
Multi-Object Tracking with Quadruplet Convolutional Neural Networks

Jeany Son Mooyeol Baek Minsu Cho Bohyung Han

Dept. of Computer Science and Engineering, POSTECH, Korea

{jeany, mooyeol, mscho, bhhan}@postech.ac.kr

Abstract

We propose Quadruplet Convolutional Neural Networks

(Quad-CNN) for multi-object tracking, which learn to as-

sociate object detections across frames using quadruplet

losses. The proposed networks consider target appearances

together with their temporal adjacencies for data associ-

ation. Unlike conventional ranking losses, the quadruplet

loss enforces an additional constraint that makes tempo-

rally adjacent detections more closely located than the ones

with large temporal gaps. We also employ a multi-task

loss to jointly learn object association and bounding box

regression for better localization. The whole network is

trained end-to-end. For tracking, the target association is

performed by minimax label propagation using the met-

ric learned from the proposed network. We evaluate per-

formance of our multi-object tracking algorithm on public

MOT Challenge datasets, and achieve outstanding results.

1. Introduction

Visual tracking for multiple targets in videos has been

widely studied for various applications, such as human mo-

tion analysis, autonomous driving, and video surveillance.

Despite substantial progress in recent years, even the state-

of-the-art multi-object tracking algorithms still suffer from

various challenges such as severe occlusions and noisy de-

tections in crowded scenes. Such issues frequently affect

tracking performance in real world scenarios.

Multi-object tracking aims to find an optimal set of tra-

jectories of moving objects within a video. This problem is

typically formulated as a data association task, where an

external detector localizes target bounding boxes in each

frame, and then a tracking algorithm associates correspond-

ing detection boxes across frames. This data association is

a challenging task in the presence of occlusions, missing

objects, and false alarms. Hence, rather than relying on as-

sociations over two consecutive frames, existing methods

typically leverage multiple candidate trajectories within a

larger temporal window [56, 3, 1, 6, 50, 8, 22]. In spite of

these efforts, existing multi-object tracking algorithms still

suffer from massive and inaccurate detections.

In recent years, deep learning techniques have achieved

the state-of-the-art performance in a variety of computer vi-

sion tasks such as image classification [25, 44, 17], semantic

segmentation [31, 36], and object tracking [35, 16]. How-

ever, there are only a few deep learning approaches to multi-

object tracking [28, 48, 33], and their performances are not

as competitive as the techniques based on hand-crafted fea-

tures. There are a couple of reasons that hamper the use

of deep learning techniques for multi-object tracking. First,

training data for multi-object tracking is not yet sufficient

to train deep neural networks with a large number of pa-

rameters. Only a limited number of sequences are avail-

able due to the cost of annotating ground-truths for video

frames. Second, existing deep neural networks pretrained

on the datasets for image classification have critical limi-

tations in discriminating objects with subtle difference and

capturing motion features in video. While the success of

multi-object tracking relies on the effective use of both tar-

get appearance and motion, joint learning of the two factors

in deep neural networks has not been investigated in depth.

Motivated by this fact, we propose a novel multi-object

tracking algorithm using Quadruplet Convolutional Neural

Networks (Quad-CNN), which learns to associate detec-

tions across video frames using both appearance and motion

cues. Specifically, unlike conventional ranking losses, the

proposed quadruplet loss introduces an additional constraint

that temporally adjacent detections have smaller distances

than distant ones. This allows us to learn temporally smooth

appearance models of target objects, and is realized by com-

bining appearance embedding with motion-aware position

embedding for metric learning. In addition, we incorporate

bounding-box regression to refine initial detections and im-

prove localizations. We employ a multi-task loss to jointly

learn object association and bounding-box regression, and

the whole network is trained end-to-end. In tracking, we

compute distances between all pairs of detections within a

temporal sliding window using the learned metric, and ap-

ply a minimax label propagation to associate detections.

The main contributions of this paper is four-fold:

• We propose a quadruplet architecture of deep neural
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network, referred to as Quad-CNN, to learn object as-

sociation for multi-object tracking. For metric learn-

ing, the Quad-CNN combines appearance embedding

of detections and their sequence-specific motion-aware

position embedding.

• We employ a multi-task loss to jointly learn object as-

sociation and bounding-box regression, and the whole

network is trained end-to-end in a unified framework.

• We adopt a modified minimax label propagation al-

gorithm to make fast and robust data association for

multi-object tracking.

• We achieve outstanding performance in MOT chal-

lenge benchmark datasets especially among the algo-

rithms based on deep neural networks.

The rest of the paper is organized as follows. We first dis-

cuss related work in Section 2. The architecture and char-

acteristics of Quad-CNN are presented in Section 3. The

procedure of our association algorithm based on minimax

label propagation is discussed in Section 4. Section 5 de-

scribes the implementation details of our method. Section 6

provides experimental results.

2. Related Work

Early multi-object tracking algorithms handling data as-

sociation problems often use recursive Bayesian filters such

as Kalman filter [4] and particle filter [38], which rely on

the first-order Markov assumption. Another direction is to

match object hypotheses given by detections between two

consecutive frames using their affinities measure by appear-

ance, position, size, etc. [24, 52, 42]. However, tracking al-

gorithms based on local data association (e.g., between two

adjacent frames) have critical limitations in handling oc-

clusions or noisy detections, and consequently tend to pro-

duce short fragmented trajectories. On the contrary, some

multi-target tracking algorithms construct a set of trajecto-

ries through global or delayed optimization [56, 3, 1, 6, 50].

Several multi-object tracking algorithms based on con-

volutional neural networks (CNNs) [28, 48] and recurrent

neural networks (RNNs) [33] have been proposed, but the

benefit of deep neural networks are substantial even com-

pared with hand-crafted features. Leal-Taixe et al. [28]

learn descriptors using Siamese CNN, where images and

optical flow maps are provided as multi-modal inputs. They

use gradient boosting to combine local features extracted

by Siamese CNN and contextual features. Wang et al. [48]

jointly learn Siamese CNNs and temporally constraint met-

rics to obtain appearance-based tracklet affinity model. A

Long Short-Term Memory (LSTM) is trained end-to-end

for online multi-object tracking [33]. This work is the first

fully end-to-end learning method based on deep learning,

but its performance does not reach the accuracy of the state-

of-the-art methods. Kim et al. [22] uses deep features pre-

trained on large datasets as appearance features for multiple

hypothesis tracking.

Multi-object tracking aims to associate the detections,

so the design of a similarity function between detections

is a critical factor. Siamese network [5, 9] and triplet net-

work [49, 18] are simple methods to measure the similarity

between two objects. Siamese network uses a contrastive

loss to train the network, which encourages the network

to have small distances between the pairs that belong to

the same objects while enforcing the object with different

identities to have large distances. This network is applied

to face verification and identification [45, 43], single ob-

ject tracking [47] and multi-target tracking [28, 48]. The

triplet network, an improved version of Siamese network,

is more discriminative and more robust to intra-class vari-

ations [18] since it uses a ranking loss. It has been used

for feature learning [18, 26], unsupervised representation

learning in videos [51], and face recognition [41] and per-

son re-identifications [7]. Recently, generalized versions

of the triplet network using higher order relationships have

been proposed [57, 19, 37], and these methods are useful

for fine-grained feature representation learning.

The most distinctive part of our algorithm from existing

multi-object tracking algorithms based on metric learning is

that it learns metrics for both appearance and motion cues

simultaneously in a single CNN framework using quadru-

plet relationships. It is also notable that we obtain sequence-

agnostic models for metric learning regardless of intrinsic

and extrinsic camera parameters.

3. Quad-CNN for Multi-Object Tracking

This section describes the details of our Quad-CNN for

multi-object tracking, including how to learn data associa-

tion and bounding box regression jointly.

3.1. Main Idea

Our quadruplet network deals with multi-level rank or-

ders by generalizing Siamese and triplet networks, which

are often employed to learn embedding of target appear-

ances. We are motivated by the fact that, for data association

in multi-object tracking, the embedding should consider not

only class labels of detected objects but also their detection

timestamps since object appearances change over time in

videos. We introduce a Quad-CNN to learn an embedding

with such constraint, where the similarity between detected

objects are determined by both their labels and temporal

distances. Figure 1 illustrates the quadruplet relationship

defined in this paper.

Since this quadruplet association relies on accurate ob-

ject localization, we employ bounding-box regression as an

additional objective to learn the network. The Quad-CNN
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Figure 1: Quadruplet relationship in our Quad-CNN. We

aim to enforce a positive pair of detections to have a smaller

distance than a negative pair, and a temporally adjacent pair

of detections to have a smaller distance than a temporally

distant pair.

minimizes a multi-task loss L on each patch in a mini-batch

corresponding to both data association and bounding box

regression, which is given by

L = Lrank + λLbbreg, (1)

where Lrank and Lbbreg are losses for quadruplet ranking and

bounding box regression, respectively.

Figure 2 illustrates the overall architecture of our Quad-

CNN, where the CNNs can be replaced by any deep net-

work (e.g. VGG, AlexNet).

3.2. Quadruplet Rank Loss for Robust Association

Let us denote a set of N quadruplets of image patches,

corresponding to detections in multi-object tracking, by

{(xi,t0
,x+

i,t1
,x+

i,t2
,x−

i,∗)}
N
i=1, where xt0 is an anchor patch

at frame t0, (x+
t1
,x+

t2
) are positive patches with constraints

t0 < t1 < t2, and x−
∗ is a negative patch from arbitrary

frames. Given the quadruplet, the relations among these

four image patches are given by

d(xt0
,x+

t1
)+δ1+δ2 < d(xt0

,x+
t2
)+δ2 < d(xt0

,x−
∗ ), (2)

where d(·, ·) is a distance metric between the features of

two patches extracted from the last fully connected layer of

the network, and (δ1, δ2) denote margins (δ1 ≪ δ2). The

ranking loss of the Quad-CNN is expressed as

Lrank = (3)

1

2N

N
∑

i=1

max{0, d(xi,t0
,x+

i,t1
)− d(xi,t0

,x+
i,t2

) + δ1}

+
1

2N

N
∑

i=1

max{0, d(xi,t0
,x+

i,t2
)− d(xi,t0

,x−
i,∗) + δ2}.

For robust association between detections, we learn a

distance metric d(·, ·) using position discrepancy and ap-

pearance dissimilarity, which is given by

d(xi,xj) = αij
a ‖ai − aj‖

2
2 + αij

m‖mi→j −mj→j‖
2
2, (4)

where ai denotes a learned appearance feature of patch

xi, mi→j means a sequence-specific motion-aware position

feature using a linear motion model from patch xi to xj ,

and (αij
a , α

ij
p ) are trained weights for distances of appear-

ance and position features. Detailed description about these

two features and the learned metric are discussed below.

Appearance feature In multi-object tracking of pedestri-

ans (or many other kinds of objects), the extent of main tar-

get objects can be roughly into two parts, e.g., upper body

and lower body. When the number of training examples is

not sufficient, it may be difficult to learn a robust feature

embedding of joint appearance for upper and lower body

due to overfitting issue. To address this problem, we slice

the output of the last convolution layer (pool5) into two cor-

responding parts, and learn two fully connected layers (ftop

and fbottom) separately for each part. Compared to a sin-

gle combined linear layer, these two sliced layers reduce

the total number of parameters since they do not share the

connected nodes in the preceding layer. According to our

experiment, this slicing strategy prevents the network from

overfitting and improves accuracy of pedestrian tracking.

Outputs of these separate fully connected layers (upper and

lower body adaptation layers) are then concatenated to gen-

erate a single appearance feature vector ai for patch xi.

Sequence-specific motion-aware position feature In ad-

dition to appearance features, position features of patches

are trained by the proposed Quad-CNN. Let us first define

a motion-aware position feature from patch xi to xj , which

is learned from the following input vector:

pi→j = [ui + u̇i ·∆tij , vi + v̇i ·∆tij , wi, hi,∆tij ] , (5)

where [ui, vi] is the center position of the detection xi,

[ẋi, ẏi] is the velocity vector at [ui, vi], (wi, hi) are width

and height of detection xi, and ∆tij is the temporal differ-

ence between detection xi and xj . Note that the velocity

vector is estimated by a linear motion model with the opti-

cal flow between adjacent frames computed by [11]. Then,

the embedding network fpos extracts a motion-aware posi-

tion feature by

p̂i→j = fpos(p̄i→j ; θpos), (6)

where p̄i→j is the transformation of pi→j by bounding box

regression (discussed in Section 3.3), θpos is the model pa-

rameter for the embedding network. Note the motion-aware

position embedding learns canonical spaces for the posi-

tions of all detections. This motion-aware position embed-

ding is learned based on the criterion that position feature

p̂i→j with a estimated motion from xi to xj should be close

to the position feature p̂j→j without motion if two detec-

tions belong to the same object.
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Figure 2: The architecture of the proposed Quad-CNN for multi target tracking using temporal coherency.

The motion-aware position embedding is reasonable but

not sufficient to measure universal similarity for all se-

quences. This is because all videos have different geometric

configurations mainly due to the variations of intrinsic and

extrinsic camera parameters. For example, objects captured

by a low-angle camera typically have large scale variations

even with subtle changes in their y-coordinates while ob-

jects in a top-down view do not have any correlation be-

tween their locations and sizes. Therefore, the features in

2D image space should be properly normalized and adjusted

to handle various camera positions and orientations in a uni-

fied framework.

We propose a sequence-specific embedding by reflecting

the characteristics of the sequences. Let sk denote statistics

of a sequence k, which is given by

sk = [σ(Xk)/σ(Yk), σ(Xk), µ(Wk), σ(Wk), ωk] , (7)

where Xk,Yk are a set of 2D coordinates of all detections

in sequence k, Wk is a set of widths of all detections in

sequence k, ωk is the width of a frame in sequence k, and

µ(·) and σ(·) denote mean and standard deviation, respec-

tively. Then, the sequence-specific embedding features are

obtained by learning the following function:

ŝk = fstat(sk; θstat), (8)

where fstat is a network for sequence statistics embedding,

θstat is the model parameter of fstat.

To obtain the sequence-specific motion-aware position

embedding mi→j , we employ multiplicative interactions

between sequence statistics and motion-aware position pre-

dictions. It learns the representation using correlations be-

tween two vectors, and the sequence-specific motion-aware

position prediction mi→j can be written as

mi→j = ŝk ⊙ p̂i→j , (9)

where ⊙ denotes Hadamard product.

Feature weighting Since the inputs of two features—

appearance and position features—have completely differ-

ent characteristics in terms of magnitude and dimensional-

ity, it is not straightforward to estimate their relative im-

portance. Hence, we learn the weights for the two distance

terms in Eq. (4) with respect to temporal differences of de-

tections. In other words, if detections are close in time, posi-

tion information is more important than appearance, while,

if they are temporally distant from each other, then it would

be better to focus on their appearances. Thus, given a tem-

poral difference ∆tij of two patches xi and xj , the weights

(αij
a , α

ij
p ) in Eq. (4) are learned as

αααi→j ≡ [αij
a , α

ij
p ] = fwt(∆tij ; θwt), (10)

where fwt is the feature weighting network and θwt is the

model parameter for fwt.

3.3. Bounding Box Regression Loss

To handle noisy localization of detected objects, we per-

form bounding box regression as in [14]. The bounding box

regression loss Lbbreg is given by

Lbbreg =
∑

i∈{u,v,w,h}

smoothL1
(gi − pi), (11)

where g = {gu, gv, gw, gh} denotes an offset of ground-

truth bounding box, and p = {pu, pv, pw, ph} is a predicted

bounding-box regression offset. The L1 smooth loss func-

tion is given by

smoothL1
(x) =

{

0.5x2 if |x| < 1

|x| − 0.5 otherwise.
(12)

For bounding box regression, we adopt the parameteriza-

tions of the 4 coordinates of g as in [14].

We update the input of the network for motion-aware po-

sition feature, pi→j , by bounding box regression and obtain

p̄i→j , which is given by

p̄i→j =
[

ūi + u̇i ·∆tij , v̄i + v̇i ·∆tij , w̄i, h̄i,∆tij
]

(13)
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where the coordinates of bounding boxes are updated as

ūi = wi · pu + ui, w̄i = wi · exp(pw),

v̄i = hi · pv + vi, h̄i = hi · exp(ph).

Note that the updated input p̄i→j is used to compute

motion-aware position feature as shown in Eq. (6).

3.4. Training and Inference

We optimize the parameters by backpropagating the joint

loss in terms of ranking and bounding box regression given

by Eq. (1). Training is straightforward for both loss terms

since the ranking loss is based on hinge losses and the

bounding box regression is a well-known technique.

For inference in a video with given detections, we ex-

tract appearance features, perform bounding box regres-

sions, and compute motion-aware position features for all

detections. The sequence statistics are also computed using

all detections in the current video, and the sequence-specific

motion-aware position features are obtained by combining

the sequence statistics and motion-aware position features.

The weights for appearance and position features are also

computed for all pairs of detections in the same temporal

sliding window. Using the sequence-specific motion-aware

position features and the appearance features, pairwise dis-

tances are computed by using the learned metric in Eq. (4).

Then, target association can be achieved by our minimax

label propagation, which is discussed in Section 4.

4. Minimax Label Propagation for MOT

We now describe the proposed tracking framework to

solve data association problem based on a modified mini-

max label propagation.

4.1. Problem Formulation

Multi-object tracking can be formulated with graphs,

where the cost of an edge corresponds to a distance between

two end nodes. Optimization methods such as k-shortest

path algorithm [3] and network flow [39, 50] are typically

used to find the optimal trajectories of targets.

We employ the minimax label propagation technique for

semi-supervised multi-class classification proposed in [23]

due to its simplicity and fast speed. We modify the orig-

inal algorithm to fit multi-object tracking application; we

enforce a pairwise exclusion constraint [34] that detections

within the same frame do not have the same label, and add

the capability to generate new labels for handling enter-

ing objects. Detections are associated using minimax label

propagation along the minimax paths and labels are prop-

agated through the paths from labelled to unlabeled nodes.

In comparison to the shortest path algorithm, also known

as Dijkstra algorithm, the minimax label propagation only

takes account of the maximum edge costs along the path.

(a) Minimax path (b) Shortest path

Figure 3: Minimax path vs. Shortest path. Each number

colored in white denotes the optimal distance to the node

from initial labelled nodes, and the number on each edge

denotes a distance (cost) between two patches. (a) The min-

imax path minimizes the maximum edge cost on the path.

(b) The shortest path minimizes the sum of all edge costs

along the path.

Since this method attempts to maintain small variations of

associated detections along each path, we believe that it

is well suited for matching problems. Furthermore, mini-

max paths better captures cluster structures of nonconvex

shapes, compared to the shortest paths. Figure 3 illustrates

the difference between the minimax path and the shortest

path methods.

4.2. Minimax Label Propagation

Graph construction Let us denote a directed acyclic

graph for multi-object tracking by G = (V,E) where V
and E represent sets of nodes and edges, respectively. A

node vi ∈ V corresponds to a detection xi, and an edge

eij ∈ E connects a pair of detections, xi and xj , within

each temporal sliding window. The learned distance metric

in Eq. (4) is used to compute a cost from vi to vj :

c(i, j) ≡ d(xi,xj). (14)

The set of edges E only contains pairs of detections satis-

fying the following criteria:

E = {eij |c(i, j) ≤ c(i, k) ∀k ∈ {l|tl = tj},

c(i, j) < rthr, ti < tj , |tj − ti| < τ}, (15)

where tj is a timestamp of vj , τ is a size of temporal win-

dows and rthr is a threshold value for reliable pairs. We use

the margin δ2 as a threshold value rthr. Note that, for a given

node vi, we choose a node vj in each future frame that can

be reached with the minimum cost. All the edges are con-

nected forward with respect to detection timestamps, and

no edge is created between nodes in the same frame. Since

we allow pairs of detections to be connected in a temporal

sliding window, short-term occlusion or missing detections

can be handled.
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Algorithm 1 Minimax Label Propagation for MOT

1: for j ∈ {1, . . . , Nℓ} do rj ← 0, ℓj ← j

2: for j ∈ {Nℓ + 1, . . . , N} do rj ←∞, ℓj ← undef

3: Q(0) ← {1, . . . , Nℓ}, id← Nℓ + 1
4: for m ∈ {0, 1, 2, . . . }, until Q(m) = {} do

5: Q(m+1) ← {}
6: for i ∈ Q(m) do

7: Ni ← {}
8: for T ∈ {ti + 1, . . . , ti + τ} do

9: if minj∈{l|tl=T} c(i, j) < rthr then

10: Ni ← Ni ∪ {argminj∈{l|tl=T} c(i, j)}

11: for j ∈ Ni do

12: r∗j ← max(c(i, j), ri), r′ ←∞

13: if (ℓi = ℓj′) & (tj = tj′),
∃j′ then

14: r′ ← rj′

15: if (r∗j<rj) & (r∗j<r′) then

16: rj ← r∗j , ℓj ← ℓi
17: if r′<∞ then rj′←∞, ℓj′← undef

18: Q(m+1) ← Q(m+1) ∪ j

19: if Q(m+1) = {} & ℓk = undef, ∃k then

20: k′ ← arg mink tk, ℓk′ ← id, rk′ ← 0
21: Q(m+1) ← Q(m+1) ∪ k′, id← id + 1

Modified minimax label propagation Unlike conven-

tional minimax label propagation, we use a pairwise exclu-

sion constraint for multi-object tracking [34]: two detec-

tions in the same frame cannot be on the same target. Our

minimax label propagation algorithm for multi-object track-

ing is summarized in Algorithm 1. From an initial set of Nℓ

nodes with labels, which corresponds to labelled bounding

boxes in the first frame of video, the algorithm propagates

the labels to detections in subsequent frames. We assign to

each node vj a minimax distance rj from the initial labelled

nodes, which is computed in a recursive manner:

i∗ = arg min
i∈Pj

(max(c(i, j), ri)), (16)

rj = max(c(i∗, j), ri∗), (17)

where Pj denotes an index set of immediate parents of vj in

G. Each label is propagated along the minimax paths in the

constructed directed acyclic graph G. If there already exists

a node j′ having the same label ℓi in the same frame, the

node with a lower cost takes the label. Once all labels are

propagated, we assign a new label to one of unlabeled nodes

in the earliest frame and propagate it in the same manner.

This process is iterated until all nodes are labeled.

5. Implementation

This section describes training details of the proposed

quadruplet network for multi-target tracking.

5.1. Architecture

Figure 2 illustrates high-level design of our network.

The architecture of convolutional layers for appearance fea-

ture learning are identical to the corresponding part of

AlexNet [25]. We initialize the weights of convolutional

layers using a pretrained triplet network [51], which is

trained on a video dataset in an unsupervised manner.

We replace fully connected layers of AlexNet with our

custom layers. Specifically, we divide pool5 features into

upper and lower parts to handle each body part separately.

Each of the two feature maps are then followed by two fully

connected layers in 1,024 and 32 dimensions subsequent

with ReLU. We concatenate the two separate feature maps

to get the final appearance feature.

We employ a 5D fully connected layers to learn each of

motion-aware position features p̂i→j and sequence-specific

embedding features ŝk. The weights of appearance and po-

sition features are obtained from a 2D fully connected layer.

For training, we use the standard stochastic gradient descent

(SGD) method and initial learning rates are set to 0.0001 for

the pretrained layers and 0.001 for the other layers. Initial

momentum and weight decay are set to 0.9 and 0.0005, re-

spectively. The network converges after approximately 8K

SGD iterations with 200 examples in mini-batches.

Training with detections The training data for multi-

object tracking typically provide detection bounding boxes

as well as ground-truth bounding boxes with associated IDs.

Most multi-object tracking algorithms train models with

ground-truth bounding box annotations. However, since the

characteristics of detections and ground-truths are different

and only detection bounding boxes are available for infer-

ence, it is more desirable to use detection bounding boxes

for training. In other words, we believe that the use of de-

tections makes trained models more robust partly because

the environment of training and testing are more consistent.

However, training with detections is not straightforward be-

cause detection bounding boxes are not given ground-truth

IDs. Hence, we match detections with ground-truths us-

ing Hungarian algorithm, and assign an ID to each detec-

tion in the training dataset. Figure 4 demonstrates the dif-

ference between training examples based on ground-truths

and detections. Note that there are some detection bounding

boxes with missing IDs due to misalignment with ground-

truth, and missing detections due to imperfect detector per-

formance.

Quadruplet sampling Since it is not plausible to enu-

merate all possible quadruplets in a mini-batch for training,

we perform forward propagation of all examples in a mini-

batch and compute the losses for a subset of quadruplets

using extracted features. This quadruplet sampling strat-

egy is important for effective error backpropagation and fast
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(a) Ground-truths (b) Detections with ID

Figure 4: Assigning IDs to detections using ground-truth

bounding boxes. In (b), the dotted box denotes a detection

with missing ID and we can find three misdetections.

convergence of training. To generate a quadruplet, we first

pick an anchor example and two positive examples obtained

from different frames in a mini-batch. Given the triplet of

positive examples, we select a negative example that has

a different ID from the anchor. Note that, all examples in

a mini-batch are obtained from the same video. We have

two options to select negative examples from a mini-batch

as discussed in [51]. One is random selection of detections

with different ID in the same video, and the other is to use

a hard negative mining—collecting the top k examples that

have the highest ranking losses in a mini-batch. In our ex-

periments, we use 10 random negative samples and 10 hard

negative samples for each anchor.

Data Augmentation We employ several data augmenta-

tion techniques widely used to training CNNs. We re-

size each input example to 256×256 and randomly crop

227×227 images from the input. The positions of the

patches are adjusted by considering their translations offsets

induced by cropping. All sequences are flipped horizontally

and the flipped videos are treated as separate sequences for

training. Color jittering is applied to reduce overfitting and

to improve generalization of the network.

6. Experimental Results

This section presents our results on the standard bench-

marks with comparisons to several recent algorithms.

6.1. Datasets

We tested our tracking algorithm on the Multiple Object

Tracking (MOTChallenge) Benchmark1 to evaluate perfor-

mances. The MOTChallenge benchmark provides a set of

sequences with ground-truth annotations and a framework

for a fair performance evaluation of algorithms. The dataset

contains video sequences collected from other datasets for

multi-object tracking and new challenging sequences cap-

tured by both static and moving cameras along with detailed

annotations. In 2DMOT2015 dataset [30], sequences are

1http://motchallenge.net/

Table 3: Results of Quad-CNN variants on the generated

2DMOT2015 validation set.

Method MOTA↑ MT↑ ML↓

Quad-CNN 16.9 24.6% 47.9%

(a) Quad-CNN noBBR 13.6 20.6% 50.4%

(b) Quad-CNN CW 14.3 24.6% 49.0%

(c) Quad-CNN noSLICE 14.3 21.5% 51.0%

(d) Quad-CNN noSSE 15.2 22.4% 48.4%

TRIPLET 16.1 21.5% 52.4%

Table 4: Ablation study on the 2DMOT2015 test dataset.

Method MOTA↑ MOTP↑ MT↑ ML↓

Quad-CNN 33.8 73.4 12.9% 36.9%

(a) TRIPLET 32.6 73.1 12.1% 42.7%

(b) TRIPLET noBBR 29.4 71.6 13.0% 40.1%

(c) TRIPLET CW 29.3 73.0 8.2% 48.5%

divided into two subsets—one is for training and the other

is for testing—and each subset consists of 11 sequences.

The 2DMOT2015 dataset also provides public object de-

tection bounding boxes from the Aggregate Channel Fea-

tures pedestrian detector [10]. MOT16 [32] dataset contains

7 training and 7 testing sequences, where DPM v5 [13] is

used to obtain the bounding boxes.

6.2. Evaluation Metrics

The MOTChallenge Benchmark employs multiple met-

rics for evaluation of multi-object tracking algorithms.

These include Multiple Object Tracking Accuracy (MOTA),

Multiple Object Tracking Precision (MOTP), average num-

ber of false alarms per frame (FAF), Mostly Track tar-

gets (MT, percentage of ground truth objects whose tra-

jectories are covered by the tracking output at least 80%),

Mostly Lost targets (ML, percentage of ground truth ob-

jects whose trajectories are covered by the tracking output

less than 20%), the total number of False Positives (FP), the

total number of False Negatives (FN), the total number of

ID Switches (IDS), the total number of times a trajectory

is Fragmented (Frag), and the number of frameworks pro-

cessed in one second (Hz).

6.3. Evaluation on MOTChallenge Benchmark

We evaluated performance of the proposed quadruplet

network denoted by Quad-CNN on 2DMOT2015 dataset.

Table 1 presents the results, where arrows indicate favor-

able directions of quantitative results. Quad-CNN achieves

the state-of-the-art performance and outperforms the algo-

rithms based on deep neural networks with large margins.

We also present performance of Quad-CNN on MOT16

dataset in the MOTChallenge benchmark. The quantitative

results are presented in Table 2, which shows that Quad-

CNN is competitive with the state-of-the-art methods.
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Table 1: Results on the 2DMOT2015 test dataset: (a) comparison with the state-of-the-art methods (b) comparison with the

algorithms based on deep neural networks. Our method is denoted by Quad-CNN.

Tracker MOTA↑ MOTP↑ FAF↓ MT↑ ML↓ FP↓ FN↓ IDsw↓ Frag↓ Hz↑

Quad-CNN 33.8 73.4 1.4 12.9% 36.9% 7,898 32,061 703 1,430 3.7

NOMT [8] 33.7 71.9 1.3 12.2% 44.0% 7,762 32,547 442 823 11.5

TDAM [54] 33.0 72.8 1.7 13.3% 39.1% 10,064 30,617 464 1,506 5.9

MHT DAM [22] 32.4 71.8 1.6 16.0% 43.8% 9,064 32,060 435 826 0.7

MDP [53] 30.3 71.3 1.7 13.0% 38.4% 9,717 32,422 680 1,500 1.1

(b) SCEA [55] 29.1 71.1 1.0 8.9% 47.3% 6,060 36,912 604 1,182 6.8

LP SSVM [50] 25.2 71.7 1.4 5.8% 53.0% 8,369 36,932 646 849 41.3

LINF1 [12] 24.5 71.3 1.0 5.5% 64.6% 5,864 40,206 298 744 7.5

JPDA m [15] 23.8 68.2 1.1 5.0% 58.1% 6,373 40,084 365 869 32.6

MotiCon [29] 23.1 70.9 1.8 4.7% 52.0% 10,404 35,844 1,018 1,061 1.4

CNNTCM [48] 29.6 71.8 1.3 11.2% 44.0% 7,786 34,733 712 943 1.7

(c) SiameseCNN [28] 29.0 71.2 0.9 8.5% 48.4% 5,160 37,798 639 1,316 52.8

RNN LSTM [33] 19.0 71.0 2.0 5.5% 45.6% 11,578 36,706 1,490 2,081 165.2

Table 2: Results on the MOT16 test dataset. Our method is denoted by Quad-CNN.

Tracker MOTA↑ MOTP↑ FAF↓ MT↑ ML↓ FP↓ FN↓ IDsw↓ Frag↓ Hz↑

Quad-CNN 44.1 76.4 1.1 14.6% 44.9% 6,388 94,775 745 1,096 1.8

NOMT [8] 46.4 76.6 1.6 18.3% 41.4% 9,753 87,565 359 504 2.6

JMC [46] 46.3 75.7 1.1 15.5% 39.7% 6,373 90,914 657 1,114 0.8

oICF [21] 43.2 74.3 1.1 11.3% 48.5% 6,651 96,515 381 1,404 0.4

MHT DAM [22] 42.9 76.6 1.0 13.6% 46.9% 5,668 97,919 499 659 0.8

LINF1 [12] 41.0 74.8 1.3 11.6% 51.3% 7,896 99,224 430 963 1.1

EAMTT pub [40] 38.8 75.1 1.4 7.9% 49.1% 8,114 102,452 965 1,657 11.8

OVBT [2] 38.4 75.4 1.9 7.5% 47.3% 11,517 99,463 1,321 2,140 0.3

LTTSC-CRF [27] 37.6 75.9 2.0 9.6% 55.2% 11,969 101,343 481 1,012 0.6

JPDA m [15] 26.2 76.3 0.6 4.1% 67.5% 3,689 130,549 365 638 22.2

6.4. Ablation Study

We performed ablation study to further investigate the ef-

fectiveness of our algorithm. For the purpose, we created a

training and validation split using the original training set of

2DMOT2015, where training set includes TUD-Stadtmitte,

PETS09-S2L1, ETH-Sunnyday, ADL-Rundle-6, KITTI-13,

Venice-2 and validation set is composed of TUD-Campus,

ETH-Bahnhof, ETH-Pedcross2, ADL-Rundle-8, KITTI-17.

Four variants of our algorithm are tested: Quad-CNN (a)

without bounding box regression (noBBR), (b) with con-

stant weights αa = αm = 1 (CW), (c) without slicing pool5

features (noSLICE) and (d) without sequence-specific em-

bedding for position features (noSSE). TRIPLET denotes

testing with the triplet loss. As illustrated in Table 3, our full

model presents better performance than all others, which

clearly suggests that all the integrated components in our

method is helpful for performance gains.

We also conducted analysis on the 2DMOT2015 test set

with three variants of the triplet loss: (a) positive/negative

relationship only (TRIPLET), (b) TRIPLET without bound-

ing box regression (TRIPLET noBBR) and (c) TRIPLET

with constant weights (TRIPLET CW). All other settings

of these three variants are identical to our Quad-CNN. Ta-

ble 4 presents the results, which again shows clear benefit

of quadruplet ranking loss, bounding box regression, and

weight learning employed in our algorithm.

7. Conclusion

We proposed a new multi-object tracking algorithm us-

ing Quad-CNN, which has an additional constraint that en-

forces temporally adjacent detections to be more similar

than the ones with large temporal gaps. To better capture the

nature of multi-object tracking in the metric learning, the

appearance embedding is combined with sequence-specific

motion-aware position embedding. We employ a multi-task

loss to jointly learn object association and bounding-box re-

gression, and the whole network is trained end-to-end. Tar-

get association is performed by a minimax label propaga-

tion using the similarity learned from the proposed network.

Our algorithm achieves the state-of-the art performance on

the MOTChallenge benchmark.
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