (1) determining whether a video contains

specific actions (such as diving, jump, etc.) and (2) identi-

fying temporal boundaries (start time and end time) of each

action instance.

A typical framework used by many state-of-the-art sys-

tems [67, 53, 39, 65, 26] is fusing a large set of features

and training classifiers that operate on sliding windows or

segment proposals. Recently, an end-to-end deep learn-

ing framework called Segment-CNN (S-CNN) [47] based

on 3D ConvNets [60] demonstrated superior performances

both in efficiency and accuracy on standard benchmarks

such as THUMOS’14 [25]. S-CNN consists of a proposal
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Figure 1. Our framework for precise temporal action localiza-

tion. Given an input raw video, it is fed into our CDC localization

network, which consists of 3D ConvNets for semantic abstraction

and a novel CDC network for dense score prediction at the frame-

level. Such fine-granular score sequences are combined with seg-

ment proposals to detect action instances with precise boundaries.
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network for generating candidate video segments and a lo-

calization network for predicting segment-level scores of

action classes. Although the localization network can be op-

timized to select segments with high overlaps with ground

truth action instances, the detected action boundaries are

still retained and thus are restricted to the pre-determined

boundaries of a fixed set of proposal segments.

As illustrated in Figure 1, our goal is to refine tempo-

ral boundaries from proposal segments to precisely local-

ize boundaries of action instances. This motivates us to

move beyond existing practices based on segment-level pre-

dictions, and explicitly focus on the issue of fine-grained,

dense predictions in time. To achieve this goal, some exist-

ing techniques can be adapted: (1) Single-frame classifiers

operate on each frame individually; (2) Recurrent Neural

Networks (RNN) further take into account temporal depen-

dencies across frames. But both of them fail to explicitly

model the spatio-temporal information in raw videos.

3D CNN [60, 47] has been shown that it can learn spatio-

temporal abstraction of high-level semantics directly from

raw videos but loses granularity in time, which is important

for precise localization, as mentioned above. For example,

layers from conv1a to conv5b in the well-known C3D ar-

chitecture [60] reduce the temporal length of an input video

by a factor of 8. In pixel-level semantic segmentation, de-

convolution proves to be an effective upsampling method

in both image [34, 45] and video [61] for producing output

of the same resolution as the input. In our temporal local-

ization problem, the temporal length of the output should

be the same as the input video, but the spatial size should

be reduced to 1x1. Therefore, we not only need to upsam-

ple in time but also need to downsample in space. To this

end, we propose a novel Convolutional-De-Convolutional

(CDC) filter, which performs convolution in space (for se-

mantic abstraction) and de-convolution in time (for frame-

level resolution) simultaneously. It is unique in jointly mod-

eling the spatio-temporal interactions between summarizing

high-level semantics in space and inferring fine-grained ac-

tion dynamics in time. On top of 3D ConvNets, we stack

multiple CDC layers to form our CDC network, which can

achieve the aforementioned goal of temporal upsampling

and spatial downsampling, and thereby can determine ac-

tion categories and can refine boundaries of proposal seg-

ments to precisely localize action instances.

In summary, this paper makes three novel contributions:

(1) To the best of our knowledge, this is the first work

to combine two reverse operations (i.e. convolution and de-

convolution) into a joint CDC filter, which simultaneously

conducts downsampling in space and upsampling in time to

infer both high-level action semantics and temporal dynam-

ics at a fine granularity in time.

(2) We build a CDC network using the proposed CDC

filter to specifically address precise temporal action local-

ization. The CDC network can be efficiently trained end-to-

end from raw videos to produce dense scores that are used

to predict action instances with precise boundaries.

(3) Our model outperforms state-of-the-art methods in

video per-frame action labeling and significantly boosts the

precision of temporal action localization over a wide range

of detection thresholds.

2. Related work

Action recognition and detection. Early works mainly fo-

cus on simple actions in well-controlled environments and

can be found in recent surveys [68, 41, 3]. Recently, re-

searchers have started investigating untrimmed videos in the

wild and have designed various features and techniques. We

briefly review the following that are also useful in temporal

action localization: frame-level Convolutional Neural Net-

works (CNN) trained on ImageNet [44] such as AlexNet

[29], VGG [51], ResNet [16], etc.; 3D CNN architecture

called C3D [60] trained on a large-scale sports video dataset

[27] ; improved Dense Trajectory Feature (iDTF) [63, 64]

consisting of HOG, HOF, MBH features extracted along

dense trajectories with camera motion influences elimi-

nated; key frame selection [13]; ConvNets adapted for us-

ing motion flow as input [50, 10, 66]; feature encoding with

Fisher Vector (FV) [40, 38] and VLAD [23, 71].

There are also studies on spatio-temporal action de-

tection, which aim to detect action regions with bound-

ing boxes over consecutive frames. Various methods have

been developed, from the perspective of supervoxel merg-

ing [20, 54, 55], tracking [69, 42, 62, 52], object detection

and linking [28, 14, 75, 42, 62], spatio-temporal segmenta-

tion [31, 70], and leveraging still images [21, 58, 22].

Temporal action localization. Gaidon et al. [11, 12]

introduced the problem of temporally localizing actions

in untrimmed videos, focusing on limited actions such

as “drinking and smoking” [30] and “open door and sit

down” [8]. Later, researchers worked on building large-

scale datasets consisting of complex action categories, such

as THUMOS [25, 15] and MEXaction2 [56, 1, 57], and

datasets focusing on fine-grained actions [35, 49, 48] or ac-

tivities of high-level semantics [17]. The typical approach

used in most systems [67, 53, 39, 65, 26] is extracting a

pool of features, which are fed to train SVM classifiers, and

then applying these classifiers on sliding windows or seg-

ment proposals for prediction. In order to design a model

specific to temporal localization, Richard and Gall [43] pro-

posed using statistical length and language modeling to rep-

resent temporal and contextual structures. Heilbron et al.

[18] introduced a sparse learning framework for generating

segment proposals of high recall.

Recently, deep learning methods showed improved per-

formance in localizing action instances. RNN has been
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widely used to model temporal state transitions over frames:

Escorcia et al. [9] built a temporal action proposal sys-

tem based on Long-Short Term Memory (LSTM); Yeung et

al. [73] used REINFORCE to learn decision policies for a

RNN-based agent; Yeung et al. [72] introduced MultiTHU-

MOS dataset of multi-label annotations for every frame in

THUMOS videos and defined a LSTM network to model

multiple input and output connections; Yuan et al. [76] pro-

posed a pyramid of score distribution feature at the cen-

ter of each sliding window to capture the motion informa-

tion over multiple resolutions, and utilized RNN to improve

inter-frame consistency; Sun et al. [59] leveraged web im-

ages to train LSTM model when only video-level annota-

tions are available. In addition, Lea et al. [31] used tem-

poral 1D convolution to capture scene changes when ac-

tions were being performed. Although RNN and temporal

1D convolution can model temporal dependencies among

frames and make frame-level predictions, they are usually

placed on top of deep ConvNets, which take a single frame

as input, rather than directly modeling spatio-temporal char-

acteristics in raw videos. Shou et al. [47] proposed an

end-to-end Segment-based 3D CNN framework (S-CNN),

which outperformed other RNN-based methods by captur-

ing spatio-temporal information simultaneously. However,

S-CNN lacks the capability to predict at a fine time resolu-

tion and to localize precise temporal boundaries of action

instances.

De-convolution and semantic segmentation. Zeiler et al.

[78] originally proposed de-convolutional networks for im-

age decomposition, and later Zeiler and Fergus [77] re-

purposed de-convolutional filter to map CNN activations

back to the input to visualize where the activations come

from. Long et al. [34, 45] showed that deep learning based

approaches can significantly boost performance in image

semantic segmentation. They proposed Fully Convolutional

Networks (FCN) to output feature maps of reduced dimen-

sions, and then employed de-convolution for upsampling

to make dense, pixel-level predictions. The fully convo-

lutional architecture and learnable upsampling method are

efficient and effective, and thus inspired many extensions

[37, 19, 33, 4, 32, 79, 5, 6, 74].

Recently, Tran et al. [61] extended de-convolution from

2D to 3D and achieved competitive results on various voxel-

level prediction tasks such as video semantic segmenta-

tion. This shows that de-convolution is also effective in the

video domain and has the potential to be adapted for making

dense predictions in time for our temporal action localiza-

tion task. However, unlike the problem of semantic segmen-

tation, we need to upsample in time but maintain downsam-

pling in space. Instead of stacking a convolutional layer and

a de-convolutional layer to conduct upsampling and down-

sampling separately, our proposed CDC filter learns a joint

model to perform these two operations simultaneously, and

proves to be more powerful and easier to train.

3. Convolutional-De-Convolutional networks

3.1. The need of downsampling and upsampling

C3D architecture, consisting of 3D ConvNets followed

by three Fully Connected (FC) layers, has achieved promis-

ing results in video analysis tasks such as recognition [60]

and localization [47]. Further, Tran et al. [61] experimen-

tally demonstrated the 3D ConvNets, i.e. from conv1a to

conv5b, to be effective in summarizing spatio-temporal

patterns from raw videos into high-level semantics.

Therefore, we build our CDC network upon C3D. We

adopt from conv1a to conv5b as the first part of our CDC

network. For the rest of layers in C3D, we keep pool5 to

perform max pooling in height and width by a factor of 2

but retain the temporal length. Following conventional set-

tings [60, 47, 61], we set the height and width of the CDC

network input to 112x112. Given an input video segment of

temporal length L, the output data shape of pool5 is (512,

L/8, 4, 4) 1. Now in order to predict the action class scores

at the original temporal resolution (frame-level), we need to

upsample in time (from L/8 back to L), and downsample in

space (from 4x4 to 1x1). To this end, we propose the CDC

filter and design a CDC network to adapt the FC layers from

C3D to perform the required upsample and downsample op-

erations. Details are described in Sections 3.2 and 3.3.

3.2. CDC filter

In this section, we walk through a concrete example of

adapting FC6 layer in C3D to perform spatial downsampling

by a factor of 4x4 and temporal upsampling by a factor of

2. For the sake of clarity, we focus on how a filter operates

within one input channel and one output channel.

As explained in [34, 45], the FC layer is a special case

of a convolutional layer (when the input data and the kernel

have the same size and there is no striding and no padding).

So we can transform FC6 into conv6, which is shown in

Figure 2 (a). Previously, a filter in FC6 takes a 4x4 feature

map from pool5 as input and outputs a single value. Now,

a filter in conv6 can slide on L/8 feature maps of size 4x4

stacked in time and respectively output L/8 values in time.

The kernel size of conv6 is 4x4=16.

Although conv6 performs spatial downsampling, the

temporal length remains unchanged. To upsample in time,

as shown in Figure 2 (b), a straightfoward solution adds a

de-convolutional layer deconv6 after conv6 to double the

temporal length while maintaining the spatial size. The ker-

nel size of deconv6 is 2. Therefore, the total number of pa-

1We denote the shape of data in the networks using the form of (number

of channels, temporal length, height, width) and the size of feature map,

kernel, stride, zero padding using (temporal length, height, width).
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rameters for this solution (separated conv6 and deconv6)

is 4x4+2=18.

However, this solution conducts temporal upsampling

and spatial downsampling in a separate manner. Instead,

we propose the CDC filter CDC6 to jointly perform these

two operations. As illustrated in Figure 2 (c), a CDC6 filter

consists of two independent convolutional filters (the red

one and the green one) operating on the same input 4x4 fea-

ture map. Each of these convolutional filters has the same

kernel size as the filter in conv6 and separately outputs one

single value. So each 4x4 feature map results in 2 outputs in

time. As the CDC filter slides on L/8 feature maps of size

4x4 stacked in time, this input feature volume of temporal

length L/8 is upsampled in time to L/4, and its spatial size

is reduced to 1x1. Consequently, in space this CDC filter is

equivalent to a 2D convolutional filter of kernel size 4x4; in

time it has the same effect as a 1D de-convolutional filter of

kernel size 2, stride 2, padding 0. The kernel size of such

a joint filter in CDC6 is 2x4x4=32, which is larger than the

separate convolution and de-convolution solution (18).

Therefore, a CDC filter is more powerful for jointly mod-

eling high-level semantics and temporal dynamics: each

output in time comes from an independent convolutional

kernel dedicated to this output (the red/green node corre-

sponds to the red/green kernel); however, in the separate

convolution and de-convolution solution, different outputs

in time share the same high-level semantics (the blue node)

outputted by one single convolutional kernel (the blue one).

Having more parameters makes the CDC filter harder to

conv6
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(separate)

CDC6

4

4

4

4

4

4
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(c)

L/8

L/8

L/8

L/8
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Figure 2. Illustration of how a filter in conv6, deconv6, CDC6

operates on pool5 output feature maps (grey rectangles) stacked

in time. In each panel, dashed lines with the same color indicate

the same filter sliding over time. Nodes stand for outputs.

learn. To remedy this issue, we propose a method to adapt

the pre-trained FC6 layer in C3D to initialize CDC6. After

we convert FC6 to conv6, conv6 and CDC6 have the same

number of channels (i.e. 4,096) and thus the same number

of filters. Each filter in conv6 can be used to initialize its

corresponding filter in CDC6: the filter in conv6 (the blue

one) has the same kernel size as each of these two convo-

lutional filters (the red one and the green one) in the CDC6

filter and thus can serve as the initialization for them both.

Generally, assume that a CDC filter F of kernel size (kl,
kh, kw) takes the input receptive field X of height kh and

width kw, and produces Y that consists of kl successive out-

puts in time. For the example given in Figure 2 (c), we have

kl = 2, kh = 4, kw = 4. Given the indices a ∈ {1, ..., kh}
and b ∈ {1, ..., kw} in height and width respectively for X
and the index c ∈ {1, ..., kl} in time for Y : during the for-

ward pass, we can compute Y by

Y [c] =

kh
∑

a=1

kw
∑

b=1

F [c, a, b] ·X [a, b]; (1)

during the back-propagation, our CDC filter follows the

chain rule and propagates gradients from Y to X via

X [a, b] =

kl
∑

c=1

F [c, a, b] ·Y [c] . (2)

A CDC filter F can be regarded as coupling a series of con-

volutional filters (each one has kernel size kh in height and

kw in width) in time with a shared input receptive field X ,

and at the same time, F performs 1D de-convolution with

kernel size kl in time. In addition, the cross-channel mech-

anisms within a CDC layer and the way of adding biases to

the outputs of the CDC filters follow the conventional strate-

gies used in convolutional and de-convolutional layers.

3.3. Design of CDC network architecture

In Figure 3, we illustrate our CDC network for labeling

every frame of a video. The final output shape of the CDC

network is (K+1, L, 1, 1), where K+1 stands for K ac-

tion categories plus the background class. As described in

Section 3.1, from conv1a to pool5, the temporal length of

an input segment has been reduced from L to L/8. On top

of pool5, in order to make per-frame predictions, we adapt

FC layers in C3D as CDC layers to perform temporal up-

sampling and spatial downsampling operations. Following

previous de-convolution works [61, 34, 45], we upsample

in time by a factor of 2 in each CDC layer, to gradually

increase temporal length from L/8 back to L.

In the previous Section 3.2, we provide an example of

how to adapt FC6 as CDC6, performing temporal 1D de-

convolution of kernel size 2, stride 2, padding 0. For CDC6

in the CDC network, we construct a CDC filter with 4 con-

volutional filters instead of 2, and thus its temporal kernel
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Figure 3. Architecture of a typical CDC network. Following the notations indicated in the footnote 1, the top row lists the shape of output

data at each layer. (1) A video segment is first fed into 3D ConvNets and the temporal length reduces from L to L/8. (2) CDC6 has kernel

size (4, 4, 4), stride (2, 1, 1), padding (1, 0, 0), and therefore reduces both height and width to 1 while increases the temporal length from

L/8 to L/4. Both CDC7 and CDC8 have kernel size (4, 1, 1), stride (2, 1, 1), padding (1, 0, 0), and hence both CDC7 and CDC8 further

perform upsampling in time by a factor of 2, and thus the temporal length is back to L. (3) A frame-wise softmax layer is added on top of

CDC8 to obtain confidence scores for every frame. Each channel stands for one class.

size in time increases from 2 to 4. We set the correspond-

ing stride to 2 and padding to 1. Now each 4x4 feature map

produces 4 output nodes, and every two consecutive feature

maps have 2 nodes overlapping in time. Consequently, the

temporal length of input is still upsampled by CDC6 from

L/8 to L/4, but each output node sums contributions from

two consecutive input feature maps, allowing temporal dy-

namics in input to be taken into account.

Likewise, we can adapt FC7 as CDC7, as indicated in

Figure 3. Additionally, we retain the Relu layers and the

Dropout layers with 0.5 dropout ratio from C3D to attach to

both CDC6 and CDC7. CDC8 corresponds to FC8 but cannot

be directly adapted from FC8 because the classes in FC8 and

CDC8 are different. Since each channel stands for one class,

CDC8 has K+1 channels. Finally, the CDC8 output is fed into

a frame-wise softmax layer Softmax to produce per-frame

scores. During each mini-batch with N training segments,

for the n-th segment, the CDC8 output On has the shape

(K+1, L, 1 ,1). For each frame, performing the conven-

tional softmax operation and computing the softmax loss

and gradient are independent of other frames. Correspond-

ing to the t-th frame, the CDC8 output On [t] and Softmax

output Pn [t] both are vectors of K+1 values. Note that for

the i-th class, P
(i)
n [t] = e

O
(i)
n [t]

∑K+1
j=1 eO

(j)
n [t]

. The total loss L is

defined as:

L =
1

N

N
∑

n=1

L
∑

t=1

(

− log
(

P (zn)
n

[t]
))

, (3)

where zn stands for the ground truth class label for the n-th

segment. The total gradient w.r.t the output of i-th chan-

nel/class and t-th frame in CDC8 is the summation over all

N training segments of:

∂L

∂O
(i)
n [t]

=

{

1
N

·
(

P
(zn)
n [t]− 1

)

if i = zn
1
N

· P
(i)
n [t] if i 6= zn

. (4)

3.4. Training and prediction

Training data construction. In theory, because both the

convolutional filter and the CDC filter slide over the input,

they can be applied to input of arbitrary size. Therefore,

our CDC network can operate on videos of variable lengths.

Due to GPU memory limitations, in practice we slide a tem-

poral window of 32 frames without overlap on the video and

feed each window individually into the CDC network to ob-

tain dense predictions in time. From the temporal boundary

annotations, we know the label of every frame. Frames in

the same window can have different labels. To prevent in-

cluding too many background frames for training, we only

keep windows that have at least one frame belonging to ac-

tions. Therefore, given a set of training videos, we obtain a

training collection of windows with frame-level labels.

Optimization. We use stochastic gradient descent to train

the CDC network with the aforementioned frame-wise soft-

max loss. Our implementation is based on Caffe [24] and

C3D [60]. The learning rate is set to 0.00001 for all lay-

ers except for CDC8 layer where the learning rate is 0.0001

since CDC8 is randomly initialized. Following conventional

settings [60, 47], we set momentum to 0.9 and weight decay

to 0.005.

C3D [60] is trained on Sports-1M [27] and can be used

to directly initialize conv1a to conv5b. CDC6 and CDC7 are

initialized by FC6 and FC7 respectively using the strategy

described in the Section 3.2. In addition, since FC8 in C3D

and CDC8 in the CDC network have the different number of

channels, we randomly initialize CDC8. With such initial-

ization, our CDC network turns out to be very easy to train

and converges quickly, i.e. 4 training epochs (within half a

day) on THUMOS’14 .

Fine-grained prediction and precise localization. During

testing, after applying the CDC network on the whole video,
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we can make predictions for every frame of the video.

Through thresholding on confidence scores and grouping

adjacent frames of the same label, it is possible to cut the

video into segments and produce localization results. But

this method is not robust to noise, and designing tempo-

ral smoothing strategies turns out to be ad hoc and non-

trivial. Recently, researchers developed some efficient seg-

ment proposal methods [47, 9] to generate a small set of

candidate segments of high recall. Utilizing these propos-

als for our localization model not only bypasses the chal-

lenge of grouping adjacent frames, but also achieves con-

siderable speedup during testing, because we only need to

apply the CDC network on the proposal segments instead

of the whole video.

Since these proposal segments only have coarse bound-

aries, we propose using fine-grained predictions from the

CDC network to localize precise boundaries. First, to look

at a wider interval, we extend each proposal segment’s

boundaries on both sides by the percentage α of the orig-

inal segment length. We set α to 1/8 for all experiments.

Then, similar to preparing training segments, we slide tem-

poral windows without overlap on the test videos. We only

need to keep test windows that overlap with at least one ex-

tended proposal segment. We feed these windows into our

CDC network and generate per-frame action classes scores.

The category of each proposal segment is set to the class

with the maximum average confidence score over all frames

in the segment. If a proposal segment does not belong to the

background class, we keep it and further refine its bound-

aries. Given the score sequence of the predicted class in

the segment, we perform Gaussian kernel density estima-

tion and obtain its mean µ and standard deviation σ. Start-

ing from the boundary frame at each side of the extended

segment and moving towards its middle, we shrink its tem-

poral boundaries until we reach a frame with the confidence

score no lower than µ - σ. Finally, we set the prediction

score of the segment to the average confidence score of the

predicted class over frames in the refined segment of bound-

aries.

methods mAP

Single-frame CNN [51] 34.7

Two-stream CNN [50] 36.2

LSTM [7] 39.3

MultiLSTM [72] 41.3

C3D + LinearInterp 37.0

Conv & De-conv 41.7

CDC (fix 3D ConvNets) 37.4

CDC 44.4

Table 1. Per-frame labeling mAP on THUMOS’14 .

4. Experiments

4.1. Per­frame labeling

We first demonstrate the effectiveness of our model in

predicting accurate labels for every frame. Note that this

task can accept an input of multiple frames to take into ac-

count temporal information. We denote our model as CDC.

THUMOS’14 [25]. The temporal action localization task

in THUMOS Challenge 2014 involves 20 actions. We use

2,755 trimmed training videos and 1,010 untrimmed valida-

tion videos (3,007 action instances) to train our model. For

testing, we use all 213 test videos (3,358 action instances)

which are not entirely background videos.

Evaluation metrics. Following conventional metrics [72],

we treat the per-frame labeling task as a retrieval problem.

For each action class, we rank all frames in the test set by

their confidence scores for that class and compute Average

Precision (AP). Then we average over all classes to obtain

mean AP (mAP).

Comparisons. In Table 1, we first compare our CDC net-

work (denoted by CDC) with some state-of-the-art mod-

els (results are quoted from [72]): (1) Single-frame CNN:

the frame-level 16-layer VGG CNN model [51]; (2) Two-

stream CNN: the frame-level two-stream CNN model pro-

posed in [50], which has one stream for pixel and one

stream for optical flow; (3) LSTM: the basic per-frame la-

beling LSTM model of 512 hidden units [7] on the top of

VGG CNN FC7 layer; (4) MultiLSTM: a LSTM model

developed by Yeung et al. [72] to process multiple input

frames together with temporal attention mechanism and

output predictions for multiple frames. Single-frame CNN

only takes into account appearance information. Two-

stream CNN models appearance and motion information

separately. LSTM based models can capture temporal de-

pendencies across frames but do not model motion explic-

itly. Our CDC model is based on 3D convolutional layers

and CDC layers, which can operate on spatial and tempo-

ral dimensions simultaneously, achieving the best perfor-

mance.

In addition, we compare CDC with other C3D based ap-

proaches that use different upsampling methods. (1) C3D +

LinearInterp: we train a segment-level C3D using the same

set of training segments whose segment-level labels are de-

termined by the majority vote. During testing we perform

linear interpolation to upsample segment-level predictions

as frame-level. (2) Conv & De-conv: CDC7 and CDC8 in our

CDC network keep the spatial data shape unchanged and

therefore can be also regarded as de-convolutional layers.

For CDC6, we replace it with a convolutional layer conv6

and a separate de-convolutional layer deconv6 as shown in
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IoU threshold 0.3 0.4 0.5 0.6 0.7

Karaman et al. [26] 0.5 0.3 0.2 0.2 0.1

Wang et al. [65] 14.6 12.1 8.5 4.7 1.5

Heilbron et al. [18] - - 13.5 - -

Escorcia et al. [9] - - 13.9 - -

Oneata et al. [39] 28.8 21.8 15.0 8.5 3.2

Richard and Gall [43] 30.0 23.2 15.2 - -

Yeung et al. [73] - - 17.1 - -

Yuan et al. [76] 33.6 26.1 18.8 - -

S-CNN [47] 36.3 28.7 19.0 10.3 5.3

C3D + LinearInterp 36.0 26.4 19.6 11.1 6.6

Conv & De-conv 38.6 28.2 22.4 12.0 7.5

CDC (fix 3D ConvNets) 36.9 26.2 20.4 11.3 6.8

CDC 40.1 29.4 23.3 13.1 7.9

Table 2. Temporal action localization mAP on THUMOS’14 as the

overlap IoU threshold used in evaluation varies from 0.3 to 0.7. -

indicates that results are unavailable in the corresponding papers.

Figure 2 (b). The CDC model outperforms these baselines

because the CDC filter can simultaneously model high-level

semantics and temporal action dynamics. We also evalu-

ate the CDC network with fixed weights in 3D ConvNets

and only fine-tune CDC layers, resulting in a minor perfor-

mance drop. This implies that it is helpful to train CDC

networks in an end-to-end manner so that the 3D ConvNets

part can be trained to summarize more discriminative in-

formation for CDC layers to infer more accurate temporal

dynamics.

4.2. Temporal action localization

Given per-frame labeling results from the CDC network,

we generate proposals, determine class category, and pre-

dict precise boundaries following Section 3.4. Our ap-

proach is applicable to any segment proposal method. Here

we conduct experiments on THUMOS’14, and thus employ

the publicly available proposals generated by the S-CNN

proposal network [47], which achieves high recall on THU-

MOS’14 . Finally, we follow [72, 47] to perform standard

post-processing steps such as non-maximum suppression.

Evaluation metrics. Localization performance is also eval-

uated by mAP. Each item in the rank list is a predicted seg-

ment. The prediction is correct when it has the correct cat-

egory and its temporal overlap IoU with the ground truth

is larger than the threshold. Redundant detections for the

same ground truth instance are not allowed.

Comparisons. As shown in Table 2, CDC achieves much

better results than all the other state-of-the-art methods,

which have been reviewed in Section 2. Compared to the

proposed CDC model: the typical approach of extracting a

set of features to train SVM classifiers and then applying the

trained classifiers on sliding windows or segment proposals

(Karaman et al. [26], Wang et al. [65], Oneata et al. [39],

Escorcia et al. [9]) does not directly address the tempo-

ral localization problem. Systems encoding iDTF with FV

(Heilbron et al. [18], Richard and Gall [43]) cannot learn

spatio-temporal patterns directly from raw videos to make

predictions. RNN/LSTM based methods (Yeung et al. [73],

Yuan et al. [76]) are unable to explicitly capture motion in-

formation beyond temporal dependencies. S-CNN can ef-

fectively capture spatio-temporal patterns from raw videos

but lacks the ability of adjusting boundaries from proposal

candidates. With the proposed CDC filter, the CDC net-

work can determine confidence scores at a fine granularity,

beyond segment-level prediction, and hence precisely local-

ize temporal boundaries. In addition, we employ per-frame

predictions of other methods indicated in Table 1 (C3D +

LinearInterp, Conv & De-conv, CDC with fixed 3D Con-

vNets ) to perform temporal localization based on S-CNN

proposal segments. As shown in Table 2, the performance

of the CDC network is still better, because more accurate

predictions at the same temporal granularity can be used to

predict more accurate label and more precise boundaries for

the same input proposal segment. In Figure 4, we illustrate

how our model refines boundaries from segment proposal

to precisely localize action instance in time.

4.3. Discussions

The necessity of predicting at a fine granularity in time.

In Figure 5, we compare CDC networks predicting ac-

tion scores at different temporal granularities. When the

temporal granularity increases, mAP increases accordingly.

This demonstrates the importance of predicting at a fine-

granularity for achieving precise localization.
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Figure 5. mAP gradually increases when the temporal granularity

of CDC network prediction increases from x1 (one label for ev-

ery 8 frames) to x8 (one label per frame). Each point corresponds

to x total upscaling factor (x CDC6 upscaling factor x CDC7 up-

scaling factor x CDC8 upscaling factor) in time. We conduct the

evaluation on THUMOS’14 with IoU 0.5.

Efficiency analysis. The CDC network is compact and de-

mands little storage, because it can be trained from raw

videos directly to make fine-grained predictions in an end-

to-end manner without the need to cache intermediate fea-

tures. A typical CDC network such as the example in Figure

3 only requires around 1GB storage.
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76.9s CDC 79s

75.9s Proposal-extended

77s 79sGround truth

CliffDivingBackground Background

79s

76.2s Proposal 78.7s

Figure 4. Visualization of the process of refining temporal boundaries for a proposal segment. Horizontal axis stands for time. From

the top to the bottom: (1) frame-level ground truths for a CliffDiving instance in an input video with some representative frames; (2) a

corresponding proposal segment; (3) the proposal segment after extension; (4) the per-frame score of detecting CliffDiving predicted by

the CDC network; (5) the predicted action instance after the refinement using CDC.

Our approach is also fast. Compared with segment-level

prediction methods such as S-CNN localization network

[47], CDC has to perform more operations due to the need

of making predictions at every frame. Therefore, when the

proposal segment is long, CDC is less efficient for the sake

of achieving more accurate boundaries. But in the case of

short proposal segments, since these proposals usually are

densely overlapped, segment-level methods have to process

a large number of segments one by one. However, CDC

networks only need to process each frame once, and thus

it can avoid redundant computations. On a NVIDIA Titan

X GPU of 12GB memory, the speed of a CDC network is

around 500 Frames Per Second (FPS), which means it can

process a 20s long video clip of 25 FPS within one second.

Temporal activity localization. Furthermore, we found

that our approach is also useful for localizing activities of

high-level semantics and complex components. We conduct

experiments on ActivityNet Challenge 2016 dataset [17, 2],

which involves 200 activities, and contains around 10K

training videos (15K instances) and 5K validation videos

(7.6K instances). Each video has an average of 1.65 in-

stances with temporal annotations. We train on the train-

ing videos and test on the validation videos. Since no ac-

tivity proposal results of high quality exist, we apply the

trained CDC network to the results of the first place win-

mAP 0.5 0.75 0.95 Average-mAP

before 45.1 4.1 0.0 16.4

after 45.3 26.0 0.2 23.8

Table 3. Temporal localization mAP on ActivityNet Challenge

2016 [2] of Wang and Tao [67] before and after the refinement

step using our CDC network. We follow the official metrics used

in [2] to evaluate the average mAP.

ner [67] in this Challenge to localize more precise bound-

aries. As shown in Table 3, they achieve high mAP when

the IoU in evaluation is set to 0.5, but mAP drops rapidly

when the evaluation IoU increases. After using the per-

frame predictions of our CDC network to refine temporal

boundaries of their predicted segments, we gain significant

improvements particularly when the evaluation IoU is high

(i.e. 0.75). This means that after the refinement, these seg-

ments have more precise boundaries and have larger overlap

with ground truth instances.

5. Conclusion and future works

In this paper, we propose a novel CDC filter to simulta-

neously perform spatial downsampling (for spatio-temporal

semantic abstraction) and temporal upsampling (for precise

temporal localization), and design a CDC network to predict

actions at frame-level. Our model significantly outperforms

all other methods both in the per-frame labeling task and

the temporal action localization task. Supplementary de-

scriptions of the implementation details and additional ex-

perimental results are available in [46].
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