
A Dataset for Benchmarking Image-based Localization

Xun Sun∗, Yuanfan Xie∗, Pei Luo, Liang Wang

Baidu Autonomous Driving Business Unit†

{sunxun,xieyuanfan,luopei,wangliang18}@baidu.com

Abstract

A novel dataset for benchmarking image-based local-

ization is presented. With increasing research interests in

visual place recognition and localization, several datasets

have been published in the past few years. One of the ev-

ident limitations of existing datasets is that precise ground

truth camera poses of query images are not available in a

meaningful 3D metric system. This is in part due to the un-

derlying 3D models of these datasets are reconstructed from

Structure from Motion methods. So far little attention has

been paid to metric evaluations of localization accuracy. In

this paper we address the problem of whether state-of-the-

art visual localization techniques can be applied to tasks

with demanding accuracy requirements. We acquired train-

ing data for a large indoor environment with cameras and a

LiDAR scanner. In addition, we collected over 2000 query

images with cell phone cameras. Using LiDAR point clouds

as a reference, we employed a semi-automatic approach to

estimate the 6 degrees of freedom camera poses precisely

in the world coordinate system. The proposed dataset en-

ables us to quantitatively assess the performance of various

algorithms using a fair and intuitive metric.

1. Introduction

Image-based Localization (IBL) methods estimate the 6

degrees of freedom (6DOF) pose of a camera with respect to

a 3D representation of the scene. The input of an IBL algo-

rithm is typically one or multiple images and the visual in-

formation of which is used to recover the camera pose. This

technique has gained attention recently from both academia

and industry since it can potentially enable many novel

applications, such as location recognition [31, 16], navi-

gation [37], autonomous driving, localization-based aug-

mented reality, and various location-based services [17].

Typical IBL algorithms assume that there is an exist-

ing 3D model produced by Structure from Motion (SfM)

∗Indicates equal contributions and joint first authors.
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(a) Captured point cloud in bird-eye view.

(b) Close-up of the camera poses for database images.

(c) Groundtruth camera poses for the query images.

Figure 1. A glance of the captured point cloud and cameras in our

dataset. This figure is best viewed in color.

or Simultaneous Localization and Mapping (SLAM) [11,

29, 30, 31]. Usually, the 3D model consists of sparse 3D

point clouds as well as their associated 2D feature descrip-

tors. The IBL problem can then be formulated as a 2D-

3D matching problem, i.e., with image features extracted
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from query images, establishing 2D-3D correspondences

such that the camera pose can be recovered via n-point-pose

solvers [10, 15].

Much of the progress over the past few years has been

driven by the availability of standard test images and bench-

marks [6, 16, 11, 31, 32, 14, 39]. Existing IBL datasets, al-

though seminal, are limited in the accuracy of ground truth

camera pose and their evaluation methodologies. As sum-

marized in Table 1, for the 6DOF localization tasks, the

poses of query images rely heavily on SfM. The camera

pose determined by SfM can be error-prone when the scene

contains insufficient textures or repetitive structures. In ad-

dition, lack of absolute scale of the reconstructed 3D model

makes it difficult to evaluate the recovered pose in a mean-

ingful metric coordinate system. For these reasons, most

SfM-based datasets use a heuristic “PnP-inlier-count” met-

ric to assess localization accuracy [28].

In order to allow for objective comparisons between var-

ious IBL methods, new datasets are urgently needed. This

paper addresses existing limitations of IBL datasets by in-

troducing a novel benchmark dataset. We choose the ground

level of a shopping mall which is over 5000 square meters

with many challenging features for IBL such as reflective

materials, transparent windows, moving people and repeti-

tive structures etc. Different from previous datasets which

commonly utilize internet photos and SfM-based 3D recon-

struction, a high precision LiDAR scanner (millimeter ac-

curacy) is used to model the environment. We capture mul-

tiple images using DSLR cameras as training set, and col-

lect over 2000 cell phone photos taken by different users as

query images. All training images are semi-automatically

registered to the coordinate system defined by the LiDAR

scanner. Our dataset provides accurate metric camera poses

which can enable a fair comparison of different algorithms.

The preliminary evaluation results reveal that high-quality

training data is important to localization accuracy. By us-

ing the LiDAR point clouds which are much denser than

SfM, the n-point-pose problem can be solved robustly with

a large number of 2D-3D matching candidates.

The second contribution of the paper is a comparative

study of representative IBL algorithms on our dataset. First

are image retrieval based methods using state-of-the-art vi-

sual features [3, 5, 18, 23] and geometry verification [26].

Secondly, we experiment with more advanced image re-

trieval techniques such as RootSIFT [1], Query Expansion

(AQE) [1, 8, 7], Feature Augmentation (SPAUG) [1], Se-

lective Voting [31], and database side augmentation using

virtual view synthesis. Thirdly, we test the direct matching

algorithm [30] and compare it against image retrieval based

methods. Lastly, we discuss some limitations and future

works. This quantitative study is unique in the IBL litera-

ture and can facilitate research of a broad community in the

field of visual place recognition and localization.

2. Related work

2.1. Previous datasets.

We briefly summarize the differences between the pro-

posed dataset with previous arts commonly used in visual

place recognition or localization in table 1). First of all, in-

stead of relying on SfM, we adopt a high-precision LiDAR

system to model the environment. The point cloud data in

our dataset is defined in a metric world coordinate frame,

and its precision as well as density is much higher than tra-

ditional SfM methods. Secondly, in contrast to our metric

evaluation, most existing datasets assess the camera pose

using the inlier number of RANSAC based n-point-pose

solver. In practice, however, it is known that this measure

is not reliable and can easily accept erroneous results [28].

Thirdly, another common problem for existing localization

datasets is that the training and query images are collected

from user-generated contents such as internet photos. The

number of training images in previous datasets in general

significantly exceeds the number of query images. The

training data in our dataset is generated in a more systematic

way. The cameras were mounted on a cart and the data col-

lection process was accomplished by professional people.

In contrast to using a large portion of the images to build

the scene model, we pay more attention on the variation of

query photos and provide more test data for researchers to

validate their methods. Our 2296 query images were taken

by amateurs with different cellphones. They sampled cap-

ture artifacts such as sensor noise, distortion, motion blur

and lighting variations etc. Compared to existing RGB-D

SLAM datasets [34], our query images are sparse and non

temporal continuous. Test images were captured at random

places with small field of view overlaps between training

images to provide spatial diversity and difficulty. Lastly, our

work also has significant differences in comparison with a

recently published dataset for indoor IBL [37], which re-

quires the 3D floor plan as input.

2.2. Image retrieval based approaches

Methods reviewed in this section take an intermediate

step, i.e., image retrieval, to return a short list of candi-

dates from database that are most relevant to the queries.

In general, retrieval based approaches scale well to large

datasets [11]. Since features in the database images are as-

sociated with 3D points, 2D-3D correspondences can be

established by matching the query image with returned

database images. Then camera pose can be estimated via

the PnP solvers. As a key step, image retrieval itself is

also a popular topic that has been extensively studied for

decades. From the content representation point of view, im-

age retrieval can be divided into two main categories: local

feature based methods [24, 25], and global feature based

methods such as Fisher vectors and vectors of locally ag-
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Figure 2. Illustration of our captured image data. Left: our database images where reflectance and repetitive structures are ubiquitous.

Right: some query images from cell phones. Best viewed in color.

Datasets Database # Query Ground truth Evaluation

SanFrancisco PCI [6] 1.06M training images 803 building ID recall@N

Pittsburgh [36] 254K training images 24K GPS location recall@N

Tokyo[35] 75984 training images 1125 GPS location recall@N

SanFrancisco SF−0 [6] 610K training images 803 points from building inliers on building

Dubrovnik [16] 1.9M 3D points, 6044 images 800 SfM pose inlier count

Rome [16] 4.1M 3D points, 15K images 1000 SfM pose inlier count

Vienna [11] 1.1M 3D points, 1324 images 266 SfM pose inlier count

Aachen [31] 1.5M 3D points, 3047 images 369 SfM pose inlier count

Proposed dataset 67M 3D points, 682 images 2296 LiDAR registered pose metric evaluation

Table 1. Comparison of representative state-of-the-art visual place recognition (first four rows) and IBL datasets.

gregated descriptors [13, 2]. For the scope of this paper, we

focus on local feature based methods because they naturally

enable the searching of 2D-3D matches.

Local feature based methods represent the visual content

with a bag-of-words (BoW) model, and then search for the

most relevant database images using visual vocabulary [21].

In this way, the similarity between two images can be mea-

sured by the inner product of BoW vectors. Scalable index-

ing can be realized with inverted-files and TF-IDF weight-

ing [21]. Due to the vocabulary quantization errors and lack

of spatial constraints, a geometric verification step is usu-

ally needed to further improve image ranking. In addition,

Philbin et al. built a flat k-means tree by fast approximate

nearest-neighbor search [26] which performs better than hi-

erarchical vocabulary tree [21]. Since then, progresses were

continuously made in feature representation [9, 6, 1], quan-

tization errors [12] and feature enhancement [8, 7, 1].

2.3. Direct matching based approaches

Methods fall into this category try to seek 2D-3D

matches by searching nearest neighbors among all 3D

points in a database (either from 2D features to 3D

points [29, 30], or from 3D to 2D [16, 17]). In order to

improve searching efficiency, various prioritized searching

schemes were proposed [16, 29, 30]. In [16], the visibility

cue was exploited to prioritize matching order and find seed

points. Sattler et al. proposed a vocabulary tree prioritized

scheme in which the number of features in a visual word

bin is used to prioritize the matching order and the search

process terminates once sufficient matches are found [29].

Recent works proposed to combine the 2D-to-3D and 3D-

to-2D searching [30, 17] to further improve the registration

rate.

3. Dataset construction

3.1. Sensors and data acquisition

In order to enable accurate camera registration, precise

3D modeling of the scene is essential. Traditional passive

3D reconstruction methods such as SfM are error-prone to

sensor noise and scene textures therefore we chose the Riegl

VZ−400 3D laser scanner to acquire the 3D point clouds for

our dataset. It has a sensing range up to 600 meters with a

measurement precision up to 5mm. For the training images,

we capture them using two DSLR cameras with a resolu-

tion of 2992 × 1000 with a fixed focal length. Specifically,

to account for large viewing angle variation, we captured

the training data with two types of motion: walking mode
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with the forward motion along the corridor, and wall mode

in which people move sideways facing the facade of stores.

For query images, we collected them using cell phones. In

total, 7 different cell phones were used including Apple

iPhone 4S, 5S, 6S and Samsung S4 etc. Different from the

training set collection process, when capturing query im-

ages, the volunteers were allowed to take photos at random

positions to simulate real user scenarios. At each position,

a group of 4 photos with different camera viewing angles

were taken to provide more comprehensive appearance in-

formation for localization algorithms. Moreover, in order to

include moderate appearance changes, query images were

taken at a different time compared to the training data.

3.2. Data pre­processing

Sensor calibration. In our setup, all intrinsic parameters,

i.e., focal lengths as well as principal points of each camera

were pre-calibrated using the method described in [40]. For

each training image, radial distortion was removed offline .

Point cloud pre-processing. To model a large scene that

is over 5000 square meters, we collected multiple LiDAR

scans by placing the scanner at 7 different positions and

aligning the data using ICP registration. In detail, we in-

crementally registered the per-frame point cloud in a frame-

to-model manner. Starting from two point clouds with the

largest overlap, a set of point-to-point correspondences be-

tween them were manually selected. A rigid transform is

coarsely initialized from selected correspondences and then

refined with generalized ICP algorithm [33]. These two

point clouds formed the initial 3D model and remaining

frames were iteratively registered to the global model in a

similar manner. Once all 7 point clouds were merged, we

filtered the final 3D model with a statistical filter [27] to

reduce scanning noises.

3.3. Ground truth

To help readers better understand the data generation

process, we in this section introduce the method we used

to register the cameras to the LiDAR 3D model. To achieve

this with moderate supervision, we developed a three-step

scheme that works in a semi-automatic manner. Firstly, by

labelling 2D-3D correspondences manually, we localized a

few “seed” cameras by evenly sampling the training images

along the camera trajectories. Secondly, we used a pro-

gressive algorithm to automatically estimate the poses of

remaining cameras. Lastly, all the estimated camera poses

were manually examined by human and unsatisfactory re-

sults were picked and later processed manually using the

2D-3D labeling tool.

To generate the ground truth poses for “seed” cameras,

we arranged several annotators to manually label the 2D-3D

correspondences and perform quality reviews. The “seed”

cameras are chosen in approximately constant steps along

Algorithm 1 Progressive Ground truth Pose Generation

Input:

Target image set U = {Ii}, reference image set K = {Ij},

initial known poses P = {Pj} for Ij ∈ K, matching table

M = {Mi,j} for image pair {Ii, Ij}
Output:

Enlarged known pose set P
′

with added images from U

1: Initialize a history table H for reliable 2D-3D matches.

2: while (stop 6= true & U 6= ∅) do

3: Sort U in descending order of a 2D-3D matches score.

4: if the 1
st Ii ∈ U is with more than 20 matches then

5: Solve Pi by a RANSAC based 3-point-pose solver

6: if the Pi are with an inlier number ≥ 12 then

7: Move Ii from U to K, add Pi to P

8: Update the history 2D-3D matches in H

9: else

10: Clean up records in {M,H}
11: Continue

12: end if

13: else

14: stop = true

15: end if

16: end while

17: return P
′

= P

the capturing path to ensure their even distribution, and their

percentage over all cameras is about 20%.

We move on to localize the remaining cameras. Concep-

tually, the idea is to recursively exploit the available 2D-

3D matches from already located images so far to guide the

localization of unknown cameras. Our progressive local-

ization algorithm is listed in Algorithm 1, and we briefly

summarize it as follows. Starting from a matching table

M = {Mi,j} initialized with SIFT-matching results be-

tween all the unknown-“seed” image pairs, where each en-

try of M records the matched features’ locations and in-

dexes, the algorithm proceeds in the inner loop by:

• Find the next camera to add. Next camera Ii ∈ U is

picked out via a 2D-3D matches based ranking. Using

M , we pair each 2D feature in unknown images with

a 3D point if it has matches from {Ij} where Ij ∈ K.

Duplicated 3D points are stacked for each 2D feature,

and the one with minimal mean re-projection error is

selected in the end∗.

• Camera pose calculation. The camera pose is calcu-

lated with a RANSAC based 3-point-pose solver [22].

• Update recorded information. If the 3-point-pose

∗Note that the inconsistency of 2D-3D matches among {Ij} stems from

the characteristic of our dataset: the 3D point is obtained by re-projecting

on a quasi-dense depth map. The depth map is generated by projecting

scene model onto a registered view point with Z-buffering occlusion han-

dling, and the depth values are then bilaterally interpolated with a 11× 11

window.
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solver succeed to calculate pose Pi, we perform a non-

linear pose optimization using the inliers. To suppress

the noises, only the inliers when solving Pi are used to

update the records in {M,H}.

For the “Find the next camera to add” step, we found that

the pose ranking strategy proposed in [28] brings notice-

able improvements comparing to the simple criterion with

2D-3D matches number. The intuition is that a major un-

certainty for pose estimation arises from the case that many

features lie in a small image region. Based on this obser-

vation, we sort the candidates using a covering area based

score : suppose each 2D feature point covers a circle of ra-

dius r (equals to the re-projection error threshold used in

3-point-pose solver), then the ranking score is calculated by

the total covering area of circles on a candidate image.

3.4. Evaluation metric

In this section, the covariance of our ground truth cam-

era poses is calculated with a Monte Carlo method [19] in

order to model the error of labelled poses. According to

that, a standard error threshold in our metric evaluation is

proposed.

For each query image data, a set of 3D scene points

Pi(i = 1 . . . 20), are randomly sampled from all visible

points inside its viewing frustum. By projecting these points

with ground truth camera pose, a set of “perfect” 2D-3D

matches (mi,Pi) are generated. Considering sensor noise

and feature positioning error, a two-dimensional Gaussian

noise is added to each mi with a zero mean and covariance

matrix [η2, 0; 0, η2], where η is set to be
√
2 (in pixels and

modeling the labeling errors). Every Pi is modeled as a

three dimensional Gaussian distribution whose mean is at

Pi. The covariance of Pi is calculated as the covariance

of all visible 3D points whose projections are in a small

neighborhood of mi. Here we use a circle neighborhood

whose radius equals to re-projection error in the 3-point-

pose solver. For each query image, we repeat this simula-

tion for 1000 rounds. Then the accuracy of our ground truth

poses can be measured by the trace of the pose covariance

matrices. As a result, we observe that for our ground truth

poses the mean standard deviation of position and rotation

is 0.098m and 0.6◦. In this sense, we choose 1m and 5◦

(position and orientation) as a standard error thresholds.

4. Experiments

We present the first qualitative evaluation on IBL algo-

rithms using our proposed dataset. The chosen algorithms

for this evaluation are popular image retrieval based and di-

rect matching based methods. To demonstrate the advan-

tages of our dataset, extended evaluation using a simulated

SfM point cloud is also introduced. Our testing platform is

a PC equipped with Intel i7 3.4GHz CPU and 16GB mem-

ories. All the implementation code is written in C/C++.

Image retrieval based method. Following the scheme pro-

posed in [1], in training stage we resize the database image

data to long side 1000 pixels before feature extraction. A

flat k-means tree with 500k centers is then built with pub-

licly available FLANN library [20]. When the tree is ready,

all the features from database go through it to build the BoW

vectors [21]. Meanwhile, the inverted indexes to database

images are recorded in the tree leaves. Note that all 2D fea-

tures are used in retrieval step, but only features associated

with 3D points are used in localization step. In our set up,

the 3D points are generated by back-projecting 2D features

using depth maps. In the testing stage, features from every

query image goes through the tree to search for candidate

database images. Geometric verification is employed to re-

rank the top 10 results. For efficiency consideration, we

only keep top 4 candidates in our experiments. Finally, with

the 2D-3D correspondences obtained by feature matching

between the query and retrieved images, the camera pose

result for the query image is calculated with a RANSAC

based 3-point-pose solver [22].

Taking the above approach as baseline, we further test

the effects of integrating various techniques in literatures

into this pipeline. First of all, we consider several fea-

tures commonly used in outdoor IBL context, including

BRIEF [5], SURF [3], SIFT [18] and affine covariant fea-

tures(COV) [23]. For each kind of features, the visual words

are trained separately. Specially for BRIEF feature, we

cluster the binary centers in a slightly different way: ev-

ery bit for each center is updated by the median at the same

bit among all features falling into this node. The distance

between binary center and feature is measured with Ham-

ming distance. The results are presented in Table 2. As we

expected, COV feature outperforms other features due to

its robustness to affine variation in either outdoor or indoor

environments. In addition, we notice that although binary

feature descriptor BRIEF is much faster than other features,

but there is a noticeable performance drop.

For the next test, we evaluate several enhanced tech-

nologies using the COV feature. All these techniques are

claimed to greatly boost the image retrieval step. As shown

in Table 3, here we present the registration rate gains from

RootSIFT [1], averaging query expansion (AQE) [1, 8, 7],

database-side feature augmentation (SPAUG) [1] and selec-

tive voting(SV) [31]. In our evaluation, not all these tech-

niques show improvements on localization results. Query

expansion, which is designed to improve recall [31], shows

little effect on registration rate. SPAUG, which is thought to

be complementary to AQE, also has a very limited positive

impact. This could be explained by the fact that our dataset

provides a richer representation model (with over 10× more

2D-3D matches per query image) than traditional datasets,
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Figure 3. Per-query registration rate with different features on image retrieval based baseline (left) and enhanced techniques added to

baseline (right). Varying positional and fixed angular (5◦) error thresholds are used.

Figure 4. Example results on image retrieval based approach using our dataset. From left to right in each row: cell phone query image,

returned top 4 database images and camera pose results visualized in point cloud. Best viewed in color.

hence the method to enrich the model such as AQE brings

limited benefits. Last but not the least, similar to indoor

scene datasets, SV shows a great benefit in registration rate

(2.4% per image).

As the last test for image retrieval based method, we im-

plemented a virtual view synthesis algorithm (VVS) to 10×
enlarge our training set. To synthesize the virtual view at

a particular view point, two spatially nearest source views

to the novel view point are chosen. Then the two views are

projected onto the novel view and angle-weighted blended

to produce the virtual view result. The depth maps are used

as the geometry proxy for the two source views. Thanks to

our high-quality point cloud from laser scanner, we found

that this simple forward warping method [4] works well in

practice. Moreover, we generated the position and orienta-

tion for each virtual camera by sampling on an approximate

“eye plane” (parallel to ground plane at the averaging height

of database cameras). Around each database image, we ran-
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Figure 5. Registration rates for various configurations on retrieval

based methods and direct matching.

Table 2. Results for different features on retrieval based baseline.

Features BRIEF SURF SIFT COV

Registration rate 47.8% 46.2% 59.2% 74.2%
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Figure 6. Results for different features on direct matching. Regis-

tration rate with varying position error thresholds are used.

domly sampled 10 virtual cameras using an offset within

2m and relative angle smaller than 30◦.

As shown in Figure 5, the results on virtual view synthe-

sis show consistent improvements on per image registration

rate (improved by 9.4% comparing to the baseline). This

can be explained by the robustness to view point changes in-

troduced by introducing virtual views, which is made avail-

able by our dataset with high-quality (on density and accu-

racy) laser point cloud. For the final results, we found that

a very simple configuration, i.e., “RootSIFT + VVS” pro-

vides a good trade-off on accuracy and speed: it achieves

84.8% registration rates, and costs 0.8 seconds per query.

Table 3. Results for various configurations on retrieval based ap-

proach and direct matching method.

Retrieval Method Registration rate

COV + RootSIFT 75.4%

COV + RootSIFT + AQE 75.4%

COV + RootSIFT + SPAUG 75.8%

COV + RootSIFT + SV 77.8%

RootSIFT + VVS + RERANK 83.9%

RootSIFT + VVS 84.8%

Direct Matching 83.3%

Direct matching method. We implemented a direct match-

ing method based on the active search scheme [30]. In train-

ing stage, all the image features (COV + RootSIFT) asso-

ciated with 3D points are indexed in a kd-tree. In testing

time, for each feature on a query image, its approximate k

nearest neighbors are found as a 2D-3D match. Since in

our set up the 3D points are obtained by re-projection with

depth maps, we perform a “cross check” to conduct the ra-

tio test. Specifically, for each feature from query images,

assuming Pi is the returned ith 3D point, Pi’s associated

camera is Ci and its feature on Ci is fi. Project Pi to Cj

where j 6= i, if the projected position is close to fj under

a threshold r (set as the re-projection error in 3-point-pose

solver), then Pj is assumed to be a duplicate of Pi. To per-

form the ratio test, we linearly search in the returned list and

skip the duplicates until we find two different points. The

3D-to-2D searching is also enabled to find more correspon-

dences. Finally, all the 2D-3D matches are used to calculate

the camera pose results.

The results on direct matching are presented in Figure 5

and table 3. Comparing to retrieval based method, direct

matching method delivers better registration rate with a

slightly slower speed (about 1 seconds for each query im-

age in average). The reasonable results from both the two

approaches can serve as a good starting point for further re-

searching efforts with our proposed dataset.

Extended tests. Without loss of generality, we use the

retrieval based pipeline to further test two interesting sce-

narios. Firstly, in addition to standard tests using precise

intrinsics of pre-calibrated phone cameras, we also evalu-

ate the performance when camera intrinsics are unknown.

This case is generally more common in practice. We re-

place the 3-point-pose solver with a 6-point-pose solver in

the RANSAC framework. The results show an obvious per-

formance drop: the registration rate decreases by 16.4%
with the previously best configuration, i.e., “COV + VVS +
RERANK”. This result indicates that the uncalibrated sce-

nario is more challenging for IBL.

Secondly, we also test the SfM method to build the point

cloud for our dataset. Unfortunately, we found that simply
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Figure 7. Illustration for failure cases. Left-most column is the mobile phone queries, and the right 4 columns are corresponding top-4

retrieved database images.

inputting our database images to the state-of-the-art SfM

software VisualSFM [38] delivers noisy results with dras-

tic drift. The main reason is that the widely used feature

matching (e.g.SIFT) in traditional SfM can hardly handle

the large amount of similar structures in our database. In

viewing this, we port to use our groundtruth camera poses

as a prior, and simulate the point cloud via triangulating

matched features in neighboring view points. The epipolar

line constraint and consistency among nearest 3 cameras are

used to filter out suspicious matches. Using this method, we

obtain a point cloud which is sparser than point from laser

scanner. It leads to in average 80% less 2D-3D matches in

localization step. As a result, the registration rate of a COV

feature based baseline drops by 15%. The result supports

the authors’ claim that the point cloud density and accuracy

is also a key to good performance of IBL algorithms.

Failure case analysis. Here we briefly summarize sev-

eral typical failure cases using image retrieval results as

shown in Figure 7. In short, the challenges which frequently

cause localization failures are repetitive structures (eleva-

tor and white wall in first row, which have nearly identical

structures from different locations), unstable depth values

in forward motion (middle row, remember that our 2D-3D

matches are obtained by interpolating depth values via pro-

jecting point cloud, thus larger depth range means higher

uncertainty on 3D points), and misleading sign post (last

row). All these cases lead to severe degrade in localization

algorithms, and are common in man-made scenarios. An-

other typical failure case is due to the drastic appearance

change between database and query images since they are

recorded at different time. All these issues together leave

open questions for future works on IBL algorithms.

5. Conclusion

This paper tries to shed some light on image-based lo-

calization by providing a novel dataset with LIDAR point

clouds and precise 6DOF ground truth camera poses de-

fined in the world coordinate system. The proposed dataset

can be employed to qualitatively evaluate the performance

of various visual localization algorithms. In addition to the

dataset contribution, we also conduct a comparative study

on state-of-the-art image-based localization algorithms and

report our experimental results in the paper. In the future,

we plan to gradually enlarge our dataset with both indoor

and outdoor scenes. We hope that publishing our dataset

will foster future research in the field of image-based place

recognition and localization. The full dataset is available

for downloading at: http://research.baidu.com/institute-of-

deep-learning/ibl-dataset/.
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