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Abstract

Part-based image classification aims at representing cat-

egories by small sets of learned discriminative parts, upon

which an image representation is built. Considered as a

promising avenue a decade ago, this direction has been ne-

glected since the advent of deep neural networks. In this

context, this paper brings two contributions: first, this work

proceeds one step further compared to recent part-based

models (PBM), focusing on how to learn parts without us-

ing any labeled data. Instead of learning a set of parts per

class, as generally performed in the PBM literature, the

proposed approach both constructs a partition of a given

set of images into visually similar groups, and subsequently

learns a set of discriminative parts per group in a fully unsu-

pervised fashion. This strategy opens the door to the use of

PBM in new applications where labeled data are typically

not available, such as instance-based image retrieval. Sec-

ond, this paper shows that despite the recent success of end-

to-end models, explicit part learning can still boost clas-

sification performance. We experimentally show that our

learned parts can help building efficient image represen-

tations, which outperform state-of-the art Deep Convolu-

tional Neural Networks (DCNN) on both classification and

retrieval tasks.

1. Introduction

Part-based models – i.e. the family of models consid-

ering categories, objects, etc. as sets of elements that are

meaningful, discrete, and limited in number – offer several

interesting properties for the representation of images. First

of all, as they rely on limited meaningful sets of image re-

gions, they explicitly provide strong cues for discovering

images structures, i.e. they explicitly break images into use-

ful components. In addition, they also provide more com-

pact representations than methods based on the pooling of

large numbers of regions, as the number of parts is gen-

erally low compared to the number of different regions an

image contains. Finally, as they focus on the key parts of im-

ages, they are expected to give image representations better

suited, in terms of performance, to computer vision tasks

such as image classification, recognition, or retrieval.

Owing to their attractive properties, part-based models

were addressed extensively in the past, some of the ma-

jor representatives being the constellation model [30], Ull-

man’s fragment-based model [28], or the Interleaved Cate-

gorization and Segmentation model [11].

Despite the relative success of these works, it has to

be recognized that the recent success of deep convolu-

tional neural networks (DCNN) raised a tsunami which

swept away most of the past models, leaving space only

for statistical models that use very dense sampling of image

regions, and alternate between pooling and convolutional

steps. Such models, incredibly good in terms of perfor-

mance, have heavy computational costs and require massive

amounts of labeled data.

In this context, one contribution of this paper is to ad-

dress one strong limitation of most of the existing part-

based models, namely the necessity to rely on annotated

images to learn (or discover) task specific parts. This su-

pervised part learning stage is crucial in most of the past

methods and prevent their use in tasks for which labeled

data are not available, e.g. image retrieval.

Another contribution of this paper is to bring a strong

empirical evidence that part-based models can exceed the

performance of DCNNs representations for both classifica-

tion and image retrieval tasks. More precisely, we exper-

imentally show that a part-based model can compete with

state-of-the-art DCNNs, encoding very dense representa-

tions of images.

This article demonstrates experimentally, on two clas-

sification tasks (Willow and MIT67) and on two retrieval

tasks (Oxford5k and Paris6k ), that the proposed part-based

representations, learned without any annotated images, can

efficiently encode the images, improving the performance

of state-of-the art DCNN representations.

The rest of the paper is organized as follows: Section 2

introduces the related works, Section 3 exposes the pro-

posed method while Section 4 presents the experimental

validation.
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2. Previous work

This section focuses on part-based models, and, more

particularly on how these models learn parts. We can dis-

tinguish between the approaches making use of annotated

data in the learning process and those which does not. We

will discuss these two categories in turn.

On the side of the approaches not using labeled images

for learning the parts, the only work we are aware of is the

work of Singh et al [24]. In [24], parts are defined as sets

of relevant patches that are frequent enough in addition to

being discriminative w.r.t. other parts. The problem is for-

mulated as an unsupervised discriminative clustering prob-

lem on a huge dataset of image patches, optimized by an

iterative procedure alternating between clustering and train-

ing discriminative classifiers. Despite the interest of the

method, the performance is, by far, not as good as super-

vised approaches described in the rest of the section.

Most of the past approaches define parts as image re-

gions, allowing to discriminate efficiently between the dif-

ferent categories involved in the task. However, they differ

in the way they select the candidate regions and in how they

evaluate their ability to distinguish the categories. Ullman’s

fragment-based model [28] randomly samples candidate re-

gions, detects parts by template matching and defines parts

as templates, which are likely to be found in images of one

class but not in images of the other ones (likelihood ratio).

In the constellation model, of [30], the variability within a

class is represented by a joint probability density function

on the shape of the constellation and the appearance of the

parts. Distinctive features in the training set are learned with

other model parameters using expectation maximization. It

is assumed that only one category of image is present dur-

ing training. In the Deformable Part Model, proposed by

Felzenszwalb et al [5], the aforementioned questions are

addressed by selecting discriminative regions that have sig-

nificant overlap with a given bounding box location. The

association between regions and part is done through the

estimation of some latent variables, i.e., the positions of the

regions w.r.t. the position of the root part of the model.

Doersch et al [4] used density based mean-shift algo-

rithms to discover discriminative regions. Starting from a

weakly labeled image collection, coherent patch clusters

that are maximally discriminative with respect to the labels

are produced, requiring a single pass through the data. More

recently, Juneja et al [9] also aimed at discovering distinc-

tive parts for an object or scene class by first identifying

the likely discriminative regions by low-level segmentation

cues, and then learning part classifiers on top of these re-

gions. The two steps are alternated iteratively until a con-

vergence criterion based on Entropy-Rank is satisfied. Sim-

ilarly Mettes et al [12] propose to learn parts that are shared

across classes. The more recent approach of Sicre et al

[20, 21] proposes to learn the parts during a softassign-like

matching algorithm, building part representations as well as

matching parts to regions from labelled images. This work

gives state of the art results on several datasets.

Beside these aforementioned approaches, which separate

the classification process in two stages, one for learning the

part and a second for learning the classifiers once the im-

ages are encoded, the recent approaches of [10, 13] rely on

a joint learning of all the parts and the category classifiers

together. This joint learning approach of all components of

part-based models is particularly relevant since the discrim-

inative regions are explicitly optimized for the targeted task.

Approaches such as [10, 13], despite their excellent per-

formance, put more weight on the need of annotated im-

ages to learn the parts, and also produce parts that are more

strongly related to the categories. In this paper we aim at

learning parts independently of categories, so they can be

used for tasks for which no categories are defined (e.g.,

image retrieval), while giving comparable level of perfor-

mance as jointly learned parts.

In the context of image retrieval, part learning takes the

form of an offline processing stage where patterns are au-

tomatically mined in images. In this sense, relevant works

are the discovery of spatially related images [16] and their

parts [2, 8], the discovery of favorite views of popular im-

ages [31], the selection of local features based on pairwise

matching [27], the online aggregation of multiple query de-

scriptors [19], or the offline aggregation of different views

in scene representations [1]. Such methods may be used

to improve image retrieval, even with state of the art CNN

representations [26, 18, 6]. In contrast to such works, we

do not rely on pairwise matching or precise geometry ver-

ification, but we rather learn a joint representation of parts

that are matched across images. Moreover, the parts are dis-

criminative among different image groups.

3. Method

The proposed approach builds on the recent work of [21],

from which we borrow the idea of considering part discov-

ery as an assignment problem, where assignment is between

regions and parts. In contrast with [10, 13], decoupling

part learning from the main task (e.g. image classification)

makes possible the learning of parts from raw images, in-

dependently of any category definition. As a high-level in-

terpretation, the learned parts can be seen a vocabulary of

latent discriminative mid-level features, which are later de-

tected in images to generate image descriptions.

3.1. Problem formulation

Notation. Given matrices A,B of the same size, 〈A,B〉 =
∑

i,j aijbij is their (Frobenius) inner product. Vector 1n is

an n× 1 vector of ones. Finally, [n] is the set {1, . . . , n}.
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Images and groups. Following [21], we denote by I the set

of training images, with N = |I|. Images in I are denoted

In for n ∈ [N ]. Unlike [21], we assume no category labels

during part learning. Instead, the images I are partitioned

into K groups,

I =
⋃

k∈[K]

Ik, (1)

where Ik are the images of group k, with Nk =
∣

∣Ik
∣

∣. The

partition B = {Ik : k ∈ [K]} is unknown.

Regions. A set of regions RI is extracted from each im-

age I ∈ I. The number of regions per image is fixed and

denoted |R|. The set of regions from images in group k is

denoted Rk, with Rk =
∣

∣Rk
∣

∣ = Nk |R| regions. The to-

tal number of regions in the training set I is R = N |R|.
Given a matrix A with columns indexed by regions, we de-

note by AI the submatrix that contains columns r ∈ RI

corresponding to image I .

Descriptors. Each region r ∈ RI is represented by a de-

scriptor xr ∈ R
d, which is the output of a DCNN inner layer

on the region r, see Section 4.2. By X (Xk) we denote the

d × R (d × Rk) matrix whose columns are the descriptors

of all training images I (group of images Ik).

Parts. For each group of images Ik, we learn a set of

parts Pk. We assume there is a fixed number P =
∣

∣Pk
∣

∣ of

parts per group. Following [21], we use the P ×Rk matrix

Ak associating image regions Rk to parts. Ideally, element

akpr = 1 if region r represents part p, and 0 otherwise.

Requirements. We adjust the requirements of [21] to an

unsupervised setting: (i) in each group, the P parts are dif-

ferent from one another, (ii) each part of Pk is present in

every image of its group Ik, (iii) parts in Pk should oc-

cur more frequently in images in Ik than in the remaining

training images I \ Ik. The first two requirements define

the following constraints on matrix Ak for each group k:

1
⊤
PA

k ≤ 1
⊤
Rk (2)

Ak
I1|R| = 1P for I ∈ Ik (3)

where≤ is meant element-wise. This implies that each sub-

matrix Ak
I is a partial assignment matrix. Then, the ad-

missible set Ak of matrices Ak is the non-convex subset of

{0, 1}P×Rk

satisfying constraints (2) and (3).

Part models. The third requirement is modeled by Linear

Discriminant Analysis (LDA): given matrix Ak in group k,

the model wp(A
k) of part p ∈ Pk is defined as the d-vector

wp(A
k) , Σ−1

(

∑

r∈Rk akprx
k
r

∑

r∈Rk akpr
− µ

)

, (4)

where µ = 1
N
X1R and Σ = 1

N
(X − µ1⊤

R)(X − µ1⊤
R)

⊤

are the empirical mean and covariance matrix of region de-

scriptors over all training images. The classification score

of a given region descriptor xr for the model of part p ∈ Pk

is then given as the inner product
〈

wp(A
k), xr

〉

.

The models of all parts p ∈ Pk are concisely represented

by d× P matrix

W (Ak) , Σ−1

(

1

Nk
Xk(Ak)⊤ − µ1⊤

P

)

. (5)

whose columns are vectors wp(A
k) for p ∈ Pk. Then, the

scores of all region descriptors Xk for all parts in Pk are

given by the P ×Rk matching matrix

M(Ak) , W (Ak)⊤Xk. (6)

Objective function. Given that part models are expressed

as a function of matrix Ak for each group k (5), we are

looking for an optimal matrix in the admissible set Ak,

(Ak)⋆ ∈ arg max
Ak∈Ak

J(Ak) (7)

J(Ak) ,
∑

p∈Pk

∑

r∈Rk

akpr
〈

wp(A
k), xk

r

〉

(8)

=
〈

Ak,W (Ak)⊤Xk
〉

, (9)

which provides a partial assignment of region descriptors

Xk to parts W (Ak) in group k, such that the matching

scores of matrix M(Ak) are closely approximated by bi-

nary matrix Ak.

3.2. Image grouping

The formulation above-given refers to two problems: (i)

grouping the images of the training set, and (ii) learning a

set of discriminative parts per group. We follow a sequen-

tial approach by first grouping and then learning the parts,

for each group independently. The latter is similar to the

supervised setting of [21, 22], where classes are replaced

by groups, and maintains the same complexity. We discuss

grouping here and part learning in section 3.3.

Grouping by global similarity. Image grouping helps lim-

iting the subsequent part learning into smaller training sets,

but also specifying the objective of part learning, such that

parts are discriminative according to requirement (iii) given

in section 3.1. In this sense, images in a group should share

patterns that do not occur in other groups.

Without referring to regions for this task, we follow the

very simple solution of clustering images by global visual

similarity. In particular, we represent each image I in the

training set I by a global descriptor xI obtained by the last

convolutional or fully connected layer of the same DCNN

used to represent regions, see Section 4.2. We then cluster

I in K clusters using k-means on global representations in

order to obtain a set of k centroids {ck : k ∈ [K]}. Fi-

nally, the clusters are balanced to obtain a uniform partition

of the N images of I into K groups of N/K images each.
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The latter step is described below. The reason for balancing

is twofold: (i) the cost of subsequent part learning is bal-

anced, and (ii) each image receives the same weight, which

is important since the number of parts per group is fixed.

Greedy balancing. A simple form of balancing is to iterate

over all groups, greedily assigning one image to a group at a

time, until all images are assigned to a group. In particular,

let ck be the centroid of cluster k for k ∈ [K]. Also, let

U be the set of unassigned images, initially equal to I. For

each k ∈ [K], we choose the image argminI∈U ‖xI − ck‖
closest to ck, assign it to group Ik and remove it from U .

We repeat this process until U is empty.

Iterative balancing. An alternative is to obtain a sequence

of partitions Bt of I, such that each partition Bt is more

balanced than the previous Bt−1, following [25]. Each par-

tition Bt = {Ikt : k ∈ [K]} is defined by assigning each

image I ∈ I to the group argmink∈[K] dt(c
k, xI), where

dt(c, x)
2 for c, x ∈ R

d is a penalized form of squared Eu-

clidean distance, given by:

dt(c, x)
2 , ‖c− x‖2 + bkt (10)

with bkt a penalization term that is an increasing function of

the cardinality Nk
t =

∣

∣Ikt
∣

∣ of group Ikt at iteration t. In

particular, this term is defined as bk0 = 1 and

bkt = bkt−1

(

Nk
t

N/K

)α

(11)

for t > 0 and k ∈ [K]. Then, the sequence Bt converges

to a uniform partition, i.e. Nk
t → N/K as t → ∞ for k ∈

[K], with parameter α controlling the speed of convergence.

In practice, we get a partition B = {Ik : k ∈ [K]} after 80

iterations with α = 0.01 [25].

3.3. Learning parts per group

Given a partition B = {Ik : k ∈ [K]} of training im-

ages I, the optimization problem (7) is to be solved for each

group k. The solution given in [21] is iterative, alternating

between optimizing region to part assignments Ak and part

models W (Ak), keeping the other fixed. This is referred to

as iterative soft-assignment (ISA).

On the other hand, [22] substitutes (5) into (9), resulting

in a quadratic objective function with respect to Ak, with

W (Ak) eliminated. This opens the door to any algorithm

for the quadratic assignment problem. The Hungarian al-

gorithm (HunA) is a particular case of non-iterative method

examined in that work when matrix M(Ak) is fixed.

While we use both ISA and HunA, we do not consider

the quadratic assignment formulation of [22] since we do

not use any other iterative solution given in that work. We

discuss the two approaches below.

Iterative soft-assignment (ISA). Starting from an initial

matrix Ak, ISA iteratively computes a part model matrix

W k ← W (Ak) for fixed Ak by LDA using (5), and opti-

mizes cost function (9) to update Ak, keeping W k fixed.

The latter part is done in three steps. First, it applies

soft-assignment to the matching matrix, Ak ← σβ(M
k) =

σβ((W
k)⊤Xk)

σβ(M
k) , exp{β(Mk − (max

r
Mk)1⊤

Rk)}, (12)

where function exp is taken element-wise rather than ma-

trix exponential, and maxr denotes row-wise maximum

(over regions of an image). Function σβ is a form of soft-

assignment that is scaled by parameter β and only ensures

that the row-wise ℓ∞ norm is 1. Second, Ak is thresholded

element-wise as Ak ← τ(Ak) so that low values are set to

zero. This is a means to achieve inequality constraint (2), as

entire columns are gradually set to zero. Third, it iteratively

normalizes rows and columns according to ℓ1 norm, until

Ak becomes bi-stochastic. This is the Sinkhorn algorithm,

except that zero columns are left unnormalized.

The iteration given above optimizes a modified version

of cost function (9) that includes a negative-entropy reg-

ularization term with coefficient 1
β

[22] and satisfies con-

straints (2),(3), but is not binary. The latter is achieved by

repeating the entire process for increasing β. This yields

a solution to problem (7) for β → ∞, which is a form of

deterministic annealing.

Hungarian algorithm (HunA). gives the exact solution of

problem (7) assuming W (Ak) (or M(Ak)) is fixed, which

is a linear assignment problem. In [22], HunA has been

used both as a standalone method and as part of an iterative

algorithm, IPFP. HunA is very fast compared to ISA but

with the limitation of assuming M(Ak) fixed, it is expected

to be inferior as a standalone solution.

The experimental results of [22] show that HunA com-

petes with iterative IPFP and that both are inferior to ISA,

in terms of performance. However, we revisit this compar-

ison with a new setup where HunA actually competes with

ISA. This is an interesting finding, both for the efficiency of

HunA and the fact that it is not actually solving problem (7).

3.4. Algorithm

The entire algorithm of unsupervised part learning is

summarized in Algorithm 1. First, a global descriptor xI is

computed for each image I ∈ I. These descriptors are then

clustered into centroids ck for k ∈ [K]. Given both cen-

troids and descriptors, we produce a uniform partition B of

I into K groups of N/K images each, using either greedy

(GREEDY) or iterative (ITER) balancing, see section 3.2.

Then, we iterate over each group Ik ∈ B, beginning by

computing region descriptors Xk. To initialize part mod-

els W k in a discriminative way, shown as INIT-PARTS in

Algorithm 1, we follow [21]. In particular, descriptors in

Xk are clustered with k-means and, for each obtained cen-

troid c and its corresponding LDA model w = Σ−1(c− µ),
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the max-pooled response rkI (w) = maxr w
⊤Xk

I is com-

puted for each image I ∈ I. These responses are summed

over images in Ik (resp. its complement in I) to yield

a within-group response rk+(w) (resp. between-group re-

sponse rk−(w)). The P models maximizing the within-

group to between-group response ratio rk+(w)/r
k
−(w) are

chosen, represented in d× P matrix W k.

The remaining algorithm is independent per group Ik.

Given initialized parts W k, the matching matrix Mk =
(W k)⊤Xk is computed and soft-assigned into Ak. ISA or

HunA is applied on this Ak and converts it to binary, solv-

ing problem (7). Algorithm 1 includes ISA as a function,

where the first Sinkhorn step is only needed for consistency

with HunA. HunA can operate with M(Ak) directly as its

input, but we rather use Ak instead in algorithm 1. Finally,

part models W k are obtained as W (Ak) by LDA (5) and

collected over all groups.

Although part learning is independent per group, we re-

mind that parts are discriminative according to our third

requirement, due to discriminative initialization and LDA

classifiers.

In section 4, we experiment with both options i.e.

GREEDY and ITER for balanced grouping, as well as both

options for part learning, i.e. ISA and HunA. We also exper-

iment with different number of groups K, while the num-

ber of regions |R| and parts P are fixed. Although the fo-

cus of this work is on unsupervised part learning, we ad-

ditionally experiment on supervised learning with an im-

proved experimental setup, which is comparable to previous

work [21, 22]. Apart from classification, we additionally

consider image retrieval as an end task.

4. Experiments

This section presents an experimental validation of the

above-presented method, applied to image classification as

well as image retrieval. We first introduce the datasets, then

provide implementation details, and finally present the re-

sults we obtained.

4.1. Datasets

Willow actions [3] classification dataset contains 911 im-

ages split into 7 classes of common human actions, namely

interacting with a computer, photographing, playing music,

riding cycle, riding horse, running, walking. There are at

least 108 images per action, with around 60 images used

as training and the rest as testing images. The dataset also

offers bounding boxes, which are not used as we want to

detect the relevant parts of images automatically.

MIT 67 scenes [17] aims at classifying indoor scenes and

is composed of 67 classes. These include stores (e.g. bak-

ery, toy store), home (e.g. kitchen, bedroom), public spaces

(e.g. library, subway), leisure (e.g. restaurant, concert hall),

Algorithm 1: Unsupervised part learning

1 function W ← LEARN-PARTS(I)

2 Compute global descriptors X ∈ R
d×N

3 C ← k-MEANS(X,K) ⊲ k-means clustering

4 B ← GREEDY(C,X) or ITER(C,X) ⊲ grouping,

section 3.2

5 for Ik ∈ B do

6 Compute region descriptors Xk ∈ R
d×Rk

7 W k ← INIT-PARTS(Xk) ⊲ initial part descriptors

8 Ak ← σβ((W
k)⊤Xk) ⊲ soft-assign (12)

9 Ak ← ISA(Ak, Xk) or HUN(Ak) ⊲ hard-assign

10 W k ←W (Ak) ⊲ LDA (5)

11 W ← {W k : k ∈ [K]} ⊲ learned part models

12 function A← ISA(A,X)
13 A← SINKHORN(A) ⊲ make A bi-stochastic

14 for β ∈ {β0, . . . , βmax} do

15 while A not converged do

16 W ←W (A) ⊲ LDA (5)

17 A← τ(σβ((W )⊤X)) ⊲ soft-assign (12)

18 A← SINKHORN(A) ⊲ make A bi-stochastic

and work (e.g. hospital, TV studio). Each category has

around 80 images for training and 20 for testing, totalling

6700 images.

Oxford 5k [14] and Paris 6k [15] retrieval datasets con-

tain 5,063 and 6,392 images respectively and have 55 query

images each. Query and positive images depict landmarks

of the two cities and there are 11 landmarks in each dataset

with 5 queries each. Negatives are images from the same

two cities but not depicting the landmarks. Performance

is evaluated by means of mean Average Precision (mAP).

Hard positive images are labeled as junk and not taken into

account in mAP computation.

4.2. Implementation details

Image regions. A set of proposed regions are obtained us-

ing Selective Search [29], as in [22]. The total number of

regions per image is fixed to |R| = 1, 000. If less than |R|
regions are available, we add random regions to reach |R|.

Region descriptors. We use a number of DCNN image de-

scriptors, choosing for each task the network giving state-

of-the-art performance on the given datasets in the litera-

ture. Our motivation is indeed to show that our part-based

model can improve on these very well performing networks.

On the Willow dataset, the last convolutional layer of

the very deep VD19 network [23] is used for global rep-

resentation and representation of regions. We note that for

this network, images are resized to 768 pixels maximum di-

mension and average pooling is performed to obtain a 512-

dimensional description.
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On MIT 67 scenes, the seventh fully connected layer of

the very deep VD16 network trained on Places 205 [32] is

used for region and global image description, giving a 4096-

dimensional vector. PCA is applied at the encoding stage to

reduce the description from 4096 to 512 dimensions.

Finally, for image retrieval, ResNet101 [7] fine-tuned on

Landmarks dataset [6] is used. The network includes max-

pooling (MAC [26]), PCA, and normalization, and outputs

a 2048-dimensional descriptor.

Learning parts. We follow the general learning and clas-

sification pipeline of [21], replacing classes by computed

groups in the case of unsupervised part learning. Specif-

ically, during part learning, |R| = 1, 000 regions are ex-

tracted from each image to learn P = 100 parts per group,

both for classification and retrieval, while the number of

groups K is a varying parameter. We note that the param-

eters of the ISA method to learn parts are identical to the

ones used in [21].

Encoding. Once the parts are learned, the encoding stage

aims at collecting part responses for a given image to build

an image descriptor. In particular, for a given image, a set

of |R| = 1, 000 regions and their descriptors are extracted

as described previously. For each region descriptor x, the

score 〈wp(A), x〉 of every part classifier p of every group

k ∈ [K] is computed. We present here different encodings.

The bag-of-parts (BOP) is a 2PK-dimensional descrip-

tor, built by concatenating the average and maximum score

over all image regions per part. A second option is to add

the maximum score over each quarter image per part to the

BOP. This 6PK-dimensional descriptor is referred to as

spatial bag-of-parts (sBOP). As an alternative, each part is

described by the descriptor of the region giving the max-

imum classification score over all image regions. These

region DCNN descriptors are then concatenated, option-

ally being reduced by PCA before concatenating. This de-

scriptor is referred to as PCAed CNN-on-parts (pCOP) and

has d′PK dimensions, with d′ the dimension of the (re-

duced) DCNN descriptor. In this work, we also propose to

weigh the DCNN descriptor of the maximum scoring re-

gions by their part classifier score, referred to as weighted

pCOP (wpCOP). This encoding allows to combine informa-

tion from both BOP and COP. All descriptors and encoded

representations are ℓ2-normalized.

Classification pipeline. Parts are learned on the training

images. Training and test images are then described by the

same encoding method. Finally, a linear SVM is learned on

the training set, and applied to classify test images.

Retrieval pipeline. Parts are learned on images of the

database. Database and query images are then described

by the same encoding method. Finally, for each query, the

database images are ranked by dot product similarity (all

descriptors being ℓ2-normalized).

Table 1. Supervised part learning for classification, using different

algorithms and encodings, compared to baseline global descrip-

tors. S-ISA: supervised ISA; S-HunA: supervised HunA.

Method
Willow MIT 67

mAP mAP Acc.

Global 88.5 83.6 78.5

S-ISA BOP 89.2 86.6 81.6

S-ISA sBOP 90.1 86.7 82.5

S-ISA pCOP 91.7 86.5 82.4

S-ISA wpCOP 92.4 88.3 82.8

S-HunA BOP 88.1 86.9 82.3

S-HunA sBOP 87.6 87.6 83.1

S-HunA pCOP 91.1 86.2 81.9

S-HunA wpCOP 91.6 88.8 83.7

4.3. Results

This section presents an extensive study of the perfor-

mance of part learning applied to both classification and re-

trieval. Although the focus and contribution of this work

is unsupervised part learning, we also experiment on super-

vised part learning in the case of classification. This enables

comparison of our improved pipeline (including different

DCNN and encodings used) to previous work, providing

new findings on the relative performance of algorithms like

ISA and HunA.

Supervised part learning for classification. Global image

descriptors are compared with two part learning methods,

i.e. ISA and HunA, using various encodings on two classi-

fication datasets. The process is exactly as shown in Algo-

rithm 1 but using given classes instead of computed groups,

similarly to previous work. Results are given in Table 1.

We observe that part learning outperform global image rep-

resentations on both datasets, with a larger gain on MIT 67.

Interestingly, HunA outperforms ISA on MIT 67, despite

being inferior on Willow. This is important since HunA

is not supposed to solve problem (7) exactly, but rather

the special case of optimizing the part-to-region assignment

when the part models are fixed. Also note that HunA is up

to 100 times faster than ISA, therefore favored in some of

the experiments. Furthermore, we show that the proposed

wpCOP is the best performing encoding in all experiments.

Unsupervised part learning for classification. The pro-

posed unsupervised part learning strategy is then evaluated

on Willow in Table 2, and on MIT 67 in Table 3. For

these experiments, we retain two encodings: wpCOP for its

higher performance (as shown in the previous experiment),

and sBOP for its lower dimensionality. Each of the two en-

codings is combined with both algorithms ISA and HunA.

As for the case of supervised learning, we observe that none

of the two algorithms really outperforms the other: HunA

outperforms ISA on MIT 67 but is inferior on Willow.

Various numbers of groups are evaluated: K ∈
{5, 10, 20, 40, 80} on Willow and K ∈ {50, 67, 100} on
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Table 2. Unsupervised part learning for classification, using dif-

ferent matching algorithms and different encodings on Willow ac-

tions. Grouping performed with iterative balancing. Results given

in terms of mAP. Performances better than the baseline global de-

scriptors are in bold.

K Encoding ISA HunA

5
sBOP 77.5 75.4

wpCOP 88.4 86.8

10
sBOP 81.9 77.5

wpCOP 89.5 88.4

20
sBOP 85.9 81.8

wpCOP 90.4 89.3

40
sBOP 85.2 83.3

wpCOP 90.3 89.6

80
sBOP 85.3 84.7

wpCOP 88.8 89.1

Table 3. Unsupervised part learning for classification, using dif-

ferent matching algorithms and different encodings on MIT 67

Scenes. Grouping are performed with greedy and iterative bal-

ancing. Best scores are in bold

K Method
Greedy Iterative

mAP Acc. mAP Acc.

100
ISA sBOP 86.2 81.0 85.6 81.2

ISA wpCOP 87.8 82.4 87.6 82.3

67
ISA sBOP 85.9 81.5 85.5 80.2

ISA wpCOP 87.8 82.2 87.5 81.7

50
ISA sBOP 85.0 80.3 85.6 80.1

ISA wpCOP 86.8 81.9 87.7 81.3

100
HunA sBOP 87.1 83.1 87.3 83.7

HunA wpCOP 88.6 83.2 88.8 83.4

67
HunA sBOP 86.6 82.3 86.8 83.5

HunA wpCOP 88.7 83.6 88.8 83.3

50
HunA sBOP 86.1 81.8 86.3 82.1

HunA wpCOP 88.1 82.9 87.6 82.0

Table 4. Unsupervised part learning for classification on MIT 67

Scenes using VD19 for initialization. Grouping performed with

iterative balancing.

K Method mAP Acc.

100
HunA sBOP 85.9 81.6

HunA wpCOP 87.6 83.5

50
HunA sBOP 85.1 80.6

HunA wpCOP 87.1 83.2

MIT 67. We observe that 20 and 40 groups offer the best

performance on Willow using wpCOP encoding. Similarly,

we observe on MIT 67 that overall K = 100 outperforms

K = 67, which outperforms K = 50. Although not shown

in the Tables, K = 200 gives similar accuracy and slightly

lower mAP on MIT 67 compared to K = 100.

We also observe that unsupervised parts encoded with

sBOP do not outperform the global representation on Wil-

low. However, sBOP on MIT 67 and wpCOP on both

datasets offer significant improvements. Even though per-

Table 5. Unsupervised part learning and mAP measurements on

Oxford5k and Paris6k retrieval datasets. Grouping is performed

with iterative balancing and part learning with HunA.

K Method d Oxford5k Paris6k

Global [6]

ori. 83.2 92.4

512 78.9 92.5

256 76.2 90.9

128 73.0 89.0

64 67.1 82.5

50 HunA sBOP

ori. 77.2 91.4

512 77.4 91.4

256 77.1 91.5

128 75.0 91.7

64 71.6 91.5

50 HunA wpCOP

ori. 83.1 94.8

512 84.3 94.6

256 84.3 94.5

128 81.7 94.3

64 71.0 95.3

100 HunA sBOP

ori. 79.1 90.5

512 79.0 90.5

256 78.6 90.6

128 77.5 90.7

64 73.9 91.3

100 HunA wpCOP

ori. 83.5 94.5

512 84.4 94.2

256 84.1 94.0

128 81.6 93.8

64 69.6 94.0

formance is not as high as supervised part learning, which

is expected, we observe that unsupervised parts are about

2% mAP below supervised parts on Willow and only 0.3%

accuracy below on MIT 67.

Table 3 also studies the two grouping methods, i.e. it-

erative balancing vs. greedy balancing. None is offering a

significant gain over the other. We repeat the grouping com-

putation a number of times to check the influence of the

randomized k-means initialization. The largest difference

observed over three runs on Willow is 0.6% mAP for sBOP

and 0.4% mAP for wpCOP.

The impact of the initial grouping is further investigated,

see Table 4. Here the initial grouping is performed using

a different global description, i.e. the output of the convo-

lutional layers of the very deep VD19 Network. The per-

formance varies slightly, i.e. mAP is overall 1% lower and

accuracy is stable with lower performances on sBOP but

higher on wpCOP.

Unsupervised part learning for retrieval. Now, since our

proposed part learning approach is unsupervised, it allows

to learn parts without any labels. Therefore we can apply

this method on various tasks, where no annotated data is

available, such as image retrieval. Table 5 shows the per-

formance of unsupervised part learning on the two image
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Figure 1. The 200 top scoring parts are visualized on query images of Oxford5k (first row) and Paris6k (second row).

Table 6. Summary of our best results for supervised and unsuper-

vised part learning on both classification and retrieval tasks. S-

ISA: supervised ISA; S-HunA: supervised HunA. Unsupervised

part learning is performed with K = 100.

Method d
MIT 67 Oxf5k Paris6k

mAP Acc. mAP

Global 83.6 78.5 83.2 92.4

Global 256 — — 76.2 90.9

S-HunA sBOP 87.6 83.1 — —

S-HunA wpCOP 88.8 83.7 — —

HunA sBOP 87.3 83.7 79.1 90.5

HunA wpCOP 88.8 83.4 83.5 94.5

HunA sBOP 256 — — 78.6 90.6

HunA wpCOP 256 — — 84.1 94.0

retrieval datasets, i.e. Oxford5k and Paris6k. Unsupervised

part learning methods are compared against global image

representations, as well as reduced representations. Hav-

ing highly reduced representation is important in image re-

trieval for efficient search in large databases.

Although sBOP encoding is inferior to the global rep-

resentation in the original descriptor dimensionality, wp-

COP offers an improvement, which is larger when reducing

the dimensionality. We further note that sBOP outperforms

global representation at low dimensionality and even out-

performs wpCOP in the extreme case of 64 dimensions on

oxford5k. The gain in performance for unsupervised parts

is observed on both datasets. Interestingly, K = 100 groups

performs better than K = 50 on Oxford5k, as for classifi-

cation on MIT 67, but K = 50 performs better on Paris6k.

Additionally, qualitative results are shown in Figure 1,

where the 200 highest scoring parts are visualized on sev-

eral query images of Oxford5k and Paris6k. Visualization

of all query images appears in the supplementary material.

Summary. Finally, Table 6 summarizes our best results on

MIT 67, Oxford5k, and Paris6k for the learning configu-

ration using K = 100 groups with grouping by iterative

balancing and part learning by HunA. It is clear that HunA

and ISA are two comparable part learning approaches with

HunA being faster to compute. It is remarkable that the

same part learning approaches are competitive both in a su-

pervised and an unsupervised setup. Our proposed wpCOP

encoding outperforms all alternatives. There is a clear gain

in using part-based models in classification, even in unsu-

pervised fashion, compared to global representations. In

retrieval, gain is also obtained in low dimensionality.

5. Conclusions

This paper introduces a novel framework for the unsu-

pervised learning of part-based models. The key idea is

to generate groups of similar images, through the use of

a clustering algorithm, and learn part models that are dis-

criminative w.r.t. the different groups. Our intuition is that

our part learning method is capable of capturing the data

distribution for a novel task without requiring any labels

for this task. We demonstrate that our part-based models,

when used to encode images, improve the performance of

image classifiers compared to a global encoding of images.

More importantly, these models open the door to new ap-

plications for which no class labels are available, e.g. in-

stance retrieval. Our approach is experimentally validated

on two classification and two retrieval datasets, consistently

improving the performance of the state-of-the art DCNNs.
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SPLeaP: Soft Pooling of Learned Parts for Image Classifica-

tion. In ECCV, 2016.

[11] B. Leibe, A. Leonardis, and B. Schiele. Robust object detec-

tion with interleaved categorization and segmentation. Int. J.

Comput. Vision, 77(1-3):259–289, May 2008.

[12] P. Mettes, J. C. van Gemert, and C. G. M. Snoek. No spare

parts: Sharing part detectors for image categorization. CoRR,

abs/1510.04908, 2015.

[13] S. N. Parizi, A. Vedaldi, A. Zisserman, and P. Felzenszwalb.

Automatic discovery and optimization of parts for image

classification. In International Conference on Learning Rep-

resentations, 5 2015.

[14] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-

man. Object retrieval with large vocabularies and fast spa-

tial matching. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, June 2007.

[15] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.

Lost in quantization: Improving particular object retrieval

in large scale image databases. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

June 2008.

[16] T. Quack, B. Leibe, and L. Van Gool. World-scale min-

ing of objects and events from community photo collections.

In Conference on Image and Video retrieval, pages 47–56,

2008.

[17] A. Quattoni and A. Torralba. Recognizing indoor scenes.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2009.

[18] F. Radenovic, G. Tolias, and O. Chum. CNN image retrieval

learns from BoW: Unsupervised fine-tuning with hard exam-

ples. In European Conference on Computer Vision, 2016.

[19] R. Sicre and H. Jégou. Memory vectors for particular object

retrieval with multiple queries. In Proceedings of the 5th

ACM on International Conference on Multimedia Retrieval,

pages 479–482. ACM, 2015.

[20] R. Sicre and F. Jurie. Discovering and aligning discrimina-

tive mid-level features for image classification. In Interna-

tional Conference on Pattern Recognition, pages 1975–1980.

IEEE, 2014.

[21] R. Sicre and F. Jurie. Discriminative part model for visual

recognition. Computer Vision and Image Understanding,

141:28 – 37, 2015.

[22] R. Sicre, J. Rabin, Y. Avrithis, T. Furon, and F. Jurie. Auto-

matic discovery of discriminative parts as a quadratic assign-

ment problem. arXiv preprint arXiv:1611.04413, 2016.

[23] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[24] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discov-

ery of mid-level discriminative patches. In Proceedings of

the European Conference on Computer Vision, pages 73–86.

Springer, 2012.

[25] R. Tavenard, H. Jegou, and L. Amsaleg. Balancing clusters to

reduce response time variability in large scale image search.

In Content-Based Multimedia Indexing, 2011.

[26] G. Tolias, R. Sicre, and H. Jégou. Particular object retrieval

with integral max-pooling of CNN activations. 2016.

[27] P. Turcot and D. Lowe. Better matching with fewer features:

the selection of useful features in large database recognition

problems. In International Conference on Computer Vision,

2009.

[28] S. Ullman, E. Sali, and M. Vidal-Naquet. A Fragment-Based

Approach to Object Representation and Classification. In Vi-

sual Form 2001, pages 85–100. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2001.

[29] K. E. A. van de Sande, J. R. R. Uijlings, T. Gevers, and

A. W. M. Smeulders. Segmentation as selective search for

object recognition. In IEEE International Conference on

Computer Vision, 2011.

[30] M. Weber, M. Welling, and P. Perona. Towards automatic

discovery of object categories. In 2010 IEEE Conference on

Computer Vision and Pattern Recognition, 2010.

[31] T. Weyand and B. Leibe. Discovering favorite views of pop-

ular places with iconoid shift. In International Conference

on Computer Vision, 2011.

[32] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva.

Places: An image database for deep scene understanding.

arXiv preprint arXiv:1610.02055, 2016.

96279


