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Abstract

We develop the first approximate inference algorithm for
I-Best (and M-Best) decoding in bidirectional neural se-
quence models by extending Beam Search (BS) to reason
about both forward and backward time dependencies.

Beam Search (BS) is a widely used approximate inference
algorithm for decoding sequences from unidirectional neu-
ral sequence models. Interestingly, approximate inference
in bidirectional models remains an open problem, despite
their significant advantage in modeling information from
both the past and future. To enable the use of bidirectional
models, we present Bidirectional Beam Search (BiBS), an
efficient algorithm for approximate bidirectional inference.

To evaluate our method and as an interesting problem in
its own right, we introduce a novel Fill-in-the-Blank Image
Captioning task which requires reasoning about both past
and future sentence structure to reconstruct sensible image
descriptions. We use this task as well as the Visual Madlibs
dataset to demonstrate the effectiveness of our approach,
consistently outperforming all baseline methods.

1. Introduction

Recurrent Neural Networks (RNNs) and their generaliza-
tions (LSTMs, GRUEs, efc.) have emerged as a popular and
effective framework for modeling sequential data across
varied domains. The application of these models has led to
significantly improved performance on a variety of tasks —
speech recognition [1,2], machine translation [3-5], conver-
sation modeling [6], image captioning [7—11], visual ques-
tion answering (VQA) [12-16], and visual dialog [17, 18].

Broadly speaking, in these applications RNNs are typically
used in two distinct roles — (1) as encoders that convert
sequential data into vectors, and (2) as decoders that con-
vert encoded vectors into sequential output. Models for
image caption retrieval and VQA (with classification over
answers) [12, 13] consist of encoder RNNs but not de-
coders. Image caption generation models [7] consist of de-
coder RNNs but not encoders (image encoding is performed
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A) URNN

B) BiRNN

A man on skis showing a young child how to ski

A) Unidirectional RNN + Left-to-Right Beam Search (BS)

A man on a skislope with’to ski

B) Bidirectional RNN + Bidirectional Beam Search (BiBS)

A man on skis is teaching a child how to ski

Figure 1: We develop a novel Bidirectional Beam Search (BiBS)
algorithm for neural sequence models and propose a new fill-in-
the-blank image captioning task as a challenging testbed for se-
quence completion. Unidirectional RNNss fail to reason about both
past and future outputs and produce nonsensical outputs for this
task — note the jarring “with a how to” transition produced by clas-
sical beam search in (A). In contrast, our BiBS algorithm on a
Bidirectional RNN produces significantly better completions (B)
by considering context on either side of the blank.

via Convolutional Neural Networks). Visual dialog mod-
els use encoders to embed dialog history and model state,
while using decoders to generate dialog responses. Regard-
less of the setting, the task of decoding a sequence from
an an RNN consists of finding the most likely sequence
Y = (y1,...,yr) given some input x.

Unidirectional RNNs model this probability by estimating
the likelihood of outputting a symbol at time ¢ (say y;) given
the history of previous outputs (yi,...,yt—1) by “com-
pressing” the history into a hidden state vector h;_; such
that P(y¢ | y1,-..,yt—1,%) =~ P(y: | hy—1). Since each
output symbol is conditioned on all previous outputs, the
search space of possible sequences is exponential in the se-
quence length and exact inference is intractable. As a result,
approximate inference algorithm are applied, with the Beam
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Search (BS) being the primary workhorse. BS is a greedy
heuristic search that maintains the top-B most likely partial-
sequences through the search tree, where B is referred to as
the beam width. At each time step, BS expands these B
partial sequences to all possible beam extensions and then
selects the B highest scoring among the expansions.

In contrast to Unidirectional RNNs, Bidirectional RNNs
model both forward (increasing time) and backward (de-
creasing time) dependencies P(y; | h{ ,h?) via two hidden
state vectors h{ and h?. This enables Bidirectional RNNs
to consider both past and future when predicting an output.
Unfortunately, these dependencies also make exact infer-
ence in these models more difficult than in Unidirectional
RNNS and to the best of our knowledge no efficient approx-
imate algorithms exist. In this paper, we present the first
efficient approximate inference algorithm for these models.

As a challenging testbed for our method, we propose a fill-
in-the-blank image captioning task. As an example, given
the blanked image caption “A man on
how to ski” shown in Figure 1, our goal is to generate
the missing content “skis showing a young child” (or an ac-
ceptable paraphrase) to complete the sentence. This task
serves a concrete stand-in for a broad class of other similar
sequence completion tasks, such as predicting missing sec-
tions in a DNA sequence or path planning problems where
an agent must hit intermediate flag points.

On the surface, this task perhaps seems easier than gen-
erating an entire caption from scratch; there is after all,
more information in the input. However, the need to con-
dition on the context when generating the missing sym-
bols is challenging for existing greedy approximate infer-
ence algorithms. Figure 1(a) shows a sample decoding from
standard ‘left-to-right’ BS on a Unidirectional RNN. Note
the grammatically incorrect “with a how to” transition pro-
duced. Similar problems occur at the other boundary for
right-to-left models. Simply put, the inability to consider
both the future and past contexts in BS leads Unidirectional
RNN:Gs to fill the blank with words that clash abruptly with
the context around the blank.

Moreover, decoding also poses a computational challenge.
Consider the following sentence that we know has only a
single word missing: “The was barreling down the
tracks.” Filling in this blank feels simple — we just need to
find the best single word in the vocabulary ¢, € ). How-
ever, since all future outputs in a Unidirectional RNN are
conditioned on the past, selecting the best word at time ¢ re-
quires evaluating the likelihood of the entire sequence once
for each possible word y; € ) (similarly for Bidirectional
RNNs). This amounts to 7°|| forward passes through an
RNN’s basic computational unit to fill in a single blank op-
timally! More generally, for an arbitrarily sized blank cov-
ering w words, this number grows exponentially as T'|V|%

and quickly becomes intractable.

To overcome these shortcomings, we introduce the first
approximate inference algorithm for 1-Best (and M-Best)
inference in bidirectional neural sequence models (RNNs,
LSTMs, GRUEs, etc.) — Bidirectional Beam Search (BiBS).
We show BiBS performs well on fill-in-the-blank tasks, ef-
ficiently incorporating both forward and backward time in-
formation from Bidirectional RNNs.

To give an algorithmic overview, we begin by decompos-
ing a Bidirectional RNN into two calibrated but indepen-
dent Unidirectional RNNs (one going forward in time and
the other backward). To perform approximate inference
with these decomposed models, our method alternatively
performs BS on one direction while holding the beams in
the opposite direction fixed. The fixed, oppositely-directed
beams are used to roughly approximate the conditional
probability of all future sequence given the past such that
a BS-like update minimizes an approximation of the full
joint at each time step. Figure 1(b) shows an example result
of our algorithm — “A man on skis is teaching a child how
to ski” — which smoothly fits within its context while still
describing the image content.

We compare BiBS against natural ablations and baselines
for fill-in-the-blank tasks. Our results show that BiBS is an
effective and efficient approach for decoding Bidirectional
RNN:ss, consistently outperforming all baselines.

2. Related Work

While Unidirectional RNNs are popular models with
widespread adoption [1-6,12,13], Bidirectional RNNs have
been utilized in relatively infrequently [19-21] and even
more rarely as decoders [22] — we argue due to the lack
of efficient inference approaches for these models.

Wang et al. [21] used Bidirectional RNNs for image cap-
tion generation, but do not perform bidirectional infer-
ence, rather simply use BiDirectional RNNs to rescore can-
didates. Specifically, at inference time they decompose
a Bidirectional RNN into two independent Unidirectional
RNN, apply standard Beam Search in each direction, and
then reranked these two collection of beams based on the
max probability of each beam under the forward or back-
ward Unidirectional RNN model. We compare to this
method in our experiments and show that joint optimiza-
tion via Bidirectional Beam Search leads to better sequence
completions for our fill-in-the-blank image captioning task.

Most related to our work is that of Burglund er al. [22],
which studies generating missing data in time series data in
an unsupervised setting using Bidirectional RNNs. They
propose three probabilistically justified approaches to fill
these gaps by drawing samples from the full joint.

Their first model, Generative Stochastic Networks (GSN),
resamples the output y; at a random time ¢ from the con-
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ditional output P(y; | Yj.r)\¢). For a blank of length
w, resampling each output tokens M times requires wMT
passes of the RNN. Thus, the cost of producing a sample
with the GSN method scales linearly with the size of the
gap and requires a full pass of the Bidirectional RNN.Their
second approach, NADE, trains a model specifically for fill-
ing in the blank — i.e. at train time, some inputs are set to
a specific ‘missing’ token to indicate the content that needs
to be generated. At inference time, the inputs from the gap
are set to this token and sampled from the resulting condi-
tional. Note that this approach is ‘trained to fill in gaps’ and
as such requires training data of this kind. To contrast, this
is a new model for filling in gaps, while we propose a new
inference algorithm, which can be broadly applied to any
generative bidirectional model. Finally, they propose a third
sampling approach based on a Unidirectional RNN which
draws from the conditional P(y; | Y{1.7)\¢); however, as the
model is a left-to-right Unidirectional RNN, this term re-
quires computing the likelihood of the remaining sequence
given each possible token at time ¢. This costly approach
requires w|Y|MT steps of the RNN and is intractable for
large vocabularies.

3. Preliminaries: RNNs and Beam Search

We begin by establishing notation, and reviewing RNNs and
standard Beam Search for completeness. While our expo-
sition details the classical RNN updates, the techniques de-
veloped in this paper are broadly applicable to any recurrent
neural architecture (e.g. LSTMs [23] or GRUs [24]).

Notation. Let X = (x1,X2,...,Xr) denote an input se-
quence, where X; is an input vector at time ¢. Similarly, let
Y = (y1,¥2,-..,yr) denote an output sequence, where
y¢ is an output vector at time ¢. To avoid notational clut-
ter, our exposition uses the same length for both input and
output sequences (71'); however, this is not a restriction in
theory or practice. Given integers a, b, we use the nota-
tion Y[, to denote the sub-sequence (Y, Yat1,---,¥s);
thus, ¥ = Y[;.7q by convention. Given discrete vari-
ables Y, we generalize the classical maximization notation
argmaxycy, f(Y") to find the (unique) top B states with
highest f(Y) via the notation top-By ¢y, f(Y).
Unidirectional RNN (URNNs) model the probability of y;
given the history of inputs x3, . .., X; by “compressing” the
history into a hidden state vector h; such that

P(y: | Xp.) = #(Wyhy +by) (1a)
ht = tanh(WxXt + Whht—l + bh) (lb)

where W, Wj,, W,, by, and b, are learned parameters
defining the transforms from the input x; and hidden state
h;_; to the output y; and updated hidden state h;. In ap-
plications with symbol sequences as output (such as image
captioning), the nonlinear function ¢ is typically the soft-

max function which produces a distribution over the out-
put vocabulary ). An example left-to-right Unidirectional
RNN architecture is shown in Figure 2a.

Bidirectional RNNs (BiRNNs) (shown in Figure 2b)
model both forward (positive time) and backward (negative
time) dependencies via two hidden state vectors — forward
h; and backward h; — each with its own update dynamics
and corresponding weights. For a BIRNN, we can write the
probability of the token y, given the input sequence as

P(y: | Xpmp) = o( V—[}yﬁt + Wyﬁt +b,) (2a)

Forward score ~ Backward score

— — — —
D, =o(W.x;+ Wphis1+Ba)  (2b)

%t = U(met + Whlﬁt+1 + (Eh) (2¢)

BiRNNs as URNNs. Consider a Bidirectional RNN with
the output nonlinearity ¢ defined as the softmax function
pi = ¢i(s) = e/ >, e* Itis straightforward to show that
the conditional probability of y; given all other tokens can
be written as

P(y: | Xpy) = ¢(V_[>/yﬁt + Wytt +by)
o o (B ) o7, 4 )

where the resulting terms in the proportionality resemble
the URNNSs output equation in Eq. la. Intuitively, this
expression shows that the output of a Bidirectional RNN
with a softmax output layer can be equivalently expressed
as the product of the output from two independent but
oppositely directed URNNs with specifically constructed
weights, renormalized after multiplication. This construc-
tion also works in reverse such that an equivalent Bidi-
rectional RNN can be constructed from two independently
trained but oppositely directed URNNs. As such, we will
consider a Bidirectional RNN as consisting of a forward-
time model URNN and a backward-time model ijNN.

RNNs for decoding are trained to produce sequences con-
ditioned on some encoded representation X. For machine
translation tasks, X may represent an encoding of some
source language sequence to be translated and Y is the
translation. For image captioning, X is typically a dense
vector embedding of the image produced by a Convolu-
tional Neural Network (CNN) [25], and Y is a sequence
of 1-hot encoding of the words of the corresponding image
caption. Regardless of its source, this encoded representa-
tion is considered the first input x¢ and for all remaining
time steps X; = y:—1, such that decoder RNNs are learning
to model P(y¢|y¢—1, .., Y1, Xo). This is the setting of inter-
est in this paper, but we drop this explicit dependence on the
encoding x to reduce notational clutter in later sections.
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Figure 2: Different architectures of RNNs and left-to-right Beam Search. (a) The prediction of variable y; only depends on the past in
URNNSs. BiRNNs (b) can consider both past and future. (c) shows the search tree for beam search in a URNN with a beam width of B=4.

Beam Search (BS). Maximum a posteriori (MAP) (or more
generally, M-Best-MAP [?,26]) inference in RNNs consists
of finding the most likely sequence under the model. The
primary difficulty for decoding is that the number of
possible T length sequences grows exponentially as |)|7,
so approximate inference algorithms are employed. Due to
this exponential output space and the dependence on previ-
ous outputs, exact inference is NP-hard in the general case.
Beam Search (BS) is a greedy heuristic search algorithm
that traverses the search tree using breadth-first search,
while only expanding the most promising nodes at each
depth. Specifically, BS in Unidirectional RNNs involves
maintaining and expanding the top-B highest-scoring
partial hypotheses, called beams. Let (1. = (y1,.-.,¥¢)
denote a partial hypothesis (beam) at time ¢. We use the
notation Y[l:B],[l:t] = (Yl,[lzt]a Y27[1:t], e ;YB,[l:t]) to
denote a collection of B beams. BS begins with empty
beams, Y, o0 = (yb,0), Where y;, o = 0, Vb and proceeds in
a left-to-right manner up to time 7" or until a special END
token is generated. At each time ¢, BS considers the space
of all possible beam extension V; = Y1.p),[1:¢—1) X V and
selects the top-B high-scoring ¢-length beams among this
expanded hypothesis space. We can formalize this search
for optimal updated beams Y{1.5) 1.4 as

t
top-B logP (Vi) = > _10gP(yi | yio1,-- -5 ¥1)-
¢ i=1
Each log probability term in the above expression can be
computed via a forward pass in Unidirectional RNNs such
that implementing the top-B operation simply requires sort-
ing B|);| values. An example run of BS on a left-to-right
URNN is shown in Figure 2c.

4. Bidirectional Beam Search (BiBS)

We begin by analyzing the decision made by left-to-right
Beam Search at time ¢. Specifically, at each time ¢, we can
factorize the joint probability P(Y[;.7)) in a particular way:

P(Y[LT]) = P(Yv[l,tfl])P(yt|Y—[1:t71])P(Y—[t+1:T] | yt:Yv[lztfl])
)

This left-to-right decomposition of the joint around y; is
comprised of three terms
1) the ‘marginal’ of the sequence prior to y;: P(Y}1.4-1),
2) the conditional of y; given this past: P(y|Y}14—1]), and
3) the conditional of the remaining sequence after y; given
all prior terms: P(Yy41.77 | ¥e5 Yi1:e—1])-
If we consider choosing y; to maximize this joint, the first
two terms can be computed exactly via the forward pass
of a left-to-right URNN given the existing sequence; how-
ever, the third term cannot be exactly computed because it
depends on all futures. Even approximating the third term
with beams requires re-running beam search for each possi-
ble setting of y;, which is prohibitively expensive.

One way of interpreting left-to-right BS is to view it as ap-
proximating the joint in (4) with just the first two terms.
Specifically, if we assume that P(Yjq1.77 | ¥¢, Y[1:e—1)) is
uniform, i.e. all futures are equally likely given the sequence
so far, then BS is picking the optimal y,. This approxima-
tion does not hold in practice and results in poor perfor-
mance for fill-in-the-blank tasks where all future sequences
are not equally likely by design. In this section, we consider
an alternative approximation and derive our BiBS approach.

Efficiently Approximating the Future. In order to derive a
tractable approximation to this third term (and by proxy the
full joint), we make two simplifying assumptions (which we
know will be violated in practice, but result in an efficient
approximate inference algorithm). First, we assume that fu-
ture sequence tokens are independent of past sequence to-
kens given yy, i.e. RNNs are first-order Markov. Second,
we assume that P(y;) is uniform, avoiding the need to esti-
mate marginal distributions over ) for all time steps. Under
these assumptions, we write the conditional probability of
the remaining sequence tokens given the past sequence as

P(Y[t+1:T] | Y[l:t]) = P(Y[t-s-l:T] | ye)

o Py | Y[t+1:T])P(Y[t+1:T]) (5)
Notice that the resulting terms are exactly the output of

a right-to-left Unidirectional RNN. Substituting Eq. 5 into
Eq. 4, we arrive at an expression that is proportional to the
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Figure 3: Overview of Bidirectional Beam Search (BiBS). Starting from a set of B complete sequences Y[y, g],1,7], BiBS alternately
performs left-to-right and right-to-left beam searches to greedily optimize an approximation of the probability of the entire sequence. In
the example above, a left-to-right beam search is advancing the beams at time ¢ by considering all possible connections between the current
left-to-right beams and the previous right-to-left beams through any token in the dictionary )). The terms in this joint approximation
(written in (3)) can be efficiently computed by the forward and backward Unidirectional RNNS and sorted to find the top-B extensions.

full joint, but comprised of terms which can be indepen-
dently computed from a pair of oppositely-directed Unidi-
rectional RNNs (or equivalently a Bidirectional RNN),

Compute from URNN
P(Y14—1)P (el Yirt—1) P(ye | Vi) P(Yiegr1)

Compute from URNN

(6)
Note that the two central conditional terms are proportional
to the output of an equivalent softmax Bidirectional RNN
as discussed in the previous section.

Coordinate Descent. Given some initial sequence Y[;.y,
a simple coordinate descent algorithm could select a ran-
dom time ¢ and update y; such that this approximate joint
is maximized and repeat this until convergence. Computing
Eq. 6 would require feeding Y[;.;—q) to the forward RNN
and Y[; 1.7} to the backward RNN. Therefore, updating all
outputs M times in this approach would require M72 RNN
steps (combined from both the forward and backward mod-
els). If we instead follow an alternating left-to-right then
right-to-left update order, this can be reduced to MT" by
reusing cached log probabilities from the previous direc-
tion. This algorithm resembles a beam search with B = 1
which bases extensions on the value of Eq. 6.

Bidirectional Beam Search. Finally, we arrive at our full
Bidirectional Beam Search (BiBS) algorithm by generaliz-
ing the simple algorithm outlined above to maintain mul-
tiple beams during each update pass. Given some set of
initial sequences Y(i.p) 1.7] (perhaps from a left-to-right
beams search), we alternate between forward (left-to-right)
and backward (right-to-left) beam searches with respect to
the approximate joint. We consider a pair of forward and
backward updates a single round of BiBS.

Without loss of generality, we will describe a forward up-
date pass of beam width B. At each time ¢, we have updated
the first t—1 tokens of each beam such that we have partial
forward sequences Y[;. 5] [1:¢—1) and the values Y[1. 5] [141:7]

have yet to be updated. To update the forward beams, we
consider all possible connections between the current left-
to-right beams and the right-to-left beams (held fixed from
previous round) through any token in the dictionary ). Our
search space is then Vy = Y[1.3] [1:4—1) X V X Y[1.B),[t41:7]
and || = B x |Y| x B.

Figure 3 shows an example left-to-right update step for
image captioning as well as the precise update rule based on
Eqn. 6 for this time step. For each combination of forward
beam and backward beam, this objective can be computed
easily from stored sum of log probabilities of each beam
and conditional output of the forward and backward RNNss.
Like standard Beam Search, the optimal extensions can
be found exactly by sorting these values for all possible
combinations. Our approach requires only 2BM7T RNN
steps to perform M rounds of updates. Our algorithm is

_)
summarized below in Alg. 1 with 6 b,i:yb’i) representing
log P(ys,i|Ys,j1:i—1]) from the URNN and 04 ;(ys.:)

representing log P (yy,:|Y5 [i41.77) from the URNN.

Data: Given initial set of sequences Y[1.p),[1:7]
— —
0 (1:8],11:1) = O (28], (1.7 = 0
while not converged do
// Updated beams left-to-right
fort=1,...,T do

— - — =
0 11:81,t> h1:83],t = URNN ( h:Bye—1, Yil:B],t—l)

t T g

Yiipe =top-By i, ¢ b’i(ybvi)'i_Zj:t 0 v, (yvr,j)
end
// Updated beams right-to-left
fort=1T,...,1do

— — RN
0 (1:8),t, h Byt = lil_\IN( h:Ble41, YiBlee1)

Y1.m),¢ = top-B ZiT:t 0 b,i(yb,i)+Z;:1 0o (Yo ,5)

end
end

Algorithm 1: Bidirectional Beam Search (BiBS).
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5. Experiments

In this section, we evaluate the effectiveness of our pro-
posed Bidirectional Beam Search (BiBS) algorithm for in-
ference in BiIRNNs. To examine the performance of bidirec-
tional inference, we evaluate on tasks that require the gen-
erated sequence to fit well with existing structures both in
the past and the future. We choose fill-in-the-blank style
tasks where a number of tokens have been removed from a
sequence and must be reconstructed. Specifically, we eval-
uate on fill-in-the-blank tasks on image captioning for the
Common Objects in Context (COCO) [27] dataset and de-
scriptions from the Visual Madlibs [28] dataset.

Baselines. We compare our approach, which we denote
BiRNN-BiBS, against several sophisticated baselines:

- URNN-£: that runs BS on a forward LSTM to produce
B output beams (ranked by their probabilities under the
forward LSTM),

- URNN-b: that runs BS on a backward LSTM to produce
B output beams (ranked by their probabilities under the
backward LSTM),

- URNN-£f+b: that runs BS on forward and backward
LSTMs to produce 2B output beams (ranked by the max-
imum of the probabilities assigned by the forward and
backward LSTMs). The method used by Wang ez al. [21].

- BiRNN-£+b: that runs BS on two LSTMs (forward and
backward) to produce 2B output beams (ranked by the
sum of the log probabilities assigned by the forward and
backward LSTMs). This lacks formal justification but we
find it to be a reasonable heuristic for this task.

- GSN (Ordered) : that samples tokens from the
BiRNN for each time step. We found randomly select-
ing the time step as in [22] resulted in poor performance
on our tasks and instead perform updates in an alternating
left-to-right / right-to-left order. For fairness, we com-
pare at the same number of updates as our method and all
sample sequences are reranked based on log probability.

All baselines perform inference on the same trained model
that we train using neuraltalk2 [8] with standard maximum-
likelihood training over complete human captions.

Evaluation. For all models, we evaluate only the top beam
from the sorted list returned by the algorithm. We compare
methods on standard sentence-level metrics — CIDEr [29],
Meteor [30], and Bleu [31] — computed between the ground
truth captions and the (full) reconstructed sentences. We
note that the metrics are computed over the entire sentence
(and not just the blank region) in order to capture the qual-
ity of the alignment of the generated text with the existing
sentence structure. As a side effect, the absolute magnitude
of these metrics are inflated due to the correctness of the
context words, so we focus on the relative performance.

5.1. Fill-in-the-Blank Image Captioning on COCO

The COCO [27] dataset contains over 120,000 images, each
with a rich set of annotations. This include five captions de-
scribing the content of each image, collected from Amazon
Mechanical Turk workers. We propose a novel fill-in-the-
blank image captioning based on this data. Given an im-
age I and a corresponding ground truth caption yi, ..., yr
from the dataset, we remove a sequential portion of the cap-
tion such that we are left with a prefix y1, . ..,y and suffix
Ye, - - .,y consisting of the remaining words on either side
of the blank. Using the image and the context from these
remaining words, the goal is to generate the missing tokens
Ys+1s---,Ye—1- This is a challenging task that explores
how well models and inference algorithms reason about the
past and future during sequence generation. We first con-
sider the known blank length setting (where the inference
algorithm knows the blank length) and then generalize to
the unknown blank length setting.

Known Blank Length. In this experiment, we remove r =
25%, 50%, or 75% of the words from the middle of a cap-
tion for each image and task the model with generating the
lost content. For example, at » = 50% the caption “A
close up of flowers and plants inside of a bowl” would ap-
pear to the system as the blanked caption “A close __ __

_ of a bowl” and the generation
task would then be to reproduce the removed subsequence
of words “up of flowers and plants inside.”

As we are interested in bidirectional inference (not learn-
ing), we train our models on the original COCO image cap-
tioning task (i.e. we do not explicitly train to fill blanked
captions). Like [8], we use 5000 images for test, 5000 im-
ages for validation, and the rest for training. We evaluate on
a single caption per image in the test set.

The upper half of Table | reports the performance of our
approach (BiBS) on this fill-in-the-blank inference task for
differently sized blanks (r% of central words removed per
sentence). We run GSN and BiBS for four full forward /
backward passes of updates. Generally we find that bidi-
rectional methods outperform unidirectional ones on this
task. We find that BiBS outperforms all baselines on all
metrics. We note that the nearest baselines in perfor-
mance (URNN-f+b, BIRNN-f+b) are reranked from 2B
beams. While BiBS operates in an alternating left-to-right
and right-to-left fashion, it only ever maintains B beams.

Interestingly, backward time model URNN-b consistently
outperforms the forward time model URNN-f on all metrics
and across all sizes of blanks. This may be due to the way
the dataset was collected. When tasked with describing the
content of an image, people often begin by grounding their
sentences with respect to specific entities visible in the im-
age (especially when humans are depicted). Given this, we
would expect many more sentences to begin with the simi-
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a) The woman has many | and other fruit at her stand
b) The woman has a bunch of bananas on at her stand

¢) The woman has holding a bunch of b at her stand
d) The woman has a large bunch of bananas at her stand

a) A number of small planes behind a fence
b) A number of small planes on a fence
c)A ber plane is parked near a fence
d) A number of planes parked near a fence

a) A group of people standing on top of a snow covered slope
b) A group of people on skis on a snowy snow covered slope
¢) A group of riding skis on top of a snow covered slope

d) A group of people standing on top of a snow covered slope

a) A man is skateboarding on arampinab

b) A man riding a skateboard up theinab

¢) A man a trick on a skateboard in a basement
d) A man doing tricks on a skateboard in a b

a) A black and yellow bird with a colorful beak
b) A black and yellow bird sitting a colorful beak
¢) A black a yellow bird with a colorful beak

d) A black and yellow bird withinab t

a) A row of transit buses sitting in a parking lot
b) A row of buses parked in a a parking lot
¢) A row of double decker buses parked a parking lot

d) A row of red buses parked in a parking lot

a) The person is riding the waves in the water

b) The person is is riding a wave in the water

¢) The person is person on a surfboard in the water
d) The person is is on a surfboard in in the water

a) Ground Truth b) URNN-f

a) Two people riding a motorcycle to the beach
b) Two people on a motorcycle on the beach
¢) Two people riding a motorcycle on the beach
d) Two people on a motorcycle on the beach

¢) URNN-b d) BiRNN-BiBS

Figure 4: Example fill-in-the-blank image caption completions generated by BS and BiBS. URNNs decoded with BS often produce
blank reconstructions that clash with the remaining context on either side of the blank, while BiBS handles these transitions seamlessly.

r=0.25

r=0.5 r=0.75

CIDEr Bleu-4 Meteor

CIDEr Bleu-4 Meteor CIDEr Bleu-4 Meteor

= URNN-f 6.54 0.661 0.488 3.744 0.345 0.350 1.927 0.143 0.238
&0 URNN-b 6.58 0.668 0.491 3.931 0.372 0.356 2.476 0.219 0.259
3 URNN-f+b [21] 6.98 0.709 0.510 4.15 0.398 0.367 2.40 0.209 0.257
§ BiRNN-f+b 6.94 0.705 0.508 3.99 0.385 0.361 2.24 0.201 0.252
e GSN [22] (Ordered) 6.90 0.701 0.507 3.63 0.337 0.334 1.876 0.135 0.232
= BiRNN-BiBS (ours) 7.12 0.720 0.517 4.26 0.408 0.368 2.57 0.228 0.265
< URNN-f 5.607 0.569 0.440 4.232 0.432 0.370 2.594 0.268 0.269
%0 URNN-b 5.514 0.561 0.436 4.151 0.424 0.367 2.909 0.303 0.285
'é URNN-f+b [21] 5.632 0.570 0.440 4377 0.451 0.376 2.924 0.306 0.287
g BiRNN-f+b 5.640 0.588 0.452 4.380 0.453 0.378 2.930 0.305 0.303
£ GSN [22] (Ordered) 5.725 0.589 0.447 3.591 0.413 0.357 2.456 0.257 0.261
5 BiRNN-BiBS (ours) 5.935 0.614 0.460 4.40 0.454 0.380 2.936 0.305 0.288

Table 1: Comparison of different approaches on Fill-in-the-Blank Image Captioning on COCO [27]. r is the fraction of removed
words from sentence, B=5 by default. BiBS consistently outperforms the baselines methods.

lar words such that generating the beginning of a sentence
from the end would be an easier task.

BiBS Convergence. To study the convergence of our ap-
proach, we consider the true joint probability of filled-in
captions as a function of the number of rounds of BiBS.
We compute the average of these joint log probabilities af-
ter each meta-iteration of BiBS, where we define a meta-
iteration as a pair of full forward and backward update
passes. We find that joint log probabilities drop quickly (re-
ducing from -2.47 to -2.11 in a single meta-iteration), indi-
cating high quality solutions are found from unidirectional
initializations within only a few meta-iterations of BiBS. In

practice we find the beams have converged in typically 1 to
2 meta-iterations for fill-in-the-blank image captioning.

Fig. 4 shows several qualitative examples, comparing
completed captions from URNN-f, URNN-b, and our
BiRNN-BiBS method with ground truth human annota-
tions. The unidirectional models running standard BS typ-
ically generate sentences that abruptly clash with existing
words at the edge of the blank. For example in the first
example, the forward model produces the grammatically
incorrect phrase “bananas on at her stand” and similarly
the backward model outputs “The woman has holding a
bunch”. This behavior is a natural consequence of the in-
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ability for these models to efficiently reason about the past
and future simultaneously. While these unidirectional mod-
els struggle to reason about word transitions on either side
of the blank, our BiRNN based BiBS algorithm typically
produces reconstructions that smoothly fit with the context,
producing a reasonable sentence “The woman has a large
bunch of bananas at her stand.”

This example also highlights a possible deficiency in our
evaluation metrics; while a human observe can clearly tell
which of the three sentences is most natural, the sentence
level statistics of each are quite similar, with each sharing
only the word banana with the ground truth caption “The
woman has many bananas and other fruit at her stand.”
Evaluating generated language is a difficult and open prob-
lem that is further complicated by fill-in-the-blank context.

Unknown Length Blanks. While our method is designed
for known blank lengths, in this section we apply BiBS as a
black box inference algorithm over a range of blank lengths.
We calibrate what lengths to search over by first generat-
ing the top-1 left-to-right beam Y/ by only conditioning
on words on the left of the blank and the right-to-left top-1
beam Y by only conditioning words on the right side of
the blank. Then, we define the range of lengths of the blank
as min{len(Y7), len(Y?)} to max{len(Y /), len(Y?)}
where, len(Y) is the length of beam Y. We perform in-
ference at each length in this range and select the highest
probability completion across all lengths. The lower half of
Table 1 reports the results. We find that BiBS outperforms
nearly all baselines on all metrics (narrowly being bested
by URNN-f+b at r = 0.75 Blue-4). Results on the vari-
able length task are worse for all methods than with known
blank length due largely to the difficulty of comparing the
likelihoods of sequences with differing lengths.

5.2. Visual Madlibs

In this section, we evaluate our approach on the Visual
Madlibs [28] fill-in-the-blank description generation task.
The Visual Madlibs dataset contains 10,738 images with 12
types of fill-in-the-blank questions answered by 3 workers
on Amazon Mechanical Turk. We use object’s affordance
(type 7) and pair’s relationship (type 12) fill-in-the-blank
questions as these types have blanks in the middle of ques-
tions. For instance, People could relax on the couches. and
The person is putting food in the bowl. We use 2000 im-
ages for validation, train on the remaining images from the
train set, and evaluate on their 2,160 image test set. To the
best of our knowledge, ours is the first paper to explore the
performance of CNN+LSTM text generation for this task.

We compare to two additional baselines for these exper-
iments, nCCA [32] and the nCCA(box) method imple-
mented in the Visual Madlibs paper [28]. nCCA maps
image and text to a joint-embedding space and then finds
the nearest neighbor from the training set to this embedded

type 7 type 12
Bleu-1  Bleu-2 Bleu-1  Bleu-2
URNN-f 0.313 0.138 0.275 0.160
URNN-b 0.460 0.284 0.346 0.213
URNN-f+b [21] 0.447 0.275 0.347 0.214
BiRNN-f+b 0.448 0.275 0.347 0.213

GSN [22] (Ordered) 0.427 0.28 0.148 0.099
BiRNN-BiBS (ours)  0.470 0.389 0.353 0.216

nCCA 0.56 0.1 0.46 0.07
nCCA(box) 0.60 0.11 0.48 0.08

Table 2: Comparison of different approaches on the Visual
Madlibs task using BLEU-1 and BLEU-2. B= 5 by default.

point. We note that this is a retrieval and not a descrip-
tion generation technique such that it cannot be directly
compared with BiBS, and is reported only for the sake of
completeness. nCCA(box) extracts visual features from the
ground-truth bounding box of the relevant person or object
refered to in the question and thus is an ‘oracle’ result that
makes use of extra ground truth information.

We again use the neuraltalk? [8] framework to train a
CNN+LSTM model for both object’s affordance (type 7)
and pair’s relationship (type 12) question types. We evalu-
ate on the test data using Bleu-1 and Bleu-2 (to be consistent
with [28]). Table 2 shows the results of this experiment for
known blank length (see supplementary for unknown length
results). We find that BiBS outperforms the other genera-
tion based baselines in both question types and is compet-
itive with the retrieval based nCCa techniques, greatly out-
performing the nCCa retrieval and nCCA(box) oracle meth-
ods on Bleu-2.

6. Conclusions

In summary, we presented the first approximate inference
algorithm for 1-Best (and M-Best) decoding in bidirectional
neural sequence models (RNNs, LSTMs, GRUs, efc.). We
study our method in the context of a novel fill-in-the-blank
image captioning task which evaluates how well sequence
generation models and their associated inference algorithms
incorporate known information from both the past and fu-
ture to ‘fill in the gaps’. This is a challenging setting and we
demonstrate that standard Beam Search is poorly suited for
this task. We develop a Bidirectional Beam Search (BiBS)
algorithm based on an approximation of the full joint dis-
tribution over output sequences that is efficient to compute
in Bidirectional Recurrent Neural Network models. To the
best of our knowledge, this is the first algorithm for top-B
MAP inference in Bidirectional RNNs. We have demon-
strated that BiBS outperforms natural baselines at both fill-
in-the-blank image captioning and Visual Madlibs. Future
work involves generalizing these ideas to tree-structured or
more general recursive neural networks [33], and producing
diverse M-Best sequences [34,35].
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