
Consensus Maximization with Linear Matrix Inequality Constraints

Pablo Speciale1, Danda P. Paudel2, Martin R. Oswald1,

Till Kroeger2, Luc V. Gool2,4, and Marc Pollefeys1,3

1 Department of Computer Science, ETH Zürich.
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Abstract

Consensus maximization has proven to be a useful tool

for robust estimation. While randomized methods like

RANSAC are fast, they do not guarantee global optimality

and fail to manage large amounts of outliers. On the other

hand, global methods are commonly slow because they do

not exploit the structure of the problem at hand.

In this paper, we show that the solution space can be re-

duced by introducing Linear Matrix Inequality (LMI) con-

straints. This leads to significant speed ups of the op-

timization time even for large amounts of outliers, while

maintaining global optimality. We study several cases in

which the objective variables have a special structure, such

as rotation, scaled-rotation, and essential matrices, which

are posed as LMI constraints. This is very useful in sev-

eral standard computer vision problems, such as estimat-

ing Similarity Transformations, Absolute Poses, and Rela-

tive Poses, for which we obtain compelling results on both

synthetic and real datasets. With up to 90 percent outlier

rate, where RANSAC often fails, our constrained approach

is consistently faster than the non-constrained one - while

finding the same global solution.

1. Introduction

One of the major difficulties of many central computer

vision problems – besides the proper handling of noise and

incomplete data – is the robust detection of outliers. For

many optimization methods, the number of outliers has a

tremendous impact on the runtime or even on the solvabil-

ity. A common approach for robust estimation is, therefore,

to explicitly maximize the number of inliers for a given

problem – also called Consensus Maximization. A large

number of optimization methods for robust estimation have

been proposed in the literature which can be roughly di-

vided into local and global optimization methods.
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Local Optimization Methods. With currently more than

15K citations, RANSAC [13], is by far the most popu-

lar method. It has been used in numerous applications

and many extensions have been proposed, e.g. [8, 33, 34]

(see [7, 28] for an overview). The great advantage is its

simplicity and effectiveness for various scenarios, but it also

has a number of shortcomings: 1) it does not guarantee op-

timality and only finds a local optimum, 2) it cannot find the

exact solution if it is not contained in the sampling set, and

3) its expected computation time grows exponentially with

large amounts of outliers.

Global Optimization Methods. Global methods com-

monly have considerably larger computational costs, as

they are mostly based on exhaustive search within the en-

tire optimization domain. Almost every global method

uses the Branch-and-Bound (BnB) strategy to make the

search tractable, e.g. [1, 2, 16, 22, 38]. Similar to our ap-

proach, several methods use Mixed Integer Programming

(MIP) [4, 9, 22,36] within the BnB optimization in order to

solve the overall problem faster. Recently [5] proposed to

cast the problem of consensus maximization as a tree search

problem which is then traversed with A∗-search for faster

optimization. This method does not need linearization of

the residual and only traverses a small subset of the tree

compared to exhaustive methods like [10, 26].

Application-wise, many related works are specialized

to a particular problem class, like linear problems [22],

pseudo-convex problems [5, 21], or, they are even more

specialized to a specific type of geometric problem, for in-

stance problems including rotations [2, 16], rotation+focal

length [1], translation [14], rotation+translation+scale [27]

or essential matrices [37]. Most of these methods specialize

on a particular problem and their application to a different

problem class is not necessarily straightforward.

In this paper, we propose a general optimization frame-

work that covers all problems that can be expressed with

LMI constraints and, therefore, tackles the majority of the

aforementioned problem classes.

Contributions. We argue that many computer vision prob-

lems have a special structure that can be leveraged in global

robust estimation methods to make them much more com-
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petitive compared to local randomized approaches.

- In particular, we propose general LMI constraints

which have the potential to be used in a variety of

geometric problems. The derived constraints include:

rigid-body, rigid-body + scale, restricted rotations, and

essential matrix.

- These LMI constraints are used within the BnB

paradigm to optimally solve the consensus maximiza-

tion problem for: similarity transformation, absolute

pose, and relative pose estimation.

- We show that the usage of LMI constraints speeds up

the search process. Further observation (for the abso-

lute pose problem) shows that the addition of stronger

LMI constraints (e.g. cameras must be within a certain

angle) makes the optimization process even faster.

Paper Outline. We first introduce notation and background

theory (Sec. 2), before we state the problem (Sec. 3). We

then define the transformation form considered in this paper

(Sec. 4), and derive several LMI constraints for various ge-

ometric constraints (Sec. 5). After that, we discuss (Sec. 6)

and experimentally evaluate (Sec. 7) three particular com-

puter vision problems. Finally, we conclude (Sec. 8) the

paper and state potential future work.

2. Notation & Background

This section introduces the notations that we will be us-

ing throughout the paper. Algebraic definitions and a geo-

metric interpretation of LMI constraints are introduced and

discussed. Finally, we discuss the analogy between LMI

constraint quadratic and semi-definite programming.

2.1. Positive Semi­definite Matrix Formulations

When dealing with matrices, A � 0 (resp. A ≻ 0) means

that the symmetric matrix A is positive semi-definite (resp.

positive-definite). A = (aij) is the element-wise represen-

tation of a m×n matrix. Its row-wise representation is A =
[a1, . . . , ai, . . . , am]⊺, where ai is a n-dimensional vector.

For a given set of symmetric matrices K = {Ai}
l
i=1, K � 0

implies Ai � 0 for all i = 1, . . . , l. It is important to note

that K � 0 is equivalent to A = diag(A1,A2, . . . ,Al) � 0.

2.2. Spectrahedron, LMI, and SDP

Definition 2.1 (Spectrahedron [35]) A spectrahedron is

the intersection of positive semi-definite matrices with an

affine-linear space. An n-dimensional affine-linear space

of a real symmetric matrix can be parametrized by A(y) =
A0+

∑n

i yiAi, for y = [y1, y2, . . . , yn]
⊺ ∈ IRn. Therefore,

a spectrahedron can be defined by a set S:

S = {y ∈ IRn : A(y) � 0}. (1)

A Linear Matrix Inequality (LMI) is the constraint

on y ∈ IRn such that A(y) � 0. A Semi-definite Pro-

gram (SDP) consists of minimizing (or maximizing) a lin-

ear objective subject to LMI constraints. It is a convex

optimization problem that can be efficiently solved using

interior-point methods [3].

2.3. LMI Constrained Quadratic Programming

A LMI constrained quadratic programming is a problem

of the form:

minimize
y

y⊺Qy + q⊺y + r,

subject to A(y) � 0,
(2)

where Q is a real symmetric matrix, q a real vector, and r a

real scalar.

For Q � 0, the problem of (2) can be optimally solved

using SDP. Note that Q � 0 can always be factorized into

Q = M⊺M for some matrix M, using the Cholesky decom-

position. Therefore (2) is equivalent to the following SDP:

minimize
y,θ

θ,

subject to

(

I My

y⊺M⊺ θ − q⊺y − r

)

� 0,

A(y) � 0.

(3)

3. Consensus Maximization with LMI

Consider a geometric transformation T (x) : U → V that

relates a pair of measurements P = {U, V }. Let γ(x) be

the residual error for a known P and the estimate x. The

problem of maximizing the measurements’ consensus (i.e.

inlier set) under a LMI constraint is,

Problem 3.1 Given a set of measurement pairs

Z = {Pi}
n
i=1 and a threshold ǫ,

maximize
x,ζ⊆Z

|ζ|,

subject to γi(x) ≤ ǫ, ∀Pi ∈ ζ,

A(x) � 0.

(4)

In general, solving (4) exactly is non-trivial, as this is a NP-

hard combinatorial optimization problem. Such problems

are usually solved using sample-and-test techniques, such

as RANSAC, with no guarantee on the optimality of the

results. In contrast, exact methods are based on variations

of tree search algorithms [5, 10, 22, 26, 38]. Our following

proposition is concerned about the optimal solution search

for a class of such problems.

Proposition 3.2 (Consensus with LMIs) Problem 3.1 can

be solved optimally using a tree search method for lin-

ear γi(x) or quadratic residuals γi(x) = x⊺Qix+ q
⊺

i x+ ri
with Qi � 0.
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Proof It is sufficient to show that the problem of minimiz-

ing the maximum of γi(x) under a LMI constraint, as given

below, is convex.

minimize
x

maximum
i

γi(x),

subject to A(x) � 0.
(5)

For linear γi(x), (5) is equivalent to the following SDP,

minimize
x,θ

θ,

subject to γi(x) ≤ θ, ∀i,

A(x) � 0.

(6)

Similarly, if γi(x) = x⊺Qix+ q
⊺

i x+ ri with Qi � 0,

then (5) can be solved using the following SDP, for Qi =
M

⊺

i Mi,

minimize
x,θ

θ,

subject to

(

I Mix

x⊺M
⊺

i θ − q
⊺

i x− ri

)

� 0, ∀i,

A(x) � 0.

(7)

Alternatively, following a similar argument of convexity as

in [11], one can show that (5) is a LP-type [24] (or general-

ized linear program). This concludes the proof.

Mixed Integer Programming. Before entering into further

details, we discuss the choice of solving (4) using Mixed

Integer Semi-Definite Programming (MI-SDP) [9, 36]. MI-

SDP framework can solve (4) optimally, which can be re-

stated as:

minimize
x,z

∑

i

zi,

subject to γi(x) ≤ ǫ+ zi M, ∀i,

zi ∈ {0, 1},

A(x) � 0.

(8)

where z = {zi}
n
i=1 are binary variables and M is a large

enough positive constant. It is a common practice in op-

timization to ignore constraints by using a constant such

as M. See [6, Ch. 7] for guidelines on selecting this con-

stant. Intuitively, the data pair generating the residual γi(x)
will be considered as an outlier if zi = 1. Therefore, for the

given optimal solution z∗ to (8), the maximum consensus

set can be obtained by,

ζ∗ = { i | z∗i = 0}. (9)

4. Transformation Equation

Although Proposition 3.2 suggests that the general class

of problems (4) can be optimally solved, in this work we are

concerned with problems of the following form,

βi(x) vi = Bi(x) ui + b(x), (10)

where {ui, vi} are the measurement vectors of the pair Pi,

and Bi(x), b(x), and βi(x) are the terms linear on x which

form the transformation T (x). For a given problem, we

wish to enforce the structural constraint of T (x) in terms

of LMIs, while minimizing the residual error of (10).

4.1. Residual with Noise Model

We model the noise as a Gaussian process. The dissimi-

larity measure between two corresponding measurements is

therefore expressed in terms of the generalized squared in-

terpoint distance (also known as squared Mahalanobis dis-

tance). For a given pair Pi, the residual error (or dissimilar-

ity measure) is given by,

γi(x) = ∆i(x)
⊺ Σ−1 ∆i(x), (11)

∆i(x) = Bi(x) ui + b(x)− βi(x) vi

where Σ is the covariance matrix of a known distribution.

Remark 4.1 The residual error (11) is a quadratic function

of the form γi(x) = x⊺Qix+ q
⊺

i x+ ri with Qi � 0.

4.2. Residual Minimization

Once the optimal inlier set ζ for Problem 3.1 is obtained,

the best estimate x that minimizes the collective residual er-

rors for all the inliers, while satisfying the LMI constraint,

can be obtained using the following result. This can be con-

sidered as a refinement step.

Result 4.2 The optimal estimate x that minimizes the sum

of residuals for all inlier pairs ζ = {Ij}
m
j=1 ⊆ Z can be ob-

tained using the LMI constrained quadratic programming,

minimize
x

x⊺
(

m
∑

j=1

Qj

)

x+
(

m
∑

j=1

qj

)⊺

x+
m
∑

j=1

rj ,

subject to A(x) � 0.

(12)

This is a convex problem, that can be solved efficiently us-

ing the SDP as discussed in Section 2.3. It follows that,

Qj � 0 =⇒
∑m

j=1 Qj � 0.

5. LMI Constraints

In this section, we introduce four LMI constraints that

we will use in our experiments. Two of these constraints

were recently proposed in [15, 29]. The other two con-

straints are presented for the first time in this paper. First,

we define the function L : IR3×3 → IR4×4 of the form,

L(A) =









a11 + a22 + a33 a32 − a23 a13 − a31 a21 − a12
a32 − a23 a11 − a22 − a33 a21 + a12 a13 + a31
a13 − a31 a21 + a12 a22 − a11 − a33 a32 + a23
a21 − a12 a13 + a31 a32 + a23 a33 − a11 − a22









. (13)
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5.1. Orbitope and Rotation Matrix

Definition 5.1 (Orbitope [29]) An orbitope is the convex

hull of an orbit of a compact algebraic group that acts lin-

early on a real vector space. The orbit has the structure of

a real algebraic variety, and the orbitope is a convex semi-

algebraic set.

A 3-dimensional rotation matrix R ∈ SO(3) has dimen-

sion three. However, its tautological orbitope is a convex

body of dimension nine. The following theorem is a key

ingredient of this work:

Theorem 5.2 (SO(3) Orbitope [29]) The tautological or-

bitope conv(SO(3)) is a spectrahedron whose bound-

ary is a quartic hypersurface. A 3×3 matrix A lies in

conv(SO(3)) if and only if,

I4×4 + L(A) � 0. (14)

For some applications, the desired rotation matrix must

have a restricted rotation angle around an arbitrary rotation

axis. For example, the relative rotation between two cam-

eras cannot be too large for them to share a common field

of view. Such rotation angle restrictions can be expressed

as LMI constraints using the following Lemma.

Lemma 5.3 (Bounded SO(3) [15]) Consider R ∈ SO(3)
expressed in the angle-axis form by a rotation angle θ

around an arbitrary axis. The eigen-decomposition of the

symmetric matrix R+ R⊺ is of the form,

R+ R⊺ = U





2 cos θ 0 0
0 2 cos θ 0
0 0 2



U−1. (15)

For |θ| ≤ 90◦, the symmetric matrix R+ R⊺ � 0. In

fact, the rotation angle is within the given upper bound,

|θ| ≤ θ ≤ 90◦, if and only if,

R+ R⊺ � 2 cos θ I3×3. (16)

5.2. Transformations Coupled with Rotation

Some transformations involving both rotation and an ex-

tra scale (e.g. Metric Transformation) can be expressed with

the help of a scaled-rotation matrix. The following defini-

tion deals with the structure of a scaled-rotation matrix.

Definition 5.4 (SSO(3)) Given a real, compact, linear al-

gebraic group H, a 3-dimensional scaled-special ortho-

gonal group is defined by,

SSO(3) = {H ∈ H : HH⊺ = α2 I3×3, det(H) = α3, α > 0}.
(17)

In the following proposition, we provide a convex relax-

ation for the scaled-rotation matrix as a LMI.

Proposition 5.5 (SSO(3) and SO(3) Orbitope)

∀ S ∈ SSO(3) there exists A ∈ conv(SO(3)) such that

S = αA, if and only if ∃α > 0:

α I4×4 + L(S) � 0. (18)

Proof If S ∈ SSO(3) ⇐⇒ S = αA for A ∈ SO(3) and

α > 0. Notice from (13) that 1
α
L(S) = L( S

α
). Therefore,

(18) is equivalent to I4×4 + L( S
α
) � 0. After replacing

A = S
α

, we get the same result as in Theorem 5.2. The

backward proof for equivalence can be obtained in a very

similar manner.

Remark 5.6 For a given α > 0 and S = αR with R

bounded by |θ| ≤ θ ≤ 90◦, the following LMI must also

hold true,

S+ S⊺ � 2α cosθ I3×3. (19)

In the calibrated relative pose formulation, a rotation ma-

trix appears with a skew-symmetric matrix, the so-called

Essential matrix. More formally, the normalized Essential

matrix is defined as follows.

Definition 5.7 (Normalized Essential Matrix) The set of

normalized Essential matrices for two cameras related by

rotation R and translation t is given by,

E = {E = [t]×R : R ∈ SO(3), ‖t‖ = 1}. (20)

where [t]× is a 3×3 skew-symmetric matrix.

We will now show that the structural constraint of the

Essential matrix can also be expressed as LMI using our

following proposition.

Proposition 5.8 (Essential Matrix and Orbitope) A 3×3
matrix E belongs to the set of normalized Essential matri-

ces, E of (20), only if,

2 I4×4 + L(E) � 0. (21)

Proof For any E ∈ E , its singular value decomposition is

given by E = U diag(1, 1, 0)V⊺. This can further be de-

composed into E = A + B, with A ∈ SO(3) and B =
U diag(0, 0,−|UV⊺|)V⊺. Using (13), one can show that

L(B) � −I4×4. Furthermore, from (14), L(A) � −I4×4.

Therefore, L(E) = L(A) + L(B) � −2 I4×4, which leads

to (21).

6. Multiple View Geometry Problems

In this section, we present three examples of multi-

ple view geometry problems formulated as in Problem 3.1

(Consensus Maximization with LMIs). Different problems

specify different variable terms, in reference to (10), and

their LMI constraints are summarized in Table 1.

4944



Transformations Constraints βi(x) Bi(x) b(x) LMIs

Similarity S(x) ∈ SSO(3) 1 S(x) t(x) Ks � 0
Absolute Pose R(x) ∈ SO(3) r3(x)

⊺
ui + t3(x) R(x) t(x) Ka � 0

Relative Pose E(x) ∈ E
[

(ni)1e2(x)− (ni)2e1(x)
]⊺

ui [ni]×E(x) 0 Kr � 0

Table 1: Summary of the residual terms and constraints for three different example problems. βi(x), Bi(x), and b(x), are the variable

terms of (10) compared to (22), (24), and (26). The LMI constraints are given in (23), (25), and (27).

6.1. Similarity Transformation

We consider a set of images acquired by a collection of

cameras which observe the same scene. These images are

then fed into a SfM pipeline [17, 30] to obtain a 3D Recon-

struction. Let {ui, vi} ∈ IR3, i = 1, . . . , n, with n ≥ 4,

be the Cartesian coordinate vector pairs of the SfM-induced

camera centers Ui and their real world positions Vi (e.g.

GPS measurements). Since the SfM reconstruction is met-

ric, SfM-induced cameras and their world measurements

are related by

vi = S(x) ui + t(x), (22)

where S(x) is a 3×3 scaled-rotation matrix, t(x) a 3×1
translation vector, and x ∈ IR12. Notice that (22) is anal-

ogous to (10), hence its residual error can be written as

in (11). On the other hand, a direct application of Propo-

sition 5.5 provides a convex relaxation, as a LMI, to the

scaled-rotation matrix constraint, i.e. S(x) ∈ SSO(3).

Corollary 6.1 S(x) = αA such that A ∈ conv(SO(3)) is

possible if and only if the following LMI is feasible for some

x ∈ IR12 and α > 0 :

Ks =
{

α I4×4 + L(S(x))
}

� 0. (23)

6.2. Absolute Pose

We consider measurement vector pairs {ui, vi} ∈ IR3,

i = 1, . . . , n, with n ≥ 5, where ui is the Cartesian rep-

resentation of the scene point Ui in the world frame and vi
is the homogeneous representation of the image point Vi in

the camera frame of a calibrated camera. If [R|t] is the cam-

era pose w.r.t. the world frame, then the scene and image

points are related by,

(

r3(x)
⊺
ui + t3(x)

)

vi = R(x) ui + t(x), (24)

where x ∈ IR12, ri are the row vectors of R(x), and ti are

ith elements of t(x). Notice again that (24) is analogous

to (10), hence its residual error can be written as in (11).

On the other hand, a convex relaxation of the constraint

R(x) ∈ SO(3) can be expressed as a LMI, using Theo-

rem 5.2.

Corollary 6.2 R(x) ∈ conv(SO(3)) is possible if and only

if the following LMI is feasible for some x ∈ IR12 :

Ka =
{

I4×4 + L(R(x))
}

� 0. (25)

6.3. Relative Pose

We consider the homogeneous vector pairs {ui, vi} ∈
IR3, i = 1, . . . , n, with n ≥ 8, which are the measurements

of the image points {Ui, Vi} of two calibrated cameras. For

an essential matrix E, the relationship between two image

points can be expressed as,
(

[

(ni)1e2(x)− (ni)2e1(x)
]⊺

ui

)

vi = [ni]×E(x) ui, (26)

where x ∈ IR9, [ni]× is a 3×3 skew symmetric matrix for

any ni ∈ Null(v⊺i ), and ei(x) are the row vectors of E. No-

tice again that (26) is analogous to (10), hence its residual

error can be written as in (11). On the other hand, a direct

application of Proposition 5.8 provides a convex relaxation,

as a LMI, to the Essential matrix constraint, i.e. E(x) ∈ E .

Corollary 6.3 E(x) ∈ E is possible only if the following

LMI is feasible for some x ∈ IR9 :

Kr =
{

2 I4×4 + L(E(x))
}

� 0. (27)

7. Experiments & Results

We performed experiments for the three problems de-

scribed in Section 6, both on synthetic and real data. Our

approach was implemented in MATLAB2016a using the

Yalmip1 toolbox and Mosek2 as SDP solver. All experi-

ments were carried out on an Intel Core i7 CPU 2.60GHz

with 12GB RAM. Although there is still room for improve-

ment by correctly modeled covariance matrix of individual

applications, we used the Euclidean distance, i.e. Σ = I

in Section 4.1. The error measurement metrics used for

evaluating the quality of the results are: the errors in ro-

tation R, translation T , scale S, and the RMS 3D error. For

each experiment, we compute the errors ∆r = ||r − rgt||,
∆t = ||t−tgt||, and ∆s = ||s−sgt||. The errors reported as

∆R, ∆T , and ∆S are the RMS values of N experiments.

Here, r is a vector obtained by stacking three rotation angles

in degrees, and rgt, tgt and sgt are the ground truth values.

1https://yalmip.github.io/
2https://www.mosek.com/
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Figure 2: Similarity Transformation (synthetic data): RANSAC vs. Ours. Plots (a) and (b) show the behavior of different runs for both

methods, while increasing the outlier ratio. Plot (c) shows multiple instances of RANSAC results against our method. RANSAC results in

different number of inliers, while our method provides always the same exact solution.
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Figure 1: Similarity Transformation (synthetic data): Runtime

of our method with increasing number of points and outlier ratio.

7.1. Similarity Transformation

In this section, we show the general properties of the pro-

posed method before and after adding the LMI constraints.

For all our experiments, we restrict the reconstruction scale

within [0.2, 5.0], recall α in Proposition 5.5.

Synthetic data. We synthetically generated Similarity

Transformations, which were applied to N points (uni-

formly generated) in order to obtain Ground Truth corre-

spondences. We then introduced outliers by adding a high

amount of noise to a particular subset of these correspon-

dences, until the desired outlier ratio was obtained.

In Table 2, a time comparison between MI-SDP (without

the LMI constraints from equation (8)) and Ours (with con-

straints) has been presented for a small number of points.

In the presence of high amount of outliers, the speedups are

very significant. Fig. 1 shows the runtime of our method

with the constraints. In Fig. 2, we have compared our

method against RANSAC. We fixed the number of points to

N = 100 for all cases, and ran different instances while in-

creasing the outlier ratio. For Fig. 2c the outlier ratio was set

to 75% and the experiments were conducted for 100 times.

Notice that the average performance of RANSAC (in this

figure) corresponds approximately to its performance for

75% in Fig. 2b.

Outliers
N=30 N=40 N=50

W/ W/O W/ W/O W/ W/O

15 % 0.26 0.61 0.44 2 0.64 7

30 % 0.62 9 1.17 47 2.05 315

45 % 1.24 48 2.68 467 4.38 -

60 % 2.30 498 4.63 - 7.84 -

75 % 3.42 - 7.04 - 11.81 -

W/: with constraints (Ours). W/O: without constraints. (-): greater than 3600 sec.

Table 2: Similarity Transformation (synthetic data): Time com-

parison between the solutions obtained with and without the LMI

constraint (23). Even for small N (number of points), MI-SDP (8)

method without LMI constraints takes a very long time.

Real data. Images from the Yahoo Flickr Creative Com-

mons dataset [18, 32] were used to obtain 3D Recon-

structions with COLMAP3, an open-source Structure-from-

Motion (SfM) pipeline [30]. The SfM Reconstructions ac-

quired correspond to: Colosseum (2060 images), Notre

Dame (3743 images), Pantheon (1385 images) and Trevi

Fountain (2909 images). Approximately only 10% of the

images had GPS information; the numbers of valid GPS Tag

found for each dataset is shown in Table 3. This table also

provides additional quantitative results. Due to the lack of

Ground Truth registration parameters, the reported quantita-

tive results were visually evaluated. As expected, the qual-

ity of the results improves with increasing numbers of in-

liers. This can be observed with a large number of inliers in

Colosseum, in contrast to the Pantheon dataset (where the

number of inliers is only 14). For the qualitative evaluation,

all 3D Point Clouds were registered to Open Street Maps4

and are shown in Fig. 3.

Fig. 4 provides a comparison between RANSAC and our

method for the Colosseum dataset. In the same figure, the

GPS elevation measurements plot is also provided. It can

be observed that the GPS data exhibit huge deviations along

the vertical axis, affecting RANSAC in particular. Conduct-

3https://colmap.github.io/
4http://openstreetmap.org
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Scene ∆ θ (Yaw) ∆ θ (Pitch) ∆ θ (Roll) ∆T Height Scale |ζ∗| /N Time [sec]

Colosseum < 1 o < 1 o < 1 o < 1m < 1m < 1% 117/147 88.26 s
Notre Dame < 3 o < 2 o < 1 o < 2m < 1m < 1% 103/144 43.17 s
Pantheon < 3 o < 5 o < 2 o < 3m < 2m < 7% 14/ 47 16.12 s
Trevi Fontain < 2 o < 1 o < 3 o < 1m < 1m < 3% 104/140 65.68 s

∆ θ [degree]: rotation error (Yaw, Pitch and Roll). ∆T [meters]: translation error. ζ∗: maximum consensus set. N : number of available GPS tags.

Table 3: Similarity Transformation (real data): Quantitative results. Visually evaluated quality of registration.
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Figure 3: Similarity Transformation (real data): Side and Top

views of the registered 3D Reconstructions obtained using our

method with GPS information.

ing more experiments, the RANSAC results were often of

very poor quality (sometimes even completely below the

ground plane), while our method consistently provided the

exact same solution.

7.2. Absolute Pose

For this experiment, we used a SfM Reconstruction from

an unordered set of 30 images. The ground truth abso-
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Figure 4: Similarity Transformation (real data): comparison

between RANSAC (purple) vs. Ours. The bottom plot shows the

GPS elevation measurements, varying from 20 to 90 meters, where

42 (straight line) is the true elevation of Colosseum.

lute pose [R|t] for 6 query images was also provided in the

dataset. We follow an established [19] image-to-SfM local-

ization pipeline to find the absolute pose of the query im-

ages: we compute SIFT [23] features in all query images,

and match descriptors against the database of SIFT fea-

tures from all 30 images used in the reconstruction. Since

descriptors used in the SfM Reconstruction are associated

with 3D points, we obtain a list of potential 3D-2D cor-

respondences {ui, v
′
i}. The 2D image points v′i are trans-

formed into normalized (homogeneous) image coordinates:

vi = K−1 [v′i 1]
T , where K denotes internal camera calibra-

tion matrix. The list of correspondences {ui, vi} for each

query image contains on average an outlier percentage of

44.25%. We aim at recovering the absolute pose [R|t] of

the query images, given the list of potential matches, as de-

scribed in Section 6.2.

Fig 5 shows a comparison with others methods, namely:

ASPnP [39], DLT+LM5 [17], EPnP [20], REPPnP [12].

The low rotational and transitional errors reported are a

direct consequence of the inliers-set consensus maximiza-

tion. Table 4 complements this information with the exe-

cution time and the numbers of inliers. Here, we provide

5Direct Linear Transform (DLT) followed by Levenberg-Marquardt (LM)

minimization of the reprojection error.
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Scene Image Method |ζ| /N ∆R [degree] ∆T [%] Time [sec]

Fountain
RANSAC 20 / 39 0.29 4.81 0.61

Ours 25 / 39 0.15 1.76 3.35

Herz-Jesu
RANSAC 35 / 70 2.12 3.20 0.63

Ours 49 / 70 0.12 2.87 23.84

|ζ|: number of inliers. Ours: method with constraints. ∆R [degree]: rotation error. ∆T [%]: translation error.

Table 5: Relative Pose (real data): RANSAC vs. Our method with and without LMI constraints.
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Figure 5: Absolute Pose (real data): comparison with other

methods. Rotation Error, Translation Error and Number of True

Inliers are shown for Six Experiments.

two sets of results, one with only the LMI constraint (25)

and the other with an extra restriction on rotation angle (of

|θ| ≤ 60◦). This table confirms once again the key contri-

bution of this paper: with more restrictions imposed using

LMIs, the BnB explores less space – reducing significantly

the time in our experiments – while finding the same so-

lution. Note that the rotation angle restriction used in these

experiments may not always be true for Absolute Pose prob-

lem. Nevertheless, with only some vague prior knowledge

(such as IMU measurements) this restriction can be con-

firmed.

7.3. Relative Pose

We conducted experiments with two different datasets

– Fountain and Herz-Jesu – form [31]. The details of the

datasets and the obtained results are shown in Table 5. The

reported results obtained by our method in presence of the

LMI constraint (27) is compared against RANSAC con-

Error Inliers Time [sec]

∆R ∆T |ζ∗| /N Ours Ours∗

Exp01 0.03 0.27 26 / 42 13.86 2.96

Exp02 0.12 0.28 24 / 45 25.71 2.78

Exp03 0.12 0.11 27 / 46 50.27 13.80

Exp04 0.13 0.41 25 / 46 61.18 20.44

Exp05 0.04 0.24 27 / 47 174.81 10.40

Exp06 0.18 0.31 23 / 44 120.24 58.06

∆R [degree]: rotation error. ∆T [%]: translation error. ζ∗: maximum consensus.

Ours∗: imposing the additional constraint (16): R + RT � I .

Table 4: Absolute Pose (real data): Error, Inliers Set and Time

for our method. By adding an additional constraint, we obtained

2x speedup in Exp06 (worst case) and 16x in Exp05 (best case).

ducted on 5-point algorithm [25]. One can observe that the

global search method with LMI constraints finds a larger

set of inliers than that of RANSAC, for both datasets. The

quality of relative pose estimation improves with increasing

inliers in both cases.

8. Conclusion

We proposed a general global optimization framework

for consensus maximization with linear matrix inequal-

ity constraints. We derived several LMI constraints and

demonstrated that a number of central computer vision

problems can be cast into this form. In particular, we suc-

cessfully conducted experiments on problems of similar-

ity transformation, absolute pose, and relative pose estima-

tion. Experiments demonstrated also a significant speedup

in computation time due to the addition of the LMI con-

straints, under a globally optimal framework.

As future work it is worth to explore the use of LMI con-

straints in combination with other exact methods [5, 10, 22,

26, 38], since the LMI constraints have the potential to im-

prove their effectiveness. We therefore see these methods as

complementary work, rather than competitors. Apart from

combining it with other optimization methods, we further

look forward to explore other computer vision problems

that fit into the proposed optimization framework.
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