KillingFusion: Non-rigid 3D Reconstruction without Correspondences

Miroslava Slavcheva1,2 Maximilian Baust1 Daniel Cremers1 Slobodan Ilic1,2
1 Technische Universität München \quad 2 Siemens Corporate Technology

Abstract

We introduce a geometry-driven approach for real-time 3D reconstruction of deforming surfaces from a single RGB-D stream without any templates or shape priors. To this end, we tackle the problem of non-rigid registration by level set evolution without explicit correspondence search. Given a pair of signed distance fields (SDFs) representing the shapes of interest, we estimate a dense deformation field that aligns them. It is defined as a displacement vector field of the same resolution as the SDFs and is determined iteratively via variational minimization. To ensure it generates plausible shapes, we propose a novel regularizer that imposes local rigidity by requiring the deformation to be a smooth and approximately Killing vector field, i.e. generating nearly isometric motions. Moreover, we enforce that the level set property of unity gradient magnitude is preserved over iterations. As a result, KillingFusion reliably reconstructs objects that are undergoing topological changes and fast inter-frame motion. In addition to incrementally building a model from scratch, our system can also deform complete surfaces. We demonstrate these capabilities on several public datasets and introduce our own sequences that permit both qualitative and quantitative comparison to related approaches.

1. Introduction

The growing markets of virtual and augmented reality, combined with the wide availability of inexpensive RGB-D sensors, are perpetually increasing the demand for various applications capable of capturing the user environment in real time. While many excellent solutions for the reconstruction of static scenes exist\cite{5, 12, 23, 31, 33, 34, 43, 54}, the more common real-life scenario - where objects move and interact non-rigidly - is still posing a challenge. The difficulty stems from the high number of unknown parameters and the inherent ambiguity of the problem, since various deformations can yield the same shape. These issues can be alleviated through additional constraints, thus solutions for multi-view surface tracking\cite{4, 8, 9, 10, 18, 22, 50} and template-based approaches\cite{1, 28, 57} have been developed. DynamicFusion\cite{32} is the pioneering work that addresses the general case of incrementally building a 3D model from a single Kinect stream in real time, which is also the objective of our work. VolumeDeform\cite{20} tackles the same problem, combining depth-based correspondences with SIFT features to increase robustness to drift. While both systems demonstrate results of impressive visual quality, they may suffer under larger inter-frame motion due to the underlying mesh-based correspondence estimation.

Many recent works on deformable 3D reconstruction use a signed distance field (SDF) to accumulate the recovered geometry\cite{10, 20, 32}, benefiting from its ability to smooth out errors in the cumulative model\cite{7}. However, they intermittently revert back to a mesh representation in order to determine correspondences for non-rigid alignment\cite{20, 32}, thereby losing accuracy, computational speed and the capability to conveniently capture topological changes. On the other hand, an SDF inherently tackles situations when surfaces are merging or splitting, e.g. a man puts hands on his hips or takes his hat off (Fig. 1, 2), a dog bites its tail, etc.

In this paper we propose a non-rigid reconstruction pipeline where the deformation field, the data explanation and regularization are operating on a single shape representation: the SDF. We formulate the problem of interest as building a 3D model in its canonical pose by estimating a 3D deformation field from each new depth frame to the global model and subsequently fusing its data. To this end, we incrementally evolve the projective SDF of the current frame towards the target SDF following a variational framework. The main energy component is a data term which
aligns the current frame to the cumulative model by mini-
mizing their voxel-wise difference of signed distances - thus
without explicit correspondence search and suitable for par-
allelization. In order to handle noise and missing data, we
impose smoothness both on the deformation field and on
the SDFs, and require a certain level of rigidity. This is
done by enforcing the deformation field to be approximately
Killing [3, 41, 46] so that it generates locally nearly isomet-
ric motions - in analogy to as-rigid-as-possible constraints
on meshes [42]. Furthermore, we ensure that the SDF evolu-
tion is geometrically correct by conserving the level set
property of unity gradient magnitude [26, 35].

To sum up, we contribute a novel variational non-rigid
3D reconstruction system that handles topological changes
inherently and circumvents expensive correspondence esti-
mation. Due to the generality of the representation, it can be
directly applied to evolving complete meshed models. Last
but not least, we propose a methodology for quantifying re-
construction error from a single RGB-D stream.\footnote{Our data
is publicly available at http://campar.in.tum.de/
personal/slavcheva/deformable-dataset/index.html.}

2. Related Work

Here we discuss existing approaches on level set evolu-
tion, vector field estimation and deformable surface track-
ing in RGB-D data, identifying their limitations in the con-
text of our problem of interest and suggesting remedies.

Level set methods Deformable reconstruction systems
commonly rely on meshes for correspondence estimation,
making them highly susceptible to errors under larger de-
formations or topology changes [24]. On the contrary,
level sets inherently handle such cases [35]. They have
been used for surface manipulation and animation in graph-
ics [6, 14, 47, 53] where models are complete and noise-
free, while our goal is incremental reconstruction from
noisy partial scans. In medical imaging, where high fidelity
shape priors for various organs are available [13, 16], level
set methods have been applied to segmentation [2, 17] and
registration [25, 30], usually guided by analytically defined
evolution equations [36]. However, as we have no template
or prior knowledge of the scene, we propose an energy that
is driven by the geometry of the SDF and deformation field.

In computer vision, Paragios et al. [37] use distance
functions for non-rigid registration driven by a vector field,
but are limited to synthetic 2D examples. Fujirawa et al.
[15] discuss extensions of their locally rigid globally
non-rigid registration to 3D, but demonstrate only few tests
on full surfaces. Instead, we define the energy in 3D and
impose rigidity constraints so that 2.5D scans can be fused
together from scratch.

Scene flow Determining a vector field that warps 2.5D/3D
frames is the objective of works on scene flow [19, 21, 39,
48, 51, 52]. They are typically variational in nature, com-
bining a data alignment term with a smoothness term that
ensures that nearby points undergo similar motion. How-
ever, this is not sufficient for incremental reconstruction
where new frames exhibit previously unseen geometry that
has to be overlaid on the model in a geometrically consis-
tent fashion. This is why we include another rigidity prior
that requires the field to be approximately Killing - gener-
ating nearly isometric motions [3, 41, 46]. In this way we
conveniently impose local rigidity through the deformation
field, without need for a control grid as in embedded defor-
mation [44] and as-rigid-as-possible modelling [42].

Multiview and template-based surface tracking External
constraints help to alleviate the highly unconstrained na-
ture of non-rigid registration. The system of Zollhöfer et al.
[57] deforms a template to incoming depth frames in real
time, but requires the subject to stay absolutely still during
the template generation, which cannot be guaranteed when
scanning animals or kids. Multi-camera setups are another
way to avoid the challenging task of incrementally building
a model. Fusion4D [10] recently demonstrated a powerful
real-time performance capture system using 24 cameras and
multiple GPUs, which is a setup not available to the
general user. Moreover, Section 8 of [10] states that even
though Fusion4D deals with certain topology changes, the
algorithm does not address the problem intrinsically.

Incremental non-rigid reconstruction from a single
RGB-D stream The convenience of using a single sensor
makes incremental model generation highly desirable. Dou
et al. [11] proposed a pipeline that achieves impressive qual-
ity thanks to a novel non-rigid bundle adjustment, which
may last up to 9-10 hours. DynamicFusion [32] was the
first approach to simultaneously reconstruct and track the
the method, combining dense depth-based correspondences
with matching of sparse SIFT features across all frames in
order to reduce drift and handle tangential motion in scenes
of poor geometry. While both works demonstrate com-
pelling results, the shown examples suggest that only rel-
atively controlled motion can be recovered. We aim to uti-
lize the properties of distance fields in order to achieve full
evolution under free general motion.
3. Preliminaries

In the following we define our mathematical notation and outline the non-rigid reconstruction pipeline.

3.1. Notation

Our base representation is a signed distance field (SDF), which assigns to each point in space the signed distance to its closest surface location. One of its characteristic geometric properties is that its gradient magnitude equals unity everywhere where it is differentiable [35]. It is widely used since it can be easily converted to a mesh via marching cubes [29] - the surface is the zero-valued interface between the negative inside and positive outside.

SDF generation is done in a pre-defined volume of physical space, discretized into voxels of a chosen side length. The function \(\phi : \mathbb{N}^3 \rightarrow \mathbb{R} \) maps grid indices \((x, y, z)\) to the signed distance calculated from the center of the respective voxel. We follow the usual creation process [40, 56], where additionally a confidence weight counting the number of observations is associated with each voxel. We also apply the standard practice of truncating the signed distances. In our case, voxels further than 10 voxels away from the surface are clamped to \(\pm 1 \). This also serves the purpose of a narrow-band technique, as we only estimate the deformation field over the near-surface non-truncated voxels.

In the given discrete setting, all points in space that belong to a certain voxel obtain the same properties. Thus an index \((x, y, z) \in \mathbb{N}^3\) refers to the whole voxel.

Our goal is to determine a vector field \(\Psi : \mathbb{N}^3 \rightarrow \mathbb{R}^3 \) that aligns a pair of SDFs. It assigns a displacement vector \((u, v, w)\) to each voxel \((x, y, z)\). This formulation is similar to VolumeDeform [20] where the deformation field is of the same resolution as the cumulative SDF, while DynamicFusion [32] only has a coarse sparse control grid. However, both require a 6D motion to be estimated per grid point, while a 3D flow field is sufficient in our case due to the dense smooth nature of the SDF representation and the use of alignment constraints directly over the field. Moreover, this makes the optimization process less demanding.

3.2. Rigid Component of the Motion

Although the whole motion from target to reference can be estimated as a deformation, singling out the rigid part of the motion serves as a better initialization. The deformation field is initialized from the previous frame, so we determine frame-to-frame rigid camera motion. We use the SDF-2-SDF registration energy [40] which registers pairs of voxel grids by direct minimization. We prefer this over ICP where the search for point correspondences can be highly erroneous under larger deformation. Nevertheless, any robust rigid registration algorithm of choice can be used instead.

3.3. Overview

We accumulate the model \(\phi_{global} \) in its canonical pose via the weighted averaging scheme of Curless and Levoy [7]. Given a new depth frame \(D_n \), we register it to the previous one and obtain an estimate of its pose relative to the global model. Next, we generate a projective SDF \(\phi_n \) from this pose. The remaining task is to estimate the deformation field \(\Psi \) which will best align \(\phi_{global} \) and \(\phi_n(\Psi) \), explained in detail in the next section. The field is estimated iteratively and after each step the increment is applied on \(\phi_n \), updating its values using trilinear interpolation. Once the minimization process converges, we fuse the fully deformed \(\phi_n(\Psi) \) into the model via weighted averaging.

The choice to deform the live frame towards the canonical model and not vice versa is based on multiple reasons. On the one hand, this setting is easier for data fusion into the cumulative model. On the other hand, the global SDF has achieved a certain level of regularity after sufficiently many frames have been fused, while a single Kinect depth image is inevitably noisy. Thus, if the model is deformed towards the live frame without imposing enough rigidity, there is a high risk that it would grow into the sensor noise.

4. Non-rigid Reconstruction

In this section we describe our model for determining the vector field \(\Psi \) that aligns \(\phi_n(\Psi) \) with \(\phi_{global} \).

4.1. Energy

Our level-set-based, and thus correspondence-free, non-rigid registration energy is defined as follows:

\[
E_{\text{non-rigid}}(\Psi) = E_{\text{data}}(\Psi) + \omega_k E_{\text{Killing}}(\Psi) + \omega_s E_{\text{level}}(\Psi). \tag{1}
\]

It consists of a data term and two regularizers whose influence is controlled by the factors \(\omega_k \) and \(\omega_s \).

Data term The main component of our energy follows the reasoning that under perfect alignment, the deformed SDF and the cumulative one would have the same signed distance values everywhere in 3D space. Therefore the flow vector \((u, v, w)\) applied at each voxel \((x, y, z)\) of the current frame’s SDF \(\phi_n \) will align it with \(\phi_{global} \). For brevity we omit the dependence of \(u, v, w \) on location:

\[
E_{\text{data}}(\Psi) = \frac{1}{2} \sum_{x,y,z} \left(\phi_n(x + u, y + v, z + w) - \phi_{global}(x, y, z) \right)^2. \tag{2}
\]

Motion regularization To prevent uncontrolled deformations, e.g. in case of spurious artifacts caused by sensor noise, we impose rigidity over the motion. Existing approaches typically employ an as-rigid-as-possible [42] or an
embedded deformation [44] regularization, which ensures that the vertices of a latent control graph move in an approximately rigid manner. We take a rather different strategy and impose local rigidity directly through the deformation field.

A 3D flow field generating an isometric motion is called a Killing vector field [3, 41, 46], named after the mathematician Wilhelm Killing. It satisfies the Killing condition $J_{\Psi} + J_{\Psi}^T = 0$, where J_{Ψ} is the Jacobian of Ψ.

A Killing field is divergence-free, i.e. it is volume-preserving, but does not regularize angular motion. A field which generates only nearly isometric motion and thus balances both volume and angular distortion is an approximately Killing vector field (AKVF) [41]. It minimizes the Frobenius norm of the Killing condition:

$$E_{AKVF}(\Psi) = \frac{1}{2} \sum_{x,y,z} \left| J_{\Psi} + J_{\Psi}^T \right|^2. \quad (3)$$

However, as we are handling deforming objects, this constraint might be too restrictive. Thus, we propose to damp the Killing condition. In order to do so, we rewrite Eq. 3 using the column-wise stacking operator $\text{vec}(\cdot)$:

$$E_{AKVF}(\Psi) = \frac{1}{2} \sum_{x,y,z} \text{vec}(J_{\Psi})^T \text{vec}(J_{\Psi} + J_{\Psi}^T) = \sum_{x,y,z} \text{vec}(J_{\Psi})^T \text{vec}(J_{\Psi}) + \gamma \text{vec}(J_{\Psi})^T \text{vec}(J_{\Psi}). \quad (4)$$

Next, we notice that the first term can be written as:

$$\text{vec}(J_{\Psi})^T \text{vec}(J_{\Psi}) = |\nabla u|^2 + |\nabla v|^2 + |\nabla w|^2, \quad (5)$$

which is the typical motion smoothness regularizer used in scene and optical flow [19, 45, 52]. It only encourages that nearby points move in a similar manner, but does not explicitly impose rigid motion. Based on this observation, we devise the damped Killing regularizer

$$E_{Killing}(\Psi) = \sum_{x,y,z} \left(\text{vec}(J_{\Psi})^T \text{vec}(J_{\Psi}) + \gamma \text{vec}(J_{\Psi})^T \text{vec}(J_{\Psi}) \right), \quad (6)$$

where γ controls the trade-off between Killing property and volume distortion penalization, so that non-rigid motions can also be recovered. A value of $\gamma = 1$ corresponds to the pure Killing condition. We refer the interested reader to the supplementary material for a more detailed derivation.

Level set property To ensure geometric correctness during the evolution of ϕ_n, the property that the gradient magnitude in the non-truncated regions of an SDF is unity has to be conserved [35]:

$$E_{level}(\Psi) = \frac{1}{2} \sum_{x,y,z} \left(|\nabla \phi_n(x+u,y+v,z+w)| - 1 \right)^2. \quad (7)$$

It is important to note that a subsequent work of the same authors proposes an improved regularizer for maintaining the level set property [27]. However, it is only useful when the function to be evolved is initialized with a piecewise constant function, and not a signed distance one. As we are initializing ϕ_n with an SDF, the regularizer of Eq. 7 is absolutely sufficient for the considered application.

4.2. Energy Minimization

One of the main benefits of our energy formulations is that it can be applied to each voxel independently, as each term only contains values of the current estimates for the deformation field and SDFs or their derivatives. Therefore the displacement vector updates can be computed in parallel.

We follow a gradient descent scheme. It is variational since Ψ is a function of coordinates in space. Only final results of the Euler-Lagrange equations are presented here, with full derivations given in the supplementary material.

We separate the 3D vector field Ψ into its spatial components, each of which is a scalar field. This allows us to calculate partial derivatives of the energy terms in each spatial direction and to combine them into vectors in order to execute the gradient descent steps.

To ease notation, we will no longer specify summation over voxel indices. Further, we will write $\phi(\Psi)$ instead of $\phi(x+u, y+v, z+w)$ to refer to the value of ϕ after the deformation field has been applied. Note that the summation of integer- and real-valued indices is not problematic, since interpolation is done after every step. We thus obtain the following derivatives with respect to the deformation field:

$$E_{data}'(\Psi) = \left(\phi_u(\Psi) - \phi_{global} \right) \nabla \phi_n(\Psi), \quad (8)$$

$$E_{Killing}'(\Psi) = 2H_{uvw} \left(\text{vec}(J_{\Psi}^T) \cdot \text{vec}(J_{\Psi}) \right) \left(\frac{1}{\gamma} \right), \quad (9)$$

$$E_{level}'_{set}(\Psi) = \frac{|\nabla \phi_n(\Psi)| - 1}{|\nabla \phi_n(\Psi)|} H_{\phi_n(\Psi)} \nabla \phi_n(\Psi). \quad (10)$$

Here $\nabla \phi_n(\Psi) \in \mathbb{R}^{3 \times 1}$ is the spatial gradient of the deformed SDF of frame number n and $H_{\phi_n(\Psi)} \in \mathbb{R}^{3 \times 3}$ is its Hessian matrix, composed of second-order partial derivatives. Similarly, $H_{uvw} = \left(H_u \ H_v \ H_w \right)$ is a 3×3 matrix consisting of the 3×3 Hessians of each component of the deformation field. To avoid division by zero we use $|\cdot|_e$, which equals the norm plus a small constant $\epsilon = 10^{-5}$.

Finally, we obtain the new state of the deformation field Ψ^{k+1} as a gradient descent step of size α starting from Ψ^k:

$$\Psi^{k+1} = \Psi^k - \alpha E_{non\ rigid}'(\Psi^k). \quad (11)$$

The field of each incoming frame is initialized with that of the previous frame. Naturally, for the very first frame the initial state is without deformation. Registration is terminated when the magnitude of the maximum vector update in Ψ falls below a threshold of 0.1 mm.
Figure 3. Comparison under topological changes. Our level-set-based KillingFusion fully evolves into the correct geometric shape between frames, while VolumeDeform [20] does so only partially (3rd and 5th live frames), which is reflected as artifacts in the final reconstruction.

4.3. Implementation Details

Equations 8-10 are highly suitable for parallelization as the update for each voxel depends only on its immediate neighbourhood. Thus we opted for a GPU implementation, which we tested on an NVIDIA Quadro K2100M. It runs at 3-30 frames per second for all shown examples. In particular, it takes 33 ms for a grid consisting of approximately \(80^3\) voxels. Naturally, speed decreases with increasing grid resolution. However, the slowdown is not cubic, since only the near-surface voxels contribute for the deformation field estimation, which typically constitute less than 10\% of all.

5. Results

This section contains qualitative and quantitative evaluation of the proposed non-rigid reconstruction framework. The parameters were fixed as follows: gradient descent step \(\alpha = 0.1\), damping factor for the Killing energy \(\gamma = 0.1\), weights for the motion and level set regularization respectively \(\omega_k = 0.5, \omega_s = 0.2\). The choice of values for \(\omega_k\) and \(\omega_s\) not only balances their influence, but also acts as normalization since signed distances are truncated to the interval \([-1;1]\), while the deformation field contains vectors spanning up to several voxels. We used a voxel size of 8 mm for human-sized subjects and 4 mm for smaller-scale ones.

Changing topology and large inter-frame motion The first experiments that we carried out focus on highlighting the strengths of our KillingFusion compared to other single-stream deformable reconstruction pipelines: changing topology and rapid motion between frames. To be able to quantify results, we used mechanical toys that can both deform and move autonomously. We first reconstructed them in their static rest pose using a markerboard for external ground-truth pose estimation. Then we recorded their non-rigid movements starting from the rest pose, which lets us evaluate the error in the canonical-pose reconstruction.

We shared our recordings with the authors of VolumeDeform [20], who kindly run the Frog, Duck and Snoopy sequences and gave us their final canonical-pose reconstructions and videos of the model warped onto the live images.

Figures 3 and 4 juxtapose our results. Note that the reconstructions are partial because these objects do not complete 360° loops. Both approaches perform well under general motion. However, the third and fifth Frog live frames demonstrate that VolumeDeform, as an example of a method that determines mesh-based correspondences, does not track topological changes. Similarly, the latter three Snoopy live frames show that it cannot recover once a topological change occurs when the feet touch. Furthermore, the rapid ear motion, making a full revolution from horizontal to vertical position and back within 5 frames, cannot be captured and causes artifacts in the final reconstruction, while our level-set based KillingFusion fully evolves the surface even in such cases. Thus SDFs are better suited for overcoming large inter-frame motion and changing topology.
The last column of Figure 4 contains snapshots from the evaluation of the canonical-pose outputs against the groundtruth in CloudCompare\(^2\). Our models tend to be less detailed than those of VolumeDeform due to the coarse voxel resolution. However, we achieve higher geometric consistency: our average errors are 3.5 mm on Snoopy and 3.9 mm on Duck, while those of VolumeDeform are 4.2 mm and 5.4 mm respectively. Note that the voxel size we used is 4 mm, indicating that our accuracy stays within its limits. As expected, KillingFusion is closer to the groundtruth model in the areas of fast motion, while VolumeDeform has accumulated artifacts there.

Finally, in Fig. 5 we scanned another object, which completes a full 360° loop while moving non-rigidly, in order to demonstrate our capabilities to incrementally build a complete water-tight model from scratch. The reconstruction error remained of the same order as for the partial view scans.

Current warp into the live frame

Final canonical model

Figure 6. Comparison of our depth-only KillingFusion to VolumeDeform [20] which additionally relies on the color frames for SIFT matching: our reconstructions are of comparable fidelity. In particular, our canonical model exhibits less artifacts where larger motion occurred, e.g. around the neck which bends over 90°. Moreover, our live frames show that KillingFusion follows the folds of the neck more naturally (see marked regions).

Public single-stream RGB-D datasets Next, we tested KillingFusion on the datasets used in related single-stream non-rigid reconstruction works. We chose the sequences that we identify as most challenging, i.e. exhibiting large deformations and completing a full loop in front of the camera, where available.

First, we tested KillingFusion on data from the VolumeDeform publication [20]. The authors have also made publicly available their canonical-pose and warped reconstructions for every 100th frame. The comparison in Figure 6 shows that KillingFusion achieves similar quality. Notably, the second warped frame demonstrates that our SDFs deform to the geometry more naturally: our warped model replicates the skin folding around the neck, while the model of VolumeDeform does not bend further than a certain extent, causing artifacts in the final reconstruction as well. This is similar to the behaviour we observed on our own rapid motion recordings. In conclusion, another dataset also indicates that level set evolution allows to capture larger motion better than mesh-based techniques.

Next, we run KillingFusion on 360° sequences used in Dou et al.’s offline non-rigid bundle adjustment paper [11] and DynamicFusion [32]. As we do not have the authors’ resulting meshes, we show snapshots available from the publications. KillingFusion manages to recover a complete model of comparable fidelity to the other techniques. In particular, despite the coarse voxel resolution, it preserves fine-scale details such as noses, ears and folds on shirts after a full loop around the subject.

Contributions of energy components In order to confirm that all regularizers from our non-rigid energy formulation are essential, we studied their effects in Fig. 9. The model is not smooth and fine artifacts, visible as small holes, appear without the level set property (Fig. 9b), because it has been violated in places during the SDF evolution. Without motion regularization (Fig. 9c), the moving parts of the object, such as the wings and head, get destroyed as more frames are fused. In case of applying standard motion smoothness, without enforcing divergence-free Killing behaviour (Fig. 9d), the model is somewhat...
smoother, but in several regions the geometry between different frames is inconsistent, resulting in holes. Conversely, if we do not damp the Killing condition (Fig. 9e) and thus the energy steers towards completely rigid motion, the non-rigidly moving wings almost vanish. We empirically determined favourable values for γ to be between 0.05 and 0.3.

Multiview mesh datasets To show the generality of our SDF-based approach, we run KillingFusion on the MIT multiview mesh dataset [49], as done by Zollhöfer et al. [57]. It contains several sequences of 150-200 meshes, fused from multiview captures around people who are executing movements with considerably large deformation. Therefore it also permits another quantitative evaluation.

Figure 10 shows our reconstructions throughout the sequences, together with the alignment error indicating the deviation from the ground truth. We started with an SDF initialized from the first mesh and continuously evolve it towards the SDF corresponding to every next frame. While the error tends to slightly increase over time, the effects of drift accumulation are not severe. The model error remains below 2 mm throughout both sequences, with an average of 1.3 mm in $D_{bouncing}$ and 0.9 mm in T_{swing}. We included one of the dancing girl sequences, as they are typically used in literature to demonstrate problems with topology changes when the dress touches the legs [11] - but do not cause a problem for KillingFusion. In particular, we notice no larger artifacts near the dress edge than other areas of the model. The biggest errors are, in fact, typically near the hands of the subjects. This is because the used voxel size of 8 mm does not always manage to recover fine structures like the fingers with absolute accuracy. Last but not least, we noticed that if instead we deform the first SDF to every frame, more iterations are required to converge, but the errors do not change significantly.

6. Limitations and Future Work

The primary aim of our non-rigid reconstruction system is to recover the 3D shape of the deforming object. As this is done via level set evolution rather than by determining the new position of each point, applications which require explicit point correspondences, such as texture mapping, fall out of the scope of our approach. Thus we plan to integrate backward tracking of point correspondences in level sets [38] in order to open up further possibilities. Moreover, we plan to explore representing the flow field at a coarser resolution grid using interpolation of radial basis functions [55], so that a larger volume can be covered.

7. Conclusion

We have presented a novel framework for non-rigid 3D reconstruction that inherently handles changing topology and is able to capture rapid motion. Our lightweight energy formulation allows to determine dense deformation flow field updates without correspondence search, based on a combination of a newly introduced damped Killing motion constraint and level set validity regularization. A variety of qualitative and quantitative examples have shown that KillingFusion can recover the geometry of objects undergoing diverse kinds of deformations. We believe our contribution is a step forward towards making real-time recovery of unconstrained motion truly available to the general user.

Acknowledgements We thank Matthias Innmann for running VolumeDeform on our data; Mohamed Souiai, Gabriel Peyré and Chun-Hao Huang for valuable discussions; and Alexander Seeber for creative assistance in the recordings. M. Baust acknowledges the support of DFG-funded Collaborative Research Centre SFB824-Z2 Imaging for Selection, Monitoring and Individualization of Cancer Therapies.
References

