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Abstract

Convolutional neural networks (CNNs) have shown

great success in computer vision, approaching human-level

performance when trained for specific tasks via application-

specific loss functions. In this paper, we propose a method

for augmenting and training CNNs so that their learned

features are compositional. It encourages networks to

form representations that disentangle objects from their sur-

roundings and from each other, thereby promoting better

generalization. Our method is agnostic to the specific de-

tails of the underlying CNN to which it is applied and can in

principle be used with any CNN. As we show in our exper-

iments, the learned representations lead to feature activa-

tions that are more localized and improve performance over

non-compositional baselines in object recognition tasks.

1. Introduction

Convolutional neural networks (CNNs) have shown re-

markable performance in many computer vision tasks [21,

20, 42, 37, 35] including image classification [20], object

class detection [41, 12], instance segmentation [13], image

captioning [18, 44], and scene understanding [6]. Their suc-

cess is typically attributed to two factors; they have large

enough capacity to make effective use of the ever-increasing

amount of image training data available today, while at the

same time managing the number of free parameters through

the use of inductive biases from neuroscience. Specifically,

the interleaving of locally connected filter and pooling lay-

ers [15] bears similarity to the visual cortex’s interleaving

of simple cells, which have localized receptive fields, and

complex cells, which have wider receptive fields and greater

local invariance.

Recently, researchers have investigated more inductive

biases from neuroscience to improve CNN architectures.

Examples include learning representations from video se-

quences [2, 10, 17], encouraging the utilization of depth in-

formation [14], and using physical interaction with the en-
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Figure 1: For a standard CNN (VGG, [37]), the presence

of a nearby object (cup) greatly affects the activations in

the region of an object of interest (airplane). In contrast, a

CNN trained with our method demonstrates better compo-

sitionality in its feature representations – the activations in

the airplane region represent primarily the airplane and are

therefore less affected by the presence of the cup.

vironment [31] to bias representations.

In this paper, we follow a similar philosophy, but focus

our attention on the inductive bias of compositionality: the

notion that the representation of the whole should be com-

posed of the representation of its parts (we give a precise

formal definition of this notion in Sect. 3). Intuitively, en-

couraging this property during training results in represen-

tations that are more robust to re-combination (e.g., when

seeing a familiar object in a novel context) and less prone

to focusing on discriminative but irrelevant background fea-

tures. It is also in line with findings from neuroscience that

suggest separate processing of figure and ground regions in

the visual cortex [16, 32]. Note that a typical CNN does

not exhibit this property (Fig. 1 visualizes the difference in

activations between a CNN trained without (VGG [37]) and

with our compositionality objective1).

In contrast to previous work that designs compositional

1Fig. 1 shows the activation difference in the airplane region between

the current frame and a frame where the airplane is shown in isolation.

Activations are taken from intermediate conv. layers with spatial resolution

28× 28. We marginalize over feature channels to create visualization.
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representations from the ground up [34, 45, 43, 47], our ap-

proach does not mandate any particular network architec-

ture or parameterization – instead, it comes in the form of

a modified training objective that can be applied to teach

any standard CNN about compositionality in a soft manner.

While our current implementation requires object masks for

training, it allows apples to apples comparison of networks

trained with or without the compositionality objective. As

our experiments show (Sect. 4), the objective consistently

improves performance over non-compositional baselines.

This paper makes the following specific contributions:

First, we introduce a novel notion of compositionality as

an inductive bias for training arbitrary convolutional neu-

ral networks (CNNs). It captures the intuition that the rep-

resentation of a partial image should be equal to the par-

tial representation of that image. Second, we implement

that notion in the form of a modified CNN training objec-

tive, which we show to be straightforward to optimize yet

effective in learning compositional representations. Third,

we give an extensive experimental evaluation on both syn-

thetic and real-world images that highlights the efficacy of

our approach for object recognition tasks and demonstrates

the contributions of different components of our objective.

2. Related work

Our work is related mostly to three major lines of re-

search: compositional models, inductive biases, and the role

of context in visual recognition.

Compositional models. Compositional models have ex-

isted since the early days of computer vision [24] and have

appeared mainly in two different varieties. The first flavor

focuses on the creation of hierarchical feature representa-

tions by means of statistical modeling [8, 27, 48, 47], re-

usable deformable parts [49, 29], or compositional graph

structures [36, 45]. The second flavor designs neural

network-based representations in the form of recursive neu-

ral networks [38], imposing hierarchical priors on Deep

Boltzman Machines [34], or introducing parametric net-

work units that are themselves compositional [43].

The basis for our work is a notion of compositionality

(Sect. 3.1) that is distinct from all these approaches in that it

does not have to be baked into the design of a model but can

be applied as a soft constraint to a CNN. Recent work [28]

constrains CNN activations to lie within object masks in the

context of weakly-supervised localization. Our composi-

tional objective (Sect. 3.3) goes beyond this formulation:

it consists of multiple components that not only suppress

background activations, but also explicitly encourage object

activations to be invariant to both background clutter and

adjacent objects. Our experiments verify that each compo-

nent is important for performance (Sect. 4.3).

Inductive biases. A recent line of work on neural network

architectures takes inspiration from human learning in its

design of training regimen. It has demonstrated improved

performance when training from video sequences instead of

still images [2, 17], assuming an object-centric view [10],

integrating multimodal sensory side information [14], or

even being in control of movement [31]. The benefit arises

from providing helpful inductive biases to the learner that

regularize the learned representations. The inductive bias

of compositionality presented in this work (Sect. 3.1) fol-

lows a similar motivation but is largely complementary to

the biases explored by these prior approaches.

The role of context in visual recognition. It is well

known that context plays a major role in visual recognition,

both in human and artificial vision systems [9, 26, 5]. Our

environment tends to be highly regular, and making use of

regularities in the occurrence of different object and scene

classes has been shown to be beneficial for recognizing fa-

miliar objects [25, 4], objects in unusual circumstances [3],

and recurring spatial configurations [7, 30, 11, 46]. At the

extreme, object classes can be successfully recognized even

in the absence of local information by relying exclusively

on scene context [33].

While CNN-based representations typically support the

use of context implicitly (by including pixels indiscrimi-

nately in a receptive field), they lack the ability to explic-

itly address context and non-context information. The no-

tion of compositionality proposed in this work (Sect. 3.1)

is a step towards making CNN-based representations more

amenable to explicit context modeling through an external

mechanism (by cleanly separating the representation of ob-

jects from their context). The experiments in this paper

(Sect. 4) do not further elaborate on this aspect, but indicate

that the compositional objective (i) elicits a performance

improvement, (ii) the improvement is similar for objects ap-

pearing in and out-of-context, and (iii) the improvement is

least pronounced for very small object instances.

3. Teaching compositionality to CNNs

This section describes our approach to encouraging

CNNs to learn compositional representations. To that end,

we proceed from introducing our notion of compositional-

ity (Sect. 3.1) to describing network architecture (Sect. 3.2)

and training procedure (Sect. 3.3) to giving technical details

of our implementation (Sect. 3.4).

3.1. Compositionality notion

The goal of our notion of compositionality is to encour-

age the representation of a part of an image to be similar to

the corresponding part of the representation of that image.

More formally, let X be an image, m a binary mask that
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Figure 2: Architecture and loss function (L) computation

for encouraging compositionality when multiple objects are

present in a training image (see Sect. 3.2 and Sect. 3.3). The

original CNN (red) is enhanced by K additional masked

CNNs (blue), all of them sharing weights. φ.,. represent

feature maps, L. loss functions, and γ is a hyper-parameter.

Masks mk (solid) are applied to feature map outputs, while

masks m′

k (dotted) are only applied for computing losses.

For simplicity, we depict layers and masks with equal sizes.

identifies part of X (i.e, m is a tensor of the same shape as

X with 1s indicating part affiliation), φ a mapping from an

image onto an arbitrary feature layer of a CNN, and p the

projection operator onto the feature map represented by φ.

We define φ to be compositional iff the following holds:

φ(m ·X) = p(m) · φ(X). (1)

Here, the · operator represents element-wise multiplication.

The projection operator, p, down-samples the object mask

to the size of the output of φ. E.g., if φ(X) is the activations

of a convolutional layer with size (h,w, c) (the first two di-

mensions are spatial and c is the number of feature chan-

nels), p will down-sample the object mask to size (h,w)
and then stack c copies of the down-sized object mask on

top of each other to produce a mask of size (h,w, c).

Note that in practice we do not require Eq. (1) to hold

for all possible masks m, as this would constrain φ to be

the identity map. Instead, we apply the inductive bias se-

lectively to image parts that we would like to be treated as

a unit – obvious choices for these selected parts include ob-

jects or object parts. In the following, we use object masks

(as provided by standard data sets such as MS-COCO [23])

as the basis for compositionality.

3.2. Enhanced network architecture

To encourage a network to satisfy the compositionality

property of Eq. (1) (Sect. 3.1), we devise an enhanced ar-

chitecture and corresponding objective function. Note that

this enhancement is non-destructive in nature and leaves the

original network completely intact; it merely makes virtual

copies of the original network, Fig. 2.

When there is only one object in the input image, teach-

ing compositionality takes the form of ensuring that the ac-

tivations within the region of that object remain invariant

regardless of what background the object appears on. With

multiple objects, we also explicitly ensure that the activa-

tions of each object remain the same as if that object were

shown in isolation (i.e., activations should be invariant to

the other objects within the respective object mask).

To implement this notion, we create K + 1 weight-

sharing CNNs where K is the number of objects shown in

the scene. K of these CNNs take as input a different object

instance, each shown against a blank background (we ap-

ply the mask for the kth object instance to the input image

before giving the input image to the kth CNN). We refer

to these K CNNs as “masked CNNs,” and we denote the

mapping onto layer n of the kth masked CNN as φmk,n.

Each of these K masked CNNs have their respective ob-

ject mask reapplied to their activations at multiple layers

in the hierarchy (see Sect. 3.4), zeroing out activations out-

side of the object region. These masked activations are then

passed on to higher layers (which might also re-apply the

mask again in the same way). This constrains the masked

CNNs to only use activations within the object mask region

when classifying the input image. The final (K+1th) CNN

receives as input the original image with no masks applied,

and we refer to it subsequently as the “unmasked CNN”.

We denote the mapping onto layer n of this CNN as φu,n.

We denote the total number of layers as N .

3.3. Training procedure

We train the architecture of Sect. 3.2 for composition-

ality by introducing an objective function that combines

an application-specific discriminative CNN loss with addi-

tional terms that establish dependencies between the differ-

ent masked and unmasked CNNs.

Discriminative loss. To encourage correct discrimina-

tion, we add separate discriminative loss terms for both the

K masked and the one unmasked CNN, denoted Lmk
and

Lu, respectively. Their relative contributions are controlled

by the hyperparameter γ ∈ [0, 1], to yield

Ld =
1

K

(∑

k

γLmk

)
+ (1− γ)Lu. (2)

Compositional loss. To encourage compositionality, we

add K × N terms that establish dependencies between the

responses of corresponding layers of the masked and un-

masked CNNs, respectively. Specifically, on all layers at

which an object mask is applied, we take the l2 difference
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between the activations of the masked CNN and the activa-

tions of the unmasked CNN. We then multiply this differ-

ence by a layer specific penalty hyper-parameter (denoted

as λn) and add this to our compositional loss:

Lc =
1

K

∑

k

∑

n

λn||φmk,n − φu,nm
′

k||
2

2
. (3)

The final objective can then be stated simply as L = Ld +
Lc. Because the unmasked CNN sees all objects and will

naturally have different activations from the kth masked

CNN due to the presence of the objects other than the kth

object, we apply a mask to the unmasked CNN’s activa-

tions before computing the penalty term. We denote this

mask as m′

k. However, we do not pass these masked acti-

vations (φu,nm
′

k) up to higher layers as was done for the

masked CNNs; we only use them to compute the composi-

tional penalty term on layer n.

Design choices. The above objective leaves degrees of

freedom w.r.t. choosing the precise nature of the masks m′

k,

and the corresponding choices do have an impact on perfor-

mance (Sect. 4.3). First, to penalize background activations

outside of the regions of objects of interest, we can make

m′

k be a tensor of 1s but with the locations of all objects

other than the kth object filled with 0s. Second, we can

penalize any shifts in activations within the region of the

kth object without discouraging background activations by

making m′

k equal to mk.

3.4. Implementation details

Our experiments (Sect. 4) use the following network ar-

chitectures: MS-COCO-sub (Sect. 4.4): conv1-conv3 (224×224×64),

pool1, conv4-conv6 (128× 128× 128), pool2, conv7-conv9 (64× 64×

256), pool3, conv10-conv12 (32× 32× 512), pool4, fc1 (131072× 20).

3D-Single (Sect. 4.3): conv1-conv3 (128×128×64), pool1, conv4-conv6

(64 × 64 × 128), pool2, conv7-conv9 (32 × 32 × 256), pool3, conv10-

conv12 (16 × 16 × 512), pool4, fc1 (32768 × 14). MNIST (Sect. 4.3):

conv1-conv3 (120×120×32), pool1, conv3-conv4 (60×60×64), pool2,

conv5-conv6 (30× 30× 128), pool3, fc1 (28800× 10).

The discriminative loss functions Lmk
and Lu are instan-

tiated as softmax-cross entropy or element-wise sigmoid-

cross entropy for joint or independent class prediction, re-

spectively. Since Lc is of a standard form, we can optimize

it like any CNN via SGD (specifically, using the ADAM

optimizer [19] and Tensorflow [1]).

Empirically, we find that best performance is achieved

when applying Lc to the topmost convolutional and pooling

layers of the network (i.e., λn is zero on most early layers).

We believe this to be an artifact of the CNN needing a cer-

tain minimum number of layers and corresponding repre-

sentational power to successfully discriminate between rel-

evant and irrelevant (background) pixels.

In practice, we create only two weight-sharing CNNs

(independent of the number of object training instances):

one which sees 1 randomly selected out of K objects in the

input image, and one which sees the entire scene. Empir-

ically, this model is only about 50% slower to train than a

standard CNN. The parameter space is just that of a single

CNN due to weight sharing. γ is fixed to .5.

4. Experiments

In this section, we give a detailed experimental evalua-

tion of our approach for teaching compositionality to CNNs,

highlighting its ability to improve performance over stan-

dard CNN training on both synthetic (Sect. 4.3) and real

images (MS-COCO [23], Sect. 4.4). Our emphasis lies on

providing an in-depth analysis of the contributions of dif-

ferent components of our compositional objective as well

as quantifying the impact of object context on performance.

4.1. Datasets and metrics

Rendered 3D objects. We perform diagnostic experi-

ments on two novel datasets of rendered 3D objects. We

use rendered datasets so we have maximum control over the

statistics of our image data in terms of depicted objects and

context (notably, segmentation masks come for free in this

setting). Specifically, the datasets are based on 12 3D object

classes (e.g., car, bus, boat, or airplane), with ≈ 20 object

instances per category, each rendered from ≈ 50 different

viewpoints (uniform sampling of the upper viewing half-

sphere) in front of 20 different real-image backgrounds.

The first dataset, termed 3D-Single, has 1, 600 images

depicting single objects in front of random backgrounds.

The second dataset, termed 3D-Multi, has 800 images of

multiple objects with varying degrees of occlusion (see

Fig. 1). For both datasets, we distinguish between a

category-level recognition setting and easier variants (3D-

Single-Inst, 3D-Multi-Inst) that allow the set of 3D object

instances seen during training and test to be non-empty

(whereas the set of views of the same instance has to be

empty). In both cases, we ensure that the backgrounds seen

in training (80% of the images) and test (20%) are distinct.

MNIST. We create two variants of the popular MNIST

dataset [22], in analogy to the two aforementioned 3D ob-

ject datasets. The first variant, MNIST-Single, depicts indi-

vidual MNIST characters in front of randomized, cluttered

backgrounds (we use the standard train/test split). The sec-

ond variant, MNIST-Multi, depicts multiple characters with

varying degrees of overlap, against these backgrounds.

MS-COCO-sub. MS-COCO [23] constitutes a move

away from “iconic” views of objects towards a dataset in

which objects frequently occur in their respective natural
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contexts. For most experiments, we focus on subsets of MS-

COCO training and validation (for testing) images that con-

tain at least one of 20 diverse object classes2 (see Fig. 4a)

and further restrict the set of images to ones with sufficiently

large object instances of at least 7, 000 pixels. This results

in 22, 476 training and 12, 245 test images.

In addition, we quantify the impact of context on classi-

fication performance by defining two further test sets. The

first test set is the full validation set of MS-COCO. Here,

we measure classification performance on object instances

of different sizes (small, medium, large) as defined for the

MS-COCO detection challenge3. In order to make the per-

formance comparable, we stratify the number of positive

and negative examples by randomly sampling 20 negatives

for each positive example.

The second test set examines object instances in and out

of context (see Fig. 5 (b)). We start with all test images from

MS-COCO-sub. For each object instance o of a category c

occurring in that set, we create two positive examples, one

by cropping o and placing it in front of a new random test

image that does not have c in it (this will be the out-of-

context set), and one by leaving o in its original context (the

in-context set). For both, we add as negative examples all

images where c does not occur.

Metrics. All experiments consider image-level classifica-

tion tasks, not object class detection or localization. For di-

agnostic experiments (Sect. 4.3), we evaluate performance

as the average fraction of correctly predicted object classes

among the top-k scoring network predictions, where k is

the number of objects in a given image. For MS-COCO-

sub (Sect. 4.4), we treat object classes separately and re-

port (mean) average precision (AP) over independent binary

classification problems. In all cases, we monitor perfor-

mance on a held-out test set over different epochs as train-

ing progresses, and report both the resulting curves and best

achieved values per method (Fig. 3, Fig 4).

4.2. Methods

In this section, we evaluate the following baselines and

variations on our compositional training technique (see

Sect. 3.3). For the sake of clean comparison, we always

train all networks from scratch (i.e., we do not use pre-

training of any form).

COMP-FULL. Our main architecture, where m′

k is chosen

to be equal to a block of all 1s but with the locations of ob-

jects other than the kth object set to 0s.

COMP-OBJ-ONLY. Like COMP-FULL, but with m′

k equal

to mk (this penalizes any shifts in activations within the ob-

ject region but does not discourage background activations).

COMP-NO-MASK. Like COMP-FULL, except that the

2The first 20 classes in the original MS-COCO ordering w/o person.
3http://mscoco.org/dataset/#detections-eval

masked CNNs do not apply mk to any of their activations.

BASELINE. Architecture with the same layer sizes as

COMP-FULL but without compositional objective terms –

a “standard” CNN.

BASELINE-AUG. Like BASELINE, except for each batch

we make half of the images be a single object shown in

isolation against a black background and the other half be

the raw images of the same objects in the same locations

against cluttered background. This method has access to

the same information as COMP-FULL (it knows about the

object mask), but without any compositional objective.

BASELINE-REG. Like BASELINE, but with dropout [40]

and l2-regularization.

BASELINE-AUG-REG. Like BASELINE-AUG, but with

dropout and l2-regularization.

4.3. Diagnostic experiments on synthetic data

We commence by comparing the performance of differ-

ent variants of our compositional objective and the corre-

sponding baselines (Sect. 4.2) in a diagnostic setting on

synthetic data. In order to assess both best case perfor-

mance and convergence behavior, we plot test performance

vs. training epochs in Fig. 3a through 3f. The respective

best performance per curve is given in parentheses in plot

legends. Fig. 5 and 6 give qualitative results.

Rendered 3D objects. In Fig. 3, we observe that all vari-

ants of compositional CNNs (blue curves) perform consis-

tently better than the baselines (red curves), both per epoch

and in terms of best case performance.

Our full model, COMP-FULL, performs overall best

(blue-solid). It outperforms the best baseline by between

17.1% (3D-Multi, Fig. 3d) and 35.2% (3D-Single-Inst,

Fig. 3a). Performance drops for COMP-OBJ-ONLY (blue-

dashed) by 14.7% (3D-Single-Inst, Fig. 3a), 7.3% (3D-

Single, Fig. 3b), 4.4% (3D-Multi-Inst, Fig. 3c), and 2.9%
(3D-Multi, Fig. 3d), respectively. COMP-NO-MASK (blue-

dotted) performs worst among our models, but still outper-

forms the best baseline by 0.3% (3D-Single-Inst, Fig. 3a),

6.8% (3D-Single, Fig. 3b), 26.6% (3D-Multi-Inst, Fig. 3c),

and 17.0% (3D-Multi, Fig. 3d), respectively.

As expected, the baseline benefits from observing addi-

tional masked training data mostly for images with multi-

ple objects: BASELINE (red-dashed) and BASELINE-AUG

(red-solid) perform comparably on 3D-Single-Inst and 3D-

Single, but BASELINE-AUG improves over BASELINE on

3D-Multi-Inst (by 6.2%) and 3D-Multi (by 7.8%). In terms

of convergence, the compositional CNNs (blue curves) tend

to stabilize later than the baselines (red curves).

MNIST. In Fig. 3e and 3f, the absolute performance

differences between our compositional CNNs and the cor-

responding baselines are less clear cut, but still highlight
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Figure 3: Test performance on rendered 3D objects (a-d), MNIST (e-f), and MS-COCO-sub (g), as training progresses over

epochs (best performance per curve given in parentheses; see Sect. 4.3 and 4.4). Localization accuracy (h) (Sect. 4.4).

the importance of the compositional objective when object

masks are used (COMP-FULL outperforms BASELINE-AUG

by 2.0% on MNIST-Single and by 2.6% on MNIST-Multi).

Without reapplying the masks to the activations, perfor-

mance decreases, but the trend remains (COMP-NO-MASK

is better than BASELINE by 20.4% and 4.1%, respectively).

4.4. Experiments on real­world data (MS­COCO)

We proceed to evaluating our best performing method

COMP-FULL on the real-world images of MS-COCO

(Sect. 4.1). We compare to the same baselines as before,

plus two baselines with dropout [40] and l2-regularization

(see Sect. 4.2). Specifically, we report performance for

COMP-FULL at convergence (last epoch, see Fig. 3g for con-

vergence behavior); for all baselines we consider the best

performing model over all epochs. Fig. 4 gives details w.r.t.

individual object categories (4a), amount of training data

(4b), size of object instances (4c), and context (4d).

MS-COCO-sub. In Fig. 3g, COMP-FULL (blue-solid)

outperforms the best baseline BASELINE-AUG-REG

(orange-solid) by a significant margin of 25.5%, con-

firming the benefit of the compositionality objective in a

real-world setting. The added regularization improves the

performance of the baselines only moderately, by 4.6%
(BASELINE-AUG) and 4.1% (BASELINE), respectively. In

Fig. 4a, we see that COMP-FULL performs better than the

baselines for every single category, improving performance

by up to 32% (for stop sign). Fig. 4b gives results for

varying amounts of training data (5, 10, 20, 50, 75, 100%).

method in-context out-of-context ratio

COMP-FULL 0.660 0.256 0.39

BASELINE-AUG 0.356 0.131 0.37

BASELINE 0.334 0.116 0.35

BASELINE-AUG-REG 0.389 0.144 0.37

BASELINE-REG 0.374 0.128 0.34

Table 1: Relative performance ratio on MS-COCO-sub.

COMP-FULL (blue-solid) clearly outperforms the baselines

(orange and red curves) for all plotted amounts, with an

increasing performance gap as training data increases.

Object sizes and context. Fig. 4c gives the performance

when testing the respective models trained on the training

portion of MS-COCO-sub on all images of MS-COCO and

evaluating them on object instances of different sizes (small,

medium, large, all; see Sect. 4.1).

We observe that the compositional objective improves

performance over the baselines consistently for all sizes.

The improvement is most pronounced for large object in-

stances (25%, COMP-FULL vs. BASELINE-AUG-REG), de-

creases for medium (9%, BASELINE-REG), and almost van-

ishes for small objects (3%, BASELINE-REG). This ordering

is in line with the intuition that the compositional objective

encourages activations to be context invariant: as context

becomes more important with decreasing object size, the

advantage of context invariance decreases.

Fig. 4d explicitly examines the role of context, by com-

paring the performance on the in- (Fig. 4d (bottom)) and

out-of-context (Fig. 4d (top)) test sets defined in Sect. 4.1
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(a) MS-COCO-sub test performance (AP) per object category (corresponding to the last

epoch for COMP-FULL / best case performance for baselines reported in Fig. 3g).
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(b) Performance (mAP) for

fractions of training data.
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(c) MS-COCO-sub performance for objects

of different sizes (small, medium, large).

(d) MS-COCO-sub performance for objects in-context (bottom) and

out-of-context (top). See Sect. 4.4 for details.

Figure 4: MS-COCO-sub performance per object class (a), training set size (b), object instance size (c), and context (d).

(Fig. 5 (b) gives examples). Indeed, COMP-FULL improves

performance over the baselines in all cases: COMP-FULL

outperforms BASELINE-AUG-REG by 27.1% (in-context)

and BASELINE-AUG-REG by 11.2% (out-of-context). The

relative performance ratio (Tab. 1) between in- and out-of-

context objects is slightly more favorable for COMP-FULL

(0.39) than for BASELINE-AUG-REG (0.37).

Localization accuracy. Fig. 5 and 6 give qualitative re-

sults that highlight two distinct properties of our compo-

sitional objective COMP-FULL. First, it leads to bottom-

up network activations that are better localized than for

BASELINE-AUG, as indicated visually by the differences in

masked and unmasked activations (Fig. 5). Second, it also

leads to better localization when backtracing classification

decisions to the input images, which we implement by ap-

plying guided backpropagation [39] (Fig. 6). Fig. 3h quanti-

fies this on all test images of MS-COCO-sub, by computing

the percentage of “mass” of the back-trace heat-map inside

the ground-truth mask of the back-traced category, averaged

over categories. COMP-FULL outperforms both BASELINE-

AUG and VGG [37] by considerable margins.

Discussion. To our knowledge, only [28] reports classifi-

cation (not detection) performance on MS-COCO, achiev-

ing 62.8% mAP on the full set of 80 classes using fixed

lower-layer weights from ImageNet pre-training [20] and an

elaborate multi-scale, sliding-window network architecture.

In comparison, our COMP-FULL achieves 34% on 20 classes

(Fig. 4c, ’all’ column) when trained entirely from scratch

using only a small fraction of the full data (6% with area

above 7, 000) and a single, fixed scale window (the original

image), outperforming the best baseline BASELINE-REG by

17%. We believe this to be an encouraging result that is

complementary to the gains reported by [28] and leave the

combination of both as a promising avenue for future work.

5. Conclusion

We have introduced an enhanced CNN architecture and

novel loss function based on the inductive bias of composi-

tionality. It follows the intuition that the representation of

part of an image should be similar to the corresponding part

of the representation of that image and is implemented as

additional layers and connections of an existing CNN.

Our experiments indicate that the compositionality bias

aids in the learning of representations that generalize better

when training networks from scratch, and improves the per-

formance in object recognition tasks on both synthetic and

real-world data. Obvious next steps include the application

to tasks that explicitly require spatial localization, such as

image parsing, and combination with pre-trained networks.

Acknowledgments. We thank John Bauer and Robert

Hafner for support with experiment infrastructure.
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3D-Multi (bus, gun)

MNIST-Multi (8, 5, 3)

MS-COCO-sub (horse)

(a) masked unmasked act. masked unmasked act. shift act. masked unmasked act. shift

input input BASELINE-AUG COMP-FULL (ours)
in-context out-of-cont.

(b)

Figure 5: Shifts in conv-12 activations on test images (a). When the object context contains other objects in addition to the isolated object in the first

column, we apply the mask for these additional objects to the visualizations of the activation shifts. Example images in-context and out-of-context (b).

input image

COMP-FULL

(ours)

BASELINE-AUG

VGG [37]

bench train car motorcycle cat horse airplane car motorcycle

input image

COMP-FULL

(ours)

BASELINE-AUG

VGG [37]

bus elephant truck stop sign stop sign horse horse bus motorcycle

Figure 6: Backtracing classification activations (MS-COCO categories, denoted by column labels) to test images using guided backpropagation [39].

Please note the ability of COMP-FULL to backtrace to different object categories in one image, whereas BASELINE-AUG and VGG produce very similar

outputs (rightmost 2 columns). Since VGG was trained on ImageNet categories, which are different from MS-COCO categories, we either backtrace from

a semantically close category (identified manually) or VGG’s top classification decision when a semantically close category cannot be found.
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