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Abstract

Convolutional neural networks (CNNs) have shown
great success in computer vision, approaching human-level
performance when trained for specific tasks via application-
specific loss functions. In this paper, we propose a method
for augmenting and training CNNs so that their learned
features are compositional. It encourages networks to
form representations that disentangle objects from their sur-
roundings and from each other, thereby promoting better
generalization. Our method is agnostic to the specific de-
tails of the underlying CNN to which it is applied and can in
principle be used with any CNN. As we show in our exper-
iments, the learned representations lead to feature activa-
tions that are more localized and improve performance over
non-compositional baselines in object recognition tasks.

1. Introduction

Convolutional neural networks (CNNs) have shown re-
markable performance in many computer vision tasks [21,

, 42, 37, 35] including image classification [20], object
class detection [41, 12], instance segmentation [13], image
captioning [ 18, 44], and scene understanding [6]. Their suc-
cess is typically attributed to two factors; they have large
enough capacity to make effective use of the ever-increasing
amount of image training data available today, while at the
same time managing the number of free parameters through
the use of inductive biases from neuroscience. Specifically,
the interleaving of locally connected filter and pooling lay-
ers [15] bears similarity to the visual cortex’s interleaving
of simple cells, which have localized receptive fields, and
complex cells, which have wider receptive fields and greater
local invariance.

Recently, researchers have investigated more inductive
biases from neuroscience to improve CNN architectures.
Examples include learning representations from video se-
quences [2, 10, 17], encouraging the utilization of depth in-
formation [14], and using physical interaction with the en-
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Figure 1: For a standard CNN (VGG, [37]), the presence
of a nearby object (cup) greatly affects the activations in
the region of an object of interest (airplane). In contrast, a
CNN trained with our method demonstrates better compo-
sitionality in its feature representations — the activations in
the airplane region represent primarily the airplane and are
therefore less affected by the presence of the cup.

vironment [3 1] to bias representations.

In this paper, we follow a similar philosophy, but focus
our attention on the inductive bias of compositionality: the
notion that the representation of the whole should be com-
posed of the representation of its parts (we give a precise
formal definition of this notion in Sect. 3). Intuitively, en-
couraging this property during training results in represen-
tations that are more robust to re-combination (e.g., when
seeing a familiar object in a novel context) and less prone
to focusing on discriminative but irrelevant background fea-
tures. It is also in line with findings from neuroscience that
suggest separate processing of figure and ground regions in
the visual cortex [16, 32]. Note that a typical CNN does
not exhibit this property (Fig. 1 visualizes the difference in
activations between a CNN trained without (VGG [37]) and
with our compositionality objective').

In contrast to previous work that designs compositional

IFig. 1 shows the activation difference in the airplane region between
the current frame and a frame where the airplane is shown in isolation.
Activations are taken from intermediate conv. layers with spatial resolution
28 x 28. We marginalize over feature channels to create visualization.
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representations from the ground up [34, 45, 43, 47], our ap-
proach does not mandate any particular network architec-
ture or parameterization — instead, it comes in the form of
a modified training objective that can be applied to feach
any standard CNN about compositionality in a soft manner.
While our current implementation requires object masks for
training, it allows apples to apples comparison of networks
trained with or without the compositionality objective. As
our experiments show (Sect. 4), the objective consistently
improves performance over non-compositional baselines.
This paper makes the following specific contributions:
First, we introduce a novel notion of compositionality as
an inductive bias for training arbitrary convolutional neu-
ral networks (CNNGs). It captures the intuition that the rep-
resentation of a partial image should be equal to the par-
tial representation of that image. Second, we implement
that notion in the form of a modified CNN training objec-
tive, which we show to be straightforward to optimize yet
effective in learning compositional representations. Third,
we give an extensive experimental evaluation on both syn-
thetic and real-world images that highlights the efficacy of
our approach for object recognition tasks and demonstrates
the contributions of different components of our objective.

2. Related work

Our work is related mostly to three major lines of re-
search: compositional models, inductive biases, and the role
of context in visual recognition.

Compositional models. Compositional models have ex-
isted since the early days of computer vision [24] and have
appeared mainly in two different varieties. The first flavor
focuses on the creation of hierarchical feature representa-
tions by means of statistical modeling [8, 27, 48, 47], re-
usable deformable parts [49, 29], or compositional graph
structures [36, 45]. The second flavor designs neural
network-based representations in the form of recursive neu-
ral networks [38], imposing hierarchical priors on Deep
Boltzman Machines [34], or introducing parametric net-
work units that are themselves compositional [43].

The basis for our work is a notion of compositionality
(Sect. 3.1) that is distinct from all these approaches in that it
does not have to be baked into the design of a model but can
be applied as a soft constraint to a CNN. Recent work [28]
constrains CNN activations to lie within object masks in the
context of weakly-supervised localization. Our composi-
tional objective (Sect. 3.3) goes beyond this formulation:
it consists of multiple components that not only suppress
background activations, but also explicitly encourage object
activations to be invariant to both background clutter and
adjacent objects. Our experiments verify that each compo-
nent is important for performance (Sect. 4.3).

Inductive biases. A recent line of work on neural network
architectures takes inspiration from human learning in its
design of training regimen. It has demonstrated improved
performance when training from video sequences instead of
still images [2, 17], assuming an object-centric view [10],
integrating multimodal sensory side information [14], or
even being in control of movement [31]. The benefit arises
from providing helpful inductive biases to the learner that
regularize the learned representations. The inductive bias
of compositionality presented in this work (Sect. 3.1) fol-
lows a similar motivation but is largely complementary to
the biases explored by these prior approaches.

The role of context in visual recognition. It is well
known that context plays a major role in visual recognition,
both in human and artificial vision systems [9, 26, 5]. Our
environment tends to be highly regular, and making use of
regularities in the occurrence of different object and scene
classes has been shown to be beneficial for recognizing fa-
miliar objects [25, 4], objects in unusual circumstances [3],
and recurring spatial configurations [7, 30, 11, 46]. At the
extreme, object classes can be successfully recognized even
in the absence of local information by relying exclusively
on scene context [33].

While CNN-based representations typically support the
use of context implicitly (by including pixels indiscrimi-
nately in a receptive field), they lack the ability to explic-
itly address context and non-context information. The no-
tion of compositionality proposed in this work (Sect. 3.1)
is a step towards making CNN-based representations more
amenable to explicit context modeling through an external
mechanism (by cleanly separating the representation of ob-
jects from their context). The experiments in this paper
(Sect. 4) do not further elaborate on this aspect, but indicate
that the compositional objective (i) elicits a performance
improvement, (ii) the improvement is similar for objects ap-
pearing in and out-of-context, and (iii) the improvement is
least pronounced for very small object instances.

3. Teaching compositionality to CNNs

This section describes our approach to encouraging
CNNss to learn compositional representations. To that end,
we proceed from introducing our notion of compositional-
ity (Sect. 3.1) to describing network architecture (Sect. 3.2)
and training procedure (Sect. 3.3) to giving technical details
of our implementation (Sect. 3.4).

3.1. Compositionality notion

The goal of our notion of compositionality is to encour-
age the representation of a part of an image to be similar to
the corresponding part of the representation of that image.
More formally, let X be an image, m a binary mask that
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Figure 2: Architecture and loss function (£) computation
for encouraging compositionality when multiple objects are
present in a training image (see Sect. 3.2 and Sect. 3.3). The
original CNN (red) is enhanced by K additional masked
CNNs (blue), all of them sharing weights. ¢ represent
feature maps, L loss functions, and vy is a hyper-parameter.
Masks my, (solid) are applied to feature map outputs, while
masks m). (dotted) are only applied for computing losses.
For simplicity, we depict layers and masks with equal sizes.

identifies part of X (i.e, m is a tensor of the same shape as
X with 1s indicating part affiliation), ¢ a mapping from an
image onto an arbitrary feature layer of a CNN, and p the
projection operator onto the feature map represented by ¢.
We define ¢ to be compositional iff the following holds:

¢(m - X) = p(m) - 9(X). (D)

Here, the - operator represents element-wise multiplication.
The projection operator, p, down-samples the object mask
to the size of the output of ¢. E.g., if ¢(X) is the activations
of a convolutional layer with size (h, w, c) (the first two di-
mensions are spatial and c is the number of feature chan-
nels), p will down-sample the object mask to size (h,w)
and then stack c copies of the down-sized object mask on
top of each other to produce a mask of size (h, w, c).

Note that in practice we do not require Eq. (1) to hold
for all possible masks m, as this would constrain ¢ to be
the identity map. Instead, we apply the inductive bias se-
lectively to image parts that we would like to be treated as
a unit — obvious choices for these selected parts include ob-
jects or object parts. In the following, we use object masks
(as provided by standard data sets such as MS-COCO [23])
as the basis for compositionality.

3.2. Enhanced network architecture

To encourage a network to satisfy the compositionality
property of Eq. (1) (Sect. 3.1), we devise an enhanced ar-
chitecture and corresponding objective function. Note that
this enhancement is non-destructive in nature and leaves the

original network completely intact; it merely makes virtual
copies of the original network, Fig. 2.

When there is only one object in the input image, teach-
ing compositionality takes the form of ensuring that the ac-
tivations within the region of that object remain invariant
regardless of what background the object appears on. With
multiple objects, we also explicitly ensure that the activa-
tions of each object remain the same as if that object were
shown in isolation (i.e., activations should be invariant to
the other objects within the respective object mask).

To implement this notion, we create K + 1 weight-
sharing CNNs where K is the number of objects shown in
the scene. K of these CNNs take as input a different object
instance, each shown against a blank background (we ap-
ply the mask for the kth object instance to the input image
before giving the input image to the kth CNN). We refer
to these K CNNs as “masked CNNs,” and we denote the
mapping onto layer n of the kth masked CNN as ¢,,, .

Each of these & masked CNNs have their respective ob-
ject mask reapplied to their activations at multiple layers
in the hierarchy (see Sect. 3.4), zeroing out activations out-
side of the object region. These masked activations are then
passed on to higher layers (which might also re-apply the
mask again in the same way). This constrains the masked
CNN s to only use activations within the object mask region
when classifying the input image. The final (K + 1¢h) CNN
receives as input the original image with no masks applied,
and we refer to it subsequently as the “unmasked CNN”.
We denote the mapping onto layer n of this CNN as ¢, .
We denote the total number of layers as V.

3.3. Training procedure

We train the architecture of Sect. 3.2 for composition-
ality by introducing an objective function that combines
an application-specific discriminative CNN loss with addi-
tional terms that establish dependencies between the differ-
ent masked and unmasked CNNs.

Discriminative loss. To encourage correct discrimina-
tion, we add separate discriminative loss terms for both the
K masked and the one unmasked CNN, denoted L,,, and
L,, respectively. Their relative contributions are controlled
by the hyperparameter v € [0, 1], to yield

1
Ed:?(z'yLmk)-i-(l—fy)Lu. )
k

Compositional loss. To encourage compositionality, we
add K x N terms that establish dependencies between the
responses of corresponding layers of the masked and un-
masked CNNS, respectively. Specifically, on all layers at
which an object mask is applied, we take the [, difference

5060



between the activations of the masked CNN and the activa-
tions of the unmasked CNN. We then multiply this differ-
ence by a layer specific penalty hyper-parameter (denoted
as \,,) and add this to our compositional loss:

1
k n

The final objective can then be stated simply as £ = L4 +
L.. Because the unmasked CNN sees all objects and will
naturally have different activations from the kth masked
CNN due to the presence of the objects other than the kth
object, we apply a mask to the unmasked CNN’s activa-
tions before computing the penalty term. We denote this
mask as mﬁc. However, we do not pass these masked acti-
vations (¢, ,m}) up to higher layers as was done for the
masked CNNs; we only use them to compute the composi-
tional penalty term on layer n.

Design choices. The above objective leaves degrees of
freedom w.r.t. choosing the precise nature of the masks mj,
and the corresponding choices do have an impact on perfor-
mance (Sect. 4.3). First, to penalize background activations
outside of the regions of objects of interest, we can make
m). be a tensor of 1s but with the locations of all objects
other than the kth object filled with Os. Second, we can
penalize any shifts in activations within the region of the
kth object without discouraging background activations by
making m}, equal to my,.

3.4. Implementation details

Our experiments (Sect. 4) use the following network ar-
chitectures: MS-COCO-sub (Sect. 4.4): conv1-conv3 (224 x 224 x 64),
pooll, conv4-conv6 (128 x 128 x 128), pool2, conv7-conv9 (64 x 64 x
256), pool3, conv10-conv12 (32 x 32 x 512), pool4, fcl (131072 x 20).
3D-Single (Sect. 4.3): conv1-conv3 (128 x 128 x 64), pooll, conv4-conv6
(64 x 64 x 128), pool2, conv7-conv9 (32 x 32 X 256), pool3, conv10-
convl2 (16 x 16 x 512), pool4, fcl (32768 x 14). MNIST (Sect. 4.3):
convl-conv3 (120 x 120 x 32), pool1, conv3-conv4 (60 x 60 x 64), pool2,
conv5-conv6 (30 X 30 x 128), pool3, fc1 (28800 x 10).

The discriminative loss functions L,,, and L,, are instan-
tiated as softmax-cross entropy or element-wise sigmoid-
cross entropy for joint or independent class prediction, re-
spectively. Since L. is of a standard form, we can optimize
it like any CNN via SGD (specifically, using the ADAM
optimizer [19] and Tensorflow [1]).

Empirically, we find that best performance is achieved
when applying L. to the topmost convolutional and pooling
layers of the network (i.e., A, is zero on most early layers).
We believe this to be an artifact of the CNN needing a cer-
tain minimum number of layers and corresponding repre-
sentational power to successfully discriminate between rel-
evant and irrelevant (background) pixels.

In practice, we create only two weight-sharing CNNs
(independent of the number of object training instances):
one which sees 1 randomly selected out of K objects in the
input image, and one which sees the entire scene. Empir-
ically, this model is only about 50% slower to train than a
standard CNN. The parameter space is just that of a single
CNN due to weight sharing. ~ is fixed to .5.

4. Experiments

In this section, we give a detailed experimental evalua-
tion of our approach for teaching compositionality to CNNSs,
highlighting its ability to improve performance over stan-
dard CNN training on both synthetic (Sect. 4.3) and real
images (MS-COCO [23], Sect. 4.4). Our emphasis lies on
providing an in-depth analysis of the contributions of dif-
ferent components of our compositional objective as well
as quantifying the impact of object context on performance.

4.1. Datasets and metrics

Rendered 3D objects. We perform diagnostic experi-
ments on two novel datasets of rendered 3D objects. We
use rendered datasets so we have maximum control over the
statistics of our image data in terms of depicted objects and
context (notably, segmentation masks come for free in this
setting). Specifically, the datasets are based on 12 3D object
classes (e.g., car, bus, boat, or airplane), with ~ 20 object
instances per category, each rendered from ~ 50 different
viewpoints (uniform sampling of the upper viewing half-
sphere) in front of 20 different real-image backgrounds.
The first dataset, termed 3D-Single, has 1,600 images
depicting single objects in front of random backgrounds.
The second dataset, termed 3D-Multi, has 800 images of
multiple objects with varying degrees of occlusion (see
Fig. 1). For both datasets, we distinguish between a
category-level recognition setting and easier variants (3D-
Single-Inst, 3D-Multi-Inst) that allow the set of 3D object
instances seen during training and test to be non-empty
(whereas the set of views of the same instance has to be
empty). In both cases, we ensure that the backgrounds seen
in training (80% of the images) and test (20%) are distinct.

MNIST. We create two variants of the popular MNIST
dataset [22], in analogy to the two aforementioned 3D ob-
ject datasets. The first variant, MNIST-Single, depicts indi-
vidual MNIST characters in front of randomized, cluttered
backgrounds (we use the standard train/test split). The sec-
ond variant, MNIST-Multi, depicts multiple characters with
varying degrees of overlap, against these backgrounds.

MS-COCO-sub. MS-COCO [23] constitutes a move
away from “iconic” views of objects towards a dataset in
which objects frequently occur in their respective natural
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contexts. For most experiments, we focus on subsets of MS-
COCO training and validation (for testing) images that con-
tain at least one of 20 diverse object classes® (see Fig. 4a)
and further restrict the set of images to ones with sufficiently
large object instances of at least 7,000 pixels. This results
in 22,476 training and 12, 245 test images.

In addition, we quantify the impact of context on classi-
fication performance by defining two further test sets. The
first test set is the full validation set of MS-COCO. Here,
we measure classification performance on object instances
of different sizes (small, medium, large) as defined for the
MS-COCO detection challenge®. In order to make the per-
formance comparable, we stratify the number of positive
and negative examples by randomly sampling 20 negatives
for each positive example.

The second test set examines object instances in and out
of context (see Fig. 5 (b)). We start with all test images from
MS-COCO-sub. For each object instance o of a category ¢
occurring in that set, we create two positive examples, one
by cropping o and placing it in front of a new random test
image that does not have c in it (this will be the out-of-
context set), and one by leaving o in its original context (the
in-context set). For both, we add as negative examples all
images where c does not occur.

Metrics. All experiments consider image-level classifica-
tion tasks, not object class detection or localization. For di-
agnostic experiments (Sect. 4.3), we evaluate performance
as the average fraction of correctly predicted object classes
among the top-k scoring network predictions, where k is
the number of objects in a given image. For MS-COCO-
sub (Sect. 4.4), we treat object classes separately and re-
port (mean) average precision (AP) over independent binary
classification problems. In all cases, we monitor perfor-
mance on a held-out test set over different epochs as train-
ing progresses, and report both the resulting curves and best
achieved values per method (Fig. 3, Fig 4).

4.2. Methods

In this section, we evaluate the following baselines and
variations on our compositional training technique (see
Sect. 3.3). For the sake of clean comparison, we always
train all networks from scratch (i.e., we do not use pre-
training of any form).

COMP-FULL. Our main architecture, where mﬁc is chosen
to be equal to a block of all 1s but with the locations of ob-
jects other than the k#h object set to Os.

COMP-OBJ-ONLY. Like COMP-FULL, but with m) equal
to my, (this penalizes any shifts in activations within the ob-
ject region but does not discourage background activations).
COMP-NO-MASK. Like COMP-FULL, except that the

2The first 20 classes in the original MS-COCO ordering w/o person.
3http://mscoco.orq/dataset/#detectionsfeval

masked CNNs do not apply m, to any of their activations.
BASELINE. Architecture with the same layer sizes as
COMP-FULL but without compositional objective terms —
a “standard” CNN.

BASELINE-AUG. Like BASELINE, except for each batch
we make half of the images be a single object shown in
isolation against a black background and the other half be
the raw images of the same objects in the same locations
against cluttered background. This method has access to
the same information as COMP-FULL (it knows about the
object mask), but without any compositional objective.
BASELINE-REG. Like BASELINE, but with dropout [40]
and [5-regularization.

BASELINE-AUG-REG. Like BASELINE-AUG, but with
dropout and [-regularization.

4.3. Diagnostic experiments on synthetic data

We commence by comparing the performance of differ-
ent variants of our compositional objective and the corre-
sponding baselines (Sect. 4.2) in a diagnostic setting on
synthetic data. In order to assess both best case perfor-
mance and convergence behavior, we plot test performance
vs. training epochs in Fig. 3a through 3f. The respective
best performance per curve is given in parentheses in plot
legends. Fig. 5 and 6 give qualitative results.

Rendered 3D objects. In Fig. 3, we observe that all vari-
ants of compositional CNNs (blue curves) perform consis-
tently better than the baselines (red curves), both per epoch
and in terms of best case performance.

Our full model, COMP-FULL, performs overall best
(blue-solid). It outperforms the best baseline by between
17.1% (3D-Multi, Fig. 3d) and 35.2% (3D-Single-Inst,
Fig. 3a). Performance drops for COMP-OBJ-ONLY (blue-
dashed) by 14.7% (3D-Single-Inst, Fig. 3a), 7.3% (3D-
Single, Fig. 3b), 4.4% (3D-Multi-Inst, Fig. 3c), and 2.9%
(3D-Multi, Fig. 3d), respectively. COMP-NO-MASK (blue-
dotted) performs worst among our models, but still outper-
forms the best baseline by 0.3% (3D-Single-Inst, Fig. 3a),
6.8% (3D-Single, Fig. 3b), 26.6% (3D-Multi-Inst, Fig. 3c),
and 17.0% (3D-Multi, Fig. 3d), respectively.

As expected, the baseline benefits from observing addi-
tional masked training data mostly for images with multi-
ple objects: BASELINE (red-dashed) and BASELINE-AUG
(red-solid) perform comparably on 3D-Single-Inst and 3D-
Single, but BASELINE-AUG improves over BASELINE on
3D-Multi-Inst (by 6.2%) and 3D-Multi (by 7.8%). In terms
of convergence, the compositional CNNs (blue curves) tend
to stabilize later than the baselines (red curves).

MNIST. In Fig. 3e and 3f, the absolute performance
differences between our compositional CNNs and the cor-
responding baselines are less clear cut, but still highlight
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Figure 3: Test performance on rendered 3D objects (a-d), MNIST (e-f), and MS-COCO-sub (g), as training progresses over
epochs (best performance per curve given in parentheses; see Sect. 4.3 and 4.4). Localization accuracy (h) (Sect. 4.4).

the importance of the compositional objective when object
masks are used (COMP-FULL outperforms BASELINE-AUG
by 2.0% on MNIST-Single and by 2.6% on MNIST-Multi).
Without reapplying the masks to the activations, perfor-
mance decreases, but the trend remains (COMP-NO-MASK
is better than BASELINE by 20.4% and 4.1%, respectively).

4.4. Experiments on real-world data (MS-COCO)

We proceed to evaluating our best performing method
COMP-FULL on the real-world images of MS-COCO
(Sect. 4.1). We compare to the same baselines as before,
plus two baselines with dropout [40] and I5-regularization
(see Sect. 4.2). Specifically, we report performance for
COMP-FULL at convergence (last epoch, see Fig. 3g for con-
vergence behavior); for all baselines we consider the best
performing model over all epochs. Fig. 4 gives details w.r.t.
individual object categories (4a), amount of training data
(4b), size of object instances (4c), and context (4d).

MS-COCO-sub. In Fig. 3g, COMP-FULL (blue-solid)
outperforms the best baseline BASELINE-AUG-REG
(orange-solid) by a significant margin of 25.5%, con-
firming the benefit of the compositionality objective in a
real-world setting. The added regularization improves the
performance of the baselines only moderately, by 4.6%
(BASELINE-AUG) and 4.1% (BASELINE), respectively. In
Fig. 4a, we see that COMP-FULL performs better than the
baselines for every single category, improving performance
by up to 32% (for stop sign). Fig. 4b gives results for
varying amounts of training data (5, 10, 20, 50, 75, 100%).

method [ in-context | out-of-context | ratio
COMP-FULL 0.660 0.256 0.39
BASELINE-AUG 0.356 0.131 0.37
BASELINE 0.334 0.116 0.35
BASELINE-AUG-REG 0.389 0.144 0.37
BASELINE-REG 0.374 0.128 0.34

Table 1: Relative performance ratio on MS-COCO-sub.

COMP-FULL (blue-solid) clearly outperforms the baselines
(orange and red curves) for all plotted amounts, with an
increasing performance gap as training data increases.

Object sizes and context. Fig. 4c gives the performance
when testing the respective models trained on the training
portion of MS-COCO-sub on all images of MS-COCO and
evaluating them on object instances of different sizes (small,
medium, large, all; see Sect. 4.1).

We observe that the compositional objective improves
performance over the baselines consistently for all sizes.
The improvement is most pronounced for large object in-
stances (25%, COMP-FULL vs. BASELINE-AUG-REG), de-
creases for medium (9%, BASELINE-REG), and almost van-
ishes for small objects (3%, BASELINE-REG). This ordering
is in line with the intuition that the compositional objective
encourages activations to be context invariant: as context
becomes more important with decreasing object size, the
advantage of context invariance decreases.

Fig. 4d explicitly examines the role of context, by com-
paring the performance on the in- (Fig. 4d (bottom)) and
out-of-context (Fig. 4d (top)) test sets defined in Sect. 4.1
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(c) MS-COCO-sub performance for objects
of different sizes (small, medium, large).

(d) MS-COCO-sub performance for objects in-context (bottom) and
out-of-context (top). See Sect. 4.4 for details.

Figure 4: MS-COCO-sub performance per object class (a), training set size (b), object instance size (c), and context (d).

(Fig. 5 (b) gives examples). Indeed, COMP-FULL improves
performance over the baselines in all cases: COMP-FULL
outperforms BASELINE-AUG-REG by 27.1% (in-context)
and BASELINE-AUG-REG by 11.2% (out-of-context). The
relative performance ratio (Tab. 1) between in- and out-of-
context objects is slightly more favorable for COMP-FULL
(0.39) than for BASELINE-AUG-REG (0.37).

Localization accuracy. Fig. 5 and 6 give qualitative re-
sults that highlight two distinct properties of our compo-
sitional objective COMP-FULL. First, it leads to bottom-
up network activations that are better localized than for
BASELINE-AUG, as indicated visually by the differences in
masked and unmasked activations (Fig. 5). Second, it also
leads to better localization when backtracing classification
decisions to the input images, which we implement by ap-
plying guided backpropagation [39] (Fig. 6). Fig. 3h quanti-
fies this on all test images of MS-COCO-sub, by computing
the percentage of “mass” of the back-trace heat-map inside
the ground-truth mask of the back-traced category, averaged
over categories. COMP-FULL outperforms both BASELINE-
AUG and VGG [37] by considerable margins.

Discussion. To our knowledge, only [28] reports classifi-
cation (not detection) performance on MS-COCO, achiev-
ing 62.8% mAP on the full set of 80 classes using fixed
lower-layer weights from ImageNet pre-training [20] and an
elaborate multi-scale, sliding-window network architecture.

In comparison, our COMP-FULL achieves 34% on 20 classes
(Fig. 4c, ’all’ column) when trained entirely from scratch
using only a small fraction of the full data (6% with area
above 7,000) and a single, fixed scale window (the original
image), outperforming the best baseline BASELINE-REG by
17%. We believe this to be an encouraging result that is
complementary to the gains reported by [28] and leave the
combination of both as a promising avenue for future work.

5. Conclusion

We have introduced an enhanced CNN architecture and
novel loss function based on the inductive bias of composi-
tionality. It follows the intuition that the representation of
part of an image should be similar to the corresponding part
of the representation of that image and is implemented as
additional layers and connections of an existing CNN.

Our experiments indicate that the compositionality bias
aids in the learning of representations that generalize better
when training networks from scratch, and improves the per-
formance in object recognition tasks on both synthetic and
real-world data. Obvious next steps include the application
to tasks that explicitly require spatial localization, such as
image parsing, and combination with pre-trained networks.

Acknowledgments. We thank John Bauer and Robert
Hafner for support with experiment infrastructure.
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Figure 5: Shifts in conv-12 activations on test images (a). When the object context contains other objects in addition to the isolated object in the first

column, we apply the mask for these additional objects to the visualizations of the activation shifts. Example images in-context and out-of-context (b).
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Figure 6: Backtracing classification activations (MS-COCO categories, denoted by column labels) to test images using guided backpropagation [39].
Please note the ability of COMP-FULL to backtrace to different object categories in one image, whereas BASELINE-AUG and VGG produce very similar
outputs (rightmost 2 columns). Since VGG was trained on ImageNet categories, which are different from MS-COCO categories, we either backtrace from

a semantically close category (identified manually) or VGG’s top classification decision when a semantically close category cannot be found.
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