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Abstract

Motion blur from camera shake is a major problem in
videos captured by hand-held devices. Unlike single-image
deblurring, video-based approaches can take advantage of
the abundant information that exists across neighboring
frames. As a result the best performing methods rely on
the alignment of nearby frames. However, aligning images
is a computationally expensive and fragile procedure, and
methods that aggregate information must therefore be able
to identify which regions have been accurately aligned and
which have not, a task that requires high level scene under-
standing. In this work, we introduce a deep learning so-
lution to video deblurring, where a CNN is trained end-to-
end to learn how to accumulate information across frames.
To train this network, we collected a dataset of real videos
recorded with a high frame rate camera, which we use to
generate synthetic motion blur for supervision. We show
that the features learned from this dataset extend to deblur-
ring motion blur that arises due to camera shake in a wide
range of videos, and compare the quality of results to a num-
ber of other baselines1.

1. Introduction

Hand-held video capture devices are now commonplace.
As a result, video stabilization has become an essential step
in video capture pipelines, often performed automatically
at capture time (e.g., iPhone, Google Pixel), or as a ser-
vice on sharing platforms (e.g., Youtube, Facebook). While
stabilization techniques have improved dramatically, the re-
maining motion blur is a major problem with all stabiliza-
tion techniques. This is because the blur becomes obvious
when there is no motion to accompany it, yielding highly
visible “jumping” artifacts. In the end, the remaining cam-
era shake motion blur limits the amount of stabilization that
can be applied before these artifacts become too apparent.

1Datasets, pretrained models and source code are available at
https://www.cs.ubc.ca/labs/imager/tr/2017/DeepVideoDeblurring
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Figure 1: Blur in videos can be signi�cantly attenuated by
learning how to aggregate information from nearby frames.
Top: crops of consecutive frames from a blurry video; Bot-
tom: outputs from the proposed data-driven approach, in
this case using simple homography alignment.

The most successful video deblurring approaches lever-
age information from neighboring frames to sharpen blurry
ones, taking advantage of the fact that most hand-shake mo-
tion blur is both short and temporally uncorrelated. By bor-
rowing “sharp” pixels from nearby frames, it is possible to
reconstruct a high quality output. Previous work has shown
signi�cant improvement over traditional deconvolution-
based deblurring approaches, via patch-based synthesis that
relies on either lucky imaging [4] or weighted Fourier ag-
gregation [6].

One of the main challenges associated with aggregating
information across multiple video frames is that the differ-
ently blurred frames must be aligned. This can either be
done, for example, by nearest neighbor patch lookup [4],
or optical �ow [6]. However, warping-based alignment is
not robust around disocclusions and areas with low texture,
and often yields warping artifacts. In addition to the align-
ment computation cost, methods that rely on warping have
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