This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Deep Metric Learning via Facility Location

Hyun Oh Song!, Stefanie Jegelka?, Vivek Rathod', and Kevin Murphy!

'Google Research, *MIT
"{hyunsong, rathodv, kpmurphy}@google.com, *stefje@csail.mit.edu

Abstract

Learning image similarity metrics in an end-to-end fash-
ion with deep networks has demonstrated excellent results
on tasks such as clustering and retrieval. However, current
methods, all focus on a very local view of the data. In this
paper, we propose a new metric learning scheme, based on
structured prediction, that is aware of the global structure
of the embedding space, and which is designed to optimize
a clustering quality metric (NMI). We show state of the art
performance on standard datasets, such as CUB200-2011
[37], Cars196 []18], and Stanford online products [30] on
NMI and R@K evaluation metrics.

1. Introduction

Learning to measure the similarity among arbitrary
groups of data is of great practical importance, and can be
used for a variety of tasks such as feature based retrieval
[30], clustering [10], near duplicate detection [4 1], verifica-
tion [3, 4], feature matching [6], domain adaptation [27],
video based weakly supervised learning [38], etc. Fur-
thermore, metric learning can be used for challenging ex-
treme classification settings [23, 5, 40], where the number
of classes is very large and the number of examples per class
becomes scarce. For example, [2] uses this approach to per-
form product search with 10M images, and [25] shows su-
perhuman performance on face verification with 260M im-
ages of 8M distinct identities. In this setting, any direct clas-
sification or regression methods become impractical due to
the prohibitively large size of the label set.

Currently, the best approaches to metric learning employ
state of art neural networks [19, 31, 28, 9], which are trained
to produce an embedding of each input vector so that a cer-
tain loss, related to distances of the points, is minimized.
However, most current methods, such as [25, 2, 30, 29], are
very myopic in the sense that the loss is defined in terms of
pairs or triplets inside the training mini-batch. These meth-
ods don’t take the global structure of the embedding space
into consideration, which can result in reduced clustering

and retrieval performance.

Furthermore, most of the current methods [25, 2, 30, 29]
in deep metric learning require a separate data preparation
stage where the training data has to be first prepared in pairs
[8, 2], triplets [39, 25], or n-pair tuples [29] format. This
procedure has very expensive time and space cost as it of-
ten requires duplicating the training data and needs to re-
peatedly access the disk.

In this paper, we propose a novel learning framework
which encourages the network to learn an embedding func-
tion that directly optimizes a clustering quality metric (We
use the normalized mutual information or NMI metric [21]
to measure clustering quality, but other metrics could be
used instead.) and doesn’t require the training data to be
preprocessed in rigid paired format. Our approach uses a
structured prediction framework [35, 14] to ensure that the
score of the ground truth clustering assignment is higher
than the score of any other clustering assignment. Follow-
ing the evaluation protocol in [30], we report state of the art
results on CUB200-2011 [37], Cars196 [18], and Stanford
online products [30] datasets for clustering and retrieval
tasks.

2. Related work

The seminal work in deep metric learning is to train a
siamese network with contrastive loss [8, 4] where the task
is to minimize the pairwise distance between a pair of ex-
amples with the same class labels, and to push the pairwise
distance between a pair of examples with different class la-
bels at least greater than some fixed margin.

One downside of this approach is that it focuses on ab-
solute distances, whereas for most tasks, relative distances
matter more. For this reason, more recent methods have
proposed different loss functions. We give a brief review of
these below, and we compare our method to them experi-
mentally in Section 4.

5382

CNN

/ score \
A
_ /. eenmd
dre-3883)
A(ylv y*)
eonn
T F<y1=o<l><m>g)
A(an y*) f
\ eonono
+ F(yn=ODD<>>
K O<><>y

Figure 1. Overview of the proposed framework. The network first computes the embedding vectors for each images in the batch and learns
to rank the clustering score F' for the ground truth clustering assignment higher than the clustering score F' for any other assignment at

least by the structured margin A(y, y*).

2.1. Triplet learning with semi-hard negative min-
ing

One improvement over contrastive loss is to use triplet
loss [39, 26]. This first constructs a set of triplets, where
each triplet has an anchor, a positive, and a negative exam-
ple, where the anchor and the positive have the same class
labels and the negative has the different class label. It then
tries to move the anchor and positive closer than the dis-
tance between the anchor and the negative with some fixed
margin. More precisely, it minimizes the following loss:

(Xy) = o

|7-‘ Z [D’Lz,j +a—D22,k]+ (1)

(i,5,k)eT

where 7T is the set of triples, D; ; = ||f(X;) — f(X))]]2
is the Euclidean distance in embedding space, the opera-
tor [-]+ denotes the hinge function which takes the positive
component of the argument, and o denotes a fixed margin
constant.

In practice, the performance of these methods depends
highly on the triplet sampling strategy. FaceNet [25] sug-
gested the following online hard negative mining strategy.
The idea is to construct triplets by associating with each
positive pair in the minibatch a “semi-hard” negative exam-
ple. This is an example which is further away from the an-
chor ¢ than the positive exemplar j is, but still hard because
the distance is close to the ¢ — j distance. More precisely, it
minimizes

1

K(X?Y) = 15

2 2
7] > [D2ta- szk*(z:j)L

(2,7)EP

where

k* (i,j) = argmin Dzk s.t. Dzk > Df’j
ke y[k]£yli]

and P is the set of pairs with the same class label. If there
is no such negative example satisfying the constraint, we
just pick the furthest negative example in the minibatch, as
follows:
k* (i,7) = argmax Dik
k: ylk]#yli]

In order to get good results, the FaceNet paper had to
use very large minibatches (1800 images), to ensure they
picked enough hard negatives. This makes it hard to train
the model on a GPU due to the GPU memory constraint.
Below we describe some other losses which are easier to
minimize using small minibatches.

2.2. Lifted structured embedding

Song et al. [30] proposed lifted structured embedding
where each positive pair compares the distances against all
the negative pairs weighted by the margin constraint viola-
tion. The idea is to have a differentiable smooth loss which
incorporates the online hard negative mining functionality
using the log-sum-exp formulation.

1
L(X,)y) = m Z llog < Z exp{a—D;;}+
(4,5)EP (i,k)eN
2

Z exp {a — Dj’l}> + D ;

(GDEN

+

2

5383

b

where A/ denotes the set of pairs of examples with different
class labels.

2.3. N-pairs embedding

Recently, Sohn et al. [29] proposed N-pairs loss which
enforces softmax cross-entropy loss among the pairwise
similarity values in the batch.

-1 exp{Sij}
E(Xv Y) = T g >
|P| (i,j)EP eXp{Si,j} + Z eXp{Siyk}
k: ylkl#yli]
F 23 el
m & i) 1125
3)

where .S; ; means the feature dot product between two data
points in the embedding space; S; ; = f(X;)7f(X;), mis
the number of the data, and A is the regularization constant
for the /5 regularizer on the embedding vectors.

2.4. Other related work

In addition to the above work on metric learning, there
has been some recent work on learning to cluster with deep
networks. Hershey et al. [10] uses Frobenius norm on the
residual between the binary ground truth and the estimated
pairwise affinity matrix; they apply this to speech spectro-
gram signal clustering. However, using the Frobenius norm
directly is suboptimal, since it ignores the fact that the affin-
ity matrix is positive definite.

To overcome this, matrix backpropagation [12] first
projects the true and predicted affinity matrix to a metric
space where Euclidean distance is appropriate. Then it ap-
plies this to normalized cuts for unsupervised image seg-
mentation. However, this approach requires computing the
eigenvalue decomposition of the data matrix, which has cu-
bic time complexity in the number of data and is thus not
very practical for large problems.

3. Methods

One of the key attributes which the recent state of the art
deep learning methods in Section 2 have in common is that
they are all local metric learning methods. Figure 2 illus-
trates a case where this can fail. In particular, whenever a
positive pair (such as the two purple bold dots connected by
the blue edge) is separated by examples from other classes,
the attractive gradient signal from the positive pair gets out-
weighed by the repulsive gradient signal from the negative
data points (yellow and green data points connected with
the red edges). This failure can lead to groups of examples
with the same class labels being separated into partitions in
the embedding space that are far apart from each other. This

can lead to degradation in the clustering and nearest neigh-
bor based retrieval performance. For example, suppose we
incorrectly created 4 clusters in Figure 2. If we asked for
the 12 nearest neighbors of one of purple points, we would
retrieve points belonging to other classes.

To overcome this problem, we propose a method that
learns to embed points so as to minimize a clustering loss,
as we describe below.

Figure 2. Example failure mode for local metric learning methods.
Whenever a positive pair (linked with the blue edge) is separated
by negative examples, the gradient signal from the positive pair
(attraction) gets outweighed by the negative pairs (repulsion). II-
lustration shows the failure case for 2D embedding where the pur-
ple clusters can’t be merged into one cluster.

Figure 3. Proposed clustering loss for the same embedding layout
in figure 2. Nodes highlighted in bold are the cluster medoids. The
proposed method encourages small sum of distances within each
cluster, while discouraging different clusters from getting close to
each other.

3.1. Facility location problem

Suppose we have a set of inputs X;, and an embedding
function f(X;;©) that maps each input to a point in some
K dimensional space. Now suppose we compress this set of
points by mapping each example ¢ to its nearest point from
a chosen set of landmarks S C V, where V = {1,...,|X|}
is the ground set. We can define the resulting function as
follows:

F(X,5:0) == 3 min|lf(X::0) = f(X;:0)ll,)
i€ X|

This is called the facility location function, and has been
widely used in data summarization and clustering [20, 34].

5384

The idea is that this function measures the sum of the travel
distance for each customer in X to their respective nearest
facility location in S. In terms of clustering, data points in
S correspond to the cluster medoids, and the cluster assign-
ment is based on the nearest medoid from each data point.
Maximizing equation 4 with respect to subset S is NP-hard,
but there is a well established worst case optimality bound
of O (1 — 1) for the greedy solution of the problem via sub-
modularity [17].

Below we show how to use the facility location problem
as a subroutine for deep metric learning.

3.2. Structured facility location for deep metric
learning

The oracle scoring function F measures the quality of
the clustering given the ground truth clustering assignment
y* and the embedding parameters O:

b4

F(X,y*;@)zz max

jetis y =k} F (X{z y*[i]=k}> {.]}7 ®>)
k

&)

where {4 : y*[i] = k} denotes the subset of the elements in
V with the ground truth label equal to k.

We would like the clustering score of the oracle cluster-
ing assignment to be greater than the score for the maxi-
mally violating clustering assignment. Hence we define the
following structured loss function:

(X, y") = [max {F(X,S; 0) +vA(g(S), y*)}
1S1=1Y]

()

+

(6)

We will define the structured margin A (y, y*) below.
The function y = g(S) maps the set of indices S to a set
of cluster labels by assigning each data point to its nearest
facility in .S:

9(5)[i] = argmin || f(Xi; ©) — (X)) jesy; Ol (D
J

Intuitively, the loss function in Equation 6 encourages
the network to learn an embedding function f (-;©) such
that the oracle clustering score Fis greater than the cluster-
ing score F' for any other cluster assignments g(.5) at least
by the structured margin A (y, y*). Figure 1 gives the pic-
torial illustration of the overall framework.

The structured margin term A (y, y*) measures the
quality of the clustering. The margin term outputs O if the
clustering quality of y with respect to the ground truth clus-
tering assignment y* is perfect (up to a permutation) and 1
if the quality is the worst. We use the following margin term

Ay, y")=1-NMl(y, y*) (®)

where NMI is the normalized mutual information (NMI)
[21]. This measures the label agreement between the two
clustering assignments ignoring the permutations. It is de-
fined by the ratio of mutual information and the square root
of the product of entropies for each assignments:

MI(y1,y2)
H(Yl)H(Y2)

The marginal and joint probability mass used for computing
the entropy and the mutual information can be estimated as
follows:

NMI(y1,y2) = 9

(10)

P(i,j) = STk == - Tiyall] == jl.
K,

where m denotes the number of data (also equal to | X|).

Figure 3 illustrates the advantages of the proposed algo-
rithm. Since the algorithm is aware of the global landscape
of the embedding space, it can overcome the bad local op-
tima in figure 2. The clustering loss encourages small in-
tra cluster (outlined by the dotted lines in figure 3) sum of
distances with respect to each cluster medoids (three data
points outlined in bold) while discouraging different clus-
ters from getting close to each other via the NMI metric in
the structured margin term.

3.3. Backpropagation subgradients

We fit our model using stochastic gradient descent. The
key step is to compute the derivative of the loss, which is
given by the following expression:

(X, y*) = I[{(X,y") > 0] (V@F(X, Seant; ©)
—V@F(X,y*;@))
(11)

Here Spam is the solution to the subproblem marked () in
Equation 6; we discuss how to compute this in Section 3.4.
The first gradient term is as follows:

5385

VoF (X,80)=->"

€| X|

f(Xi;0) = f(Xj+(:);©)
I1f(Xi;0) — f(Xj-); O)|

Vo (f(Xi;0) = f(X;-5;©)) | (12)

where j* (i) denotes the index of the closest facility location
in the set Spam. The gradient for the oracle scoring function
can be derived by computing

Vol (X,y;;0) = ZV@F (Xti: yoij=n}> {57 (k) }; ©)
k
(13)

Equation 11 is the formula for the exact subgradient and
we find an approximate maximizer Spay in the equation
(section 3.4) so we have an approximate subgradient. How-
ever, this approximation works well in practice and have
been used for structured prediction setting [20, 34].

3.4. Loss augmented inference

We solve the optimization problem (x) in Equation 6 in
two steps. First, we use the greedy Algorithm 1 to select
an initial good set of facilities. In each step, it chooses the
element ¢* with the best marginal benefit. The running time
of the algorithm is O (|V|* - [V|), where || denotes the
number of clusters in the batch and V = {1,...,|X|}. This
time is linear in the size of the minibatch, and hence does
not add much overhead on top of the gradient computation.
Yet, if need be, we can speed up this part via a stochastic
version of the greedy algorithm [22].

This algorithm is motivated by the fact that the first term,
F(X,S5;0), is a monotone submodular function in .S. We
observed that throughout the learning process, this term is
large compared to the second, margin term. Hence, in this
case, our function is still close to submodular. For approxi-
mately submodular functions, the greedy algorithm can still
be guaranteed to work well [7].

Yet, since A(S) is not entirely submodular, we refine the
greedy solution with a local search, Algorithm 2. This algo-
rithm performs pairwise exchanges of current medoids S/[k]
with alternative points j in the same cluster. The running
time of the algorithm is O (TY|? - [V|), where T is the
maximum number of iterations. In practice, it converges
quickly, so we run the algorithm for 7' = 5 iterations only.

Algorithm 2 is similar to the partition around medoids
(PAM) [15] algorithm for k-medoids clustering, which in-
dependently reasons about each cluster during the medoid
swapping step. Algorithm 2 differs from PAM by the struc-
tured margin term, which involves all clusters simultane-
ously.

The following lemma states that the algorithm can only
improve over the greedy solution:

Algorithm 1: Loss augmented inference for (x)

Input : X € R™X4 y* ¢ |Y|™ v

Output : S CV

Initialize: S = {0}

Define : A(S) := F(X,S;0) +~vA(9(S), y*)

1 while |S| < |Y| do
2 i* = argmax A (SU{i}) — A(S)

iCV\S
3 S:=8Su{i*}
4 end
5 return S

Lemma 1. Algorithm 2 monotonically increases the objec-
tive function A(S) = F(X, S;0) +vA (g(95), y*).

Proof. In any step t and for any k, let ¢ = S[k] be the
kth medoid in S. The algorithm finds the point j in the kth
cluster such that A((S\{c})U{j}) is maximized. Let j* be
a maximizing argument. Since j = c is a valid choice, we
have that A((S\{c})U{j"}) = A((S\{c})U{c}) = A(9),

and hence the value of A(S) can only increase. O

In fact, with a small modification and 7' large enough,
the algorithm is guaranteed to find a local optimum, i.e., a
set S such that A(S) > A(S’) for all S” with [SAS’| =1
(Hamming distance one). Note that the overall problem is
NP-hard, so a guarantee of global optimality is impossible.

Lemma 2. [f the exchange point j is chosen from X and
T is large enough that the algorithm terminates because it
makes no more changes, then Algorithm 2 is guaranteed to
find a local optimum.

3.5. Implementation details

We used Tensorflow [1] package for our implementa-
tion. For the embedding vector, we {5 normalize the em-
bedding vectors before computing the loss for our method.
The model slightly underperformed when we omitted the
embedding normalization. We also tried solving the loss
augmented inference using Algorithm 2 with random ini-
tialization, but it didn’t work as well as initializing the algo-
rithm with the greedy solution from Algorithm 1.

For the network architectures, we used the Inception
[32] network with batch normalization [1] pretrained on
ILSVRC 2012-CLS [24] and finetuned the network on our
datasets. All the input images are first resized to square
size (256 x 256) and cropped at 227 x 227. For the data
augmentation, we used random crop with random horizon-
tal mirroring for training and a single center crop for test-
ing. In Npairs embedding [29], they take multiple random
crops and average the embedding vectors from the cropped

5386

Algorithm 2: Loss augmented refinement for (x)
Input : X € R™*4 y* ¢ |V|™, S, 7, T
Output : S
Initialize: S = S, t =0

1 fort < T do
// Perform cluster assignment
2 | yram =g (5)

// Update each medoids per cluster

3 for k < |Y|do

// Swap the current medoid in
cluster k if it increases the

sCcore.
4 Slk] = argmax F (X{i! veaulil=}> {7} 6)
J€fi: yramlil=k}
5 +7A (g (S\{SI}U{i}), ¥y)
6 end
7 end
8 return S

images during testing. However, in our implementation of
[29], we take a single center crop during testing for fair
comparison with other methods.

The experimental ablation study reported in [30] sug-
gested that the embedding size doesn’t play a crucial role
during training and testing phase so we decided to fix the
embedding size at d = 64 throughout the experiment (In
[30], the authors report the recall@K results with d = 512
and provided the results for d = 64 to us for fair compari-
son). We used RMSprop [33] optimizer with the batch size
m set to 128. For the margin multiplier constant v, we grad-
ually decrease it using exponential decay with the decay rate
set to 0.94.

As briefly mentioned in section 1, the proposed method
does not require the data to be prepared in any rigid paired
format (pairs, triplets, n-pair tuples, etc). Instead we simply
sample m (batch size) examples and labels at random. That
said, the clustering loss becomes trivial if a batch of data
all have the same class labels (perfect clustering merging
everything into one cluster) or if the data all have different
class labels (perfect clustering where each data point forms
their own clusters). In this regard, we guarded against those
pathological cases by ensuring the number of unique classes
(C) in the batch is within a reasonable range. We tried three
different settings < = {0.25,0.50, 0.75} and the choice of
the ratio did not lead to significant changes in the experi-
mental results. For the CUB-200-2011 [37] and Cars196
[18], we set % = (.25. For the Stanford Online Products
[30] dataset, % = (.75 was the only possible choice be-
cause the dataset is extremely fine-grained.

4. Experimental results

Following the experimental protocol in [30, 29], we eval-
uate the clustering and k nearest neighbor retrieval [13] re-
sults on data from previously unseen classes on the CUB-
200-2011 [37], Cars196 [18], and Stanford Online Products
[30] datasets. We compare our method with three current
state of the art methods in deep metric learning: (1) triplet
learning with semi-hard negative mining strategy [25], (2)
lifted structured embedding [30], (3) N-pairs metric loss
[29]. To be comparable with prior work, we ¢5 normalize
the embedding for the triplet (as prescribed by [25]) and our
method, but not for the lifted structured loss and the N-pairs
loss (as in the implementation sections in [30, 29]).

We used the same train/test split as in [30] for all the
datasets. The CUB200-2011 dataset [37] has 11, 788 im-
ages of 200 bird species; we used the first 100 birds species
for training and the remaining 100 species for testing. The
Cars196 dataset [18] has 16, 185 images of 196 car mod-
els. We used the first 98 classes of cars for training and
the rest for testing. The Stanford online products dataset
[30] has 120, 053 images of 22, 634 products sold online on
eBay.com. We used the first 11, 318 product categories for
training and the remaining 11, 316 categories for testing.

4.1. Quantitative results

The training procedure for all the methods converged at
10k iterations for the CUB200-2011 [37] and at 20k itera-
tions for the Cars196 [18] and the Stanford online products
[20] datasets.

Tables 1, 2, and 3 shows the results of the quantita-
tive comparison between our method and other deep metric
learning methods. We report the NMI score, to measure the
quality of the clustering, as well as k nearest neighbor per-
formance with the Recall@K metric. The tables show that
our proposed method has the state of the art performance
on both the NMI and R@K metrics outperforming all the
previous methods.

NMI R@] R@2 R@4 R@S8

Triplet semihard [25] 55.38 42.59 55.03 66.44 77.23
Lifted struct [30] 56.50 43.57 56.55 68.59 79.63
Npairs [29] 57.24 4537 5841 69.51 79.49
Clustering (Ours) 59.23 48.18 61.44 71.83 81.92

Table 1. Clustering and recall performance on CUB-200-2011 [37]
@10k iterations.

4.2. Qualitative results

Figure 4, 5, and 6 visualizes the t-SNE [36] plots
on the embedding vectors from our method on CUB200-

5387

NMI R@1 R@2 R@4 R@8

Triplet semihard [25] 53.35 51.54 63.78 73.52 82.41
Lifted struct [30] 56.88 5298 65.70 76.01 84.27
Npairs [29] 5779 5390 66.76 77.75 86.35
Clustering (Ours) 59.04 58.11 70.64 80.27 87.81

Table 2. Clustering and recall performance on Cars196 [18] @20k
iterations.

NMI R@1 R@10 R@100
Triplet semihard [25] 89.46 66.67 82.39 91.85
Lifted struct [30] 88.65 6246 80.81 91.93
Npairs [29] 89.37 66.41 83.24 93.00
Clustering (Ours) 89.48 67.02 83.65 93.23

Table 3. Clustering and recall performance on Products [30] @20k
iterations.

2011 [37], Cars196 [18], and Stanford online products [30]
datasets respectively. The plots are best viewed on a mon-
itor when zoomed in. We can see that our embedding does
a great job on grouping similar objects/products despite the
significant variations in view point, pose, and configuration.

Figure 4. Barnes-Hut t-SNE visualization [36] of our embedding
on the CUB-200-2011 [37] dataset. Best viewed on a monitor
when zoomed in.

Figure 5. Barnes-Hut t-SNE visualization [36] of our embedding

on the Cars196 [18] dataset.
zoomed in.

Best viewed on a monitor when

5. Conclusion

We described a novel learning scheme for optimizing the
deep metric embedding with the learnable clustering func-
tion and the clustering metric (NMI) in a end-to-end fashion
within a principled structured prediction framework.

Our experiments on CUB200-2011 [37], Cars196 [18],
and Stanford online products [30] datasets show state of the
art performance both on the clustering and retrieval tasks.

The proposed clustering loss has the added benefit that it
doesn’t require rigid and time consuming data preparation
(i.e. no need for preparing the data in pairs [8], triplets [39,
25], or n-pair tuples [29] format). This characteristic of the
proposed method opens up a rich class of possibilities for
advanced data sampling schemes.

In the future, we plan to explore sampling based gradi-
ent averaging scheme where we ask the algorithm to cluster
several random subsets of the data within the training batch
and then average the loss gradient from multiple sampled
subsets in similar spirit to Bag of Little Bootstraps (BLB)
[16].

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, . Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

5388

Figure 6. Barnes-Hut t-SNE visualization [36] of our embedding on the Stanford online products dataset [30]. Best viewed on a monitor
when zoomed in.

J. Shlens, B. Steiner, 1. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org. 5

[2] S. Bell and K. Bala. Learning visual similarity for product
design with convolutional neural networks. In SIGGRAPH,
2015. 1

[3] J. Bromley, I. Guyon, Y. Lecun, E. Sckinger, and R. Shah.

Signature verification using a “siamese” time delay neural
network. In NIPS, 1994. 1

[4] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.
In CVPR, volume 1, June 2005. 1

[5S] A. Choromanska, A. Agarwal, and J. Langford. Extreme

multi class classification. In NIPS, 2013. 1

[6] C.B. Choy, J. Gwak, S. Savarese, and M. Chandraker. Uni-

5389

versal correspondence network. In NIPS, 2016. 1

(7]

(8]

(9]

(10]

(1]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

A. Das and D. Kempe. Submodular meets spectral: Greedy
algorithms for subset selection, sparse approximation and
dictionary selection. In ICML, 2011. 5

R. Hadsell, S. Chopra, and Y. Lecun. Dimensionality reduc-
tion by learning an invariant mapping. In CVPR, 2006. 1,
7

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015. 1

J. R. Hershey, Z. Chen, J. L. Roux, and S. Watanabe. Deep
clustering: Discriminative embeddings for segmentation and
separation. In ICASSP, 2016. 1,3

S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015. 5

C. Ionescu, O. Vantzos, and C. Sminchisescu. Training deep
networks with structured layers by matrix backpropagation.
InICCV, 2015. 3

H. Jegou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. In PAMI, 2011. 6

T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training
of structural svms. JMLR, 2009. 1

L. Kaufman and P. Rousseeuw. Clustering by means of
medoids. In Statistical Data Analysis Based on the L1-Norm
and Related Methods, 1987. 5

A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan. The
big data bootstrap. In ICML, 2012. 7

A. Krause and D. Golovin. Submodular function maximiza-
tion. Tractability: Practical Approaches to Hard Problems,
3(19):8,2012. 4

J. Krause, M. Stark, J. Deng, and F.-F. Li. 3d object repre-
sentations for fine-grained categorization. ICCV 3dRR-13,
2013.1,6,7

A. Krizhevsky, 1. Sutskever, and G. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In NIPS,
2012. 1

H. Lin and J. Bilmes. Learning mixtures of submodular
shells with application to document summarization. In UAI,
2012. 3,5

C. D. Manning, P. Raghavan, and H. Sch;9f;tze. Introduc-
tion to Information Retrieval. Cambridge university press,
2008. 1,4

B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrak,
and A. Krause. Lazier than lazy greedy. In Proc. Conf. on
Artificial Intelligence (AAAI), 2015. 5

Y. Prabhu and M. Varma. Fastxml: A fast, accurate and
stable tree-classifier for extreme multi-label learning. In
SIGKDD, 2014. 1

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. IJCV, 2015. 5

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. In CVPR,
2015. 1,2,6,7

M. Schultz and T. Joachims. Learning a distance metric from
relative comparisons. In NIPS, 2004. 2

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

(40]

[41]

5390

O. Sener, H. O. Song, A. Saxena, and S. Savarese. Learning
transferrable representations for unsupervised domain adap-
tation. In NIPS, 2016. 1

K. Simonyan and A. Zisserman.
tional networks for large-scale image recognition.
abs/1409.1556, 2014. 1

K. Sohn. Improved deep metric learning with multi-class
n-pair loss objective. In NIPS, 2016. 1, 3,5, 6,7

H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep
metric learning via lifted structured feature embedding. In
CVPR,2016. 1,2,6,7,8

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015. 1

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015. 5

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Di-
vide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning,
2012. 6

S. Tschiatschek, R. Iyer, H. Wei, and J. Bilmes. Learning
mixtures of submodular functions for image collection sum-
marization. In NIPS, 2014. 3,5

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Al-
tun. Support vector machine learning for interdependent and
structured output spaces. In ICML, 2004. 1

L. van der maaten. Accelerating t-sne using tree-based algo-
rithms. In JMLR, 2014. 6,7, 8

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-
longie. The caltech-ucsd birds-200-2011 dataset. Technical
Report CNS-TR-2011-001, California Institute of Technol-
ogy, 2011. 1, 6,7

X. Wang and A. Gupta. Unsupervised learning of visual rep-
resentations using videos. In /ICCV, 2015. 1

K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric
learning for large margin nearest neighbor classification. In
NIPS, 2006. 1,2,7

I. E. Yen, X. Huang, K. Zhong, P. Ravikumar, and I. S.
Dhillon. Pd-sparse: A primal and dual sparse approach to
extreme multiclass and multilabel classification. In ICML,
2013. 1

S. Zheng, Y. Song, T. Leung, and I. Goodfellow. Improving
the robustness of deep neural networks via stability training.
In CVPR, 2016. 1

Very deep convolu-
CoRR,

