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Abstract

Image-set classification has recently generated great

popularity due to its widespread applications in computer

vision. The great challenges arise from effectively and ef-

ficiently measuring the similarity between image sets with

high inter-class ambiguity and huge intra-class variability.

In this paper, we propose deep match kernels (DMK) to

directly measure the similarity between image sets in the

match kernel framework. Specifically, we build deep lo-

cal match kernels between images upon arc-cosine kernels,

which can faithfully characterize the similarity between im-

ages by mimicking deep neural networks; we introduce an-

chors to aggregate those deep local match kernels into a

global match kernel between image sets, which is learned

in a supervised way by kernel alignment and therefore more

discriminative. The DMK provides the first match kernel

framework for image-set classification, which removes spe-

cific assumptions usually required in previous approaches

and is computationally more efficient. We conduct extensive

experiments on four datasets for three diverse image-set

classification tasks. The DMK achieves high performance

and consistently surpasses state-of-the-art methods, show-

ing its great effectiveness for image-set classification.

1. Introduction

Image-set classification has been one of the most impor-

tant tasks in computer vision [15, 25, 33, 20, 19, 22, 36, 9,

34, 37, 52] due to its broad applications in various areas in-

cluding multi-view visual recognition, video-based surveil-

lance, dynamic scene recognition, etc. In contrast to the
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conventional tasks on one single image [3, 55], in image-set

classification, each sample is a set of images, which, there-

fore, is able to better describe objects in images since each

image contains certain more information of variations of

the objects. However, compared to classification on single

images, image sets exhibit huge intra-class variability and

large inter-class ambiguity, which poses great challenges to

faithfully measure the similarity between image sets for ac-

curate classification [20].

Image-set classification has been extensively studied in

the previous work, which was mostly developed under spe-

cific assumptions on image distributions or geometrical

structures. In order to facilitate modeling image sets, some

specific assumptions, e.g., a single Gaussian [45], Gaussian

mixture models [1, 53], on the distribution of images in a

set, were made a priori in early work. The traditional met-

rics, e.g., Kullback-Leibler (KL) divergence, were chosen

to measure the similarity between distributions of images

in sets. However, these methods would not guarantee satis-

factory performance when there is no significant statistical

relationship between training and test sets due to the huge

intra-class variability [31]. The symmetric positive definite

(SPD) matrices [52, 21, 28] have been extensively used to

represent image sets by computing the second-order statis-

tic, e.g., the covariance matrix of images in the set. The

covariant matrix as a statistic measurement can be too gen-

eral to handle the heavy inter-class ambiguity due to the lack

of local information in each individual image. Those SPDs

lie in a specific Riemannian manifold and therefore conven-

tional approaches in the Euclidean space are not directly

applicable [52]. In addition, the SPD based representation

induces heavy computational cost when the dimensionality

of the SPD matrix is high [28]. Another important body of
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work are developed under the assumption that image sets lie

on a Grassmann manifold [18, 23, 22, 27], where each im-

age set is regarded as a linear subspace on the Grassmann

manifold. To measure the similarity between linear sub-

spaces, a family of Grassmann kernels, e.g., the projection

and Binet-Cauchy kernels [18, 22] were proposed based on

principal angles. However, the principal angle contains only

weak information about the location and boundary of the

samples in the input space [52], which unfortunately lacks

sufficiently discriminative information to deal with the huge

intra-class variability.

Although developed in different frameworks, most of the

previous approaches essentially manipulate the similarity or

distance metric between images from two sets implicitly.

In other words, the similarity between image sets is ulti-

mately determined by the similarity between images from

the sets. Based on this important observation, in this pa-

per, we propose learning deep match kernels between im-

age sets by directly measuring the similarity a new match

kernel framework, which removes prior assumptions on im-

age distributions or geometrical structures while effectively

capturing discriminative information localized in each im-

age. Match kernels [35] between image sets involve the

local match kernel between images and the global match

kernel between sets, which aggregates local match kernels

between the pair of images from the sets. In our DMK,

local match kernels are built upon the powerful arc-cosine

kernel and aggregated into the global match kernel which is

learned by kernel alignment via anchors. The framework of

constructing the DMK is illustrated in Figure. 1.

For the local match kernel, we propose building a deep

local match kernel upon the arc-cosine kernel [10]. Thanks

to the nature of mimicking deep neural networks with infi-

nite hidden units, the arc-cosine kernel has the great capa-

bility of characterizing the similarity between images. The

faithful measurement of similarity between images from

two sets by the deep local kernels underpins the construc-

tion of global match kernels between image sets.

For the global match kernel, we propose aggregating

those deep local match kernels in a supervised way by ker-

nel alignment via anchors, which enables it to conquer inter-

class ambiguity and intra-class variability. The anchor-

based global match kernel is not only highly discriminative

by exploring different discriminative abilities of local match

kernels but also computationally more efficient compared to

conventional match kernels.

The major contributions of this work can be summarized

in the following three aspects:

• We propose the first match kernel framework, deep

match kernels (DMK), for image-set classification,

which removes specific assumptions on distributions

or representations of sets. The DMK can effectively

and efficiently characterize the similarity between im-

Figure 1. The framework of the deep match kernels (DMK). Im-

ages assigned to anchors are matched by deep local match kernels

which are summed to anchor match kernels. Global match kernels

are obtained by kernel alignment of anchor match kernels.

age sets by directly matching images.

• We build deep local match kernels on the arc-cosine

kernel to faithfully measure the similarity between im-

ages. The deep local match kernel leverages the nature

of arc-cosine kernels to mimic the computation of deep

neural networks with an infinite number of units.

• We introduce anchors to aggregate those deep local

match kernels into global match kernels between im-

age sets, which are learned by kernel alignment. The

anchor-based aggregation provides a new supervised

learning framework to establish kernels between image

sets by exploring the different discriminative abilities

of local match kernels.

The DMK has been evaluated by extensive experiments

on four datasets for three challenging computer vision tasks,

which has produced high performance and consistently sur-

passed state-of-the-art algorithms.

2. Related work

With the great potential of practical use in widespread

applications, image-set classification has been widely stud-

ied in the last few decades [45, 31, 18]. Due to the great

inter-class ambiguity and high inter-class variability, it is

challenging to measure the similarity between image sets,

3308



which usually contain different cardinalities of images. Pre-

vious work has been developed under certain specific as-

sumptions on the distribution of images in sets or on the

geometrical structures of the data.

Due to the capability of characterizing the distributions

of image sets, statistical models have been explored to

model image sets in early work [45, 1]. Under the prior

assumptions of Gaussian distributions, single multivariate

Gaussian model [45] and Gaussian mixture models [1] were

used to represent image sets. The widely used metrics, e.g.,

Kullback-Leibler (KL) divergence, were chosen to measure

the similarity between distributions. However, usually suffi-

cient samples are required to well estimate the parameters of

the distributions and those models would not perform well

when there is no strong statistical correlation between train-

ing and testing data [31, 53].

Symmetric positive definite (SPD) matrices [52] are pro-

posed to model an image set with its second-order statistic,

e.g., the covariance matrix. SPDs are assumed to lie on

Riemannian manifolds, and the Log-Euclidean distance [2]

that projects a point from the Riemannian manifold to the

Euclidean space is chosen to measure the distance between

SPDs. Although it is natural to characterize a set struc-

ture using the SPD matrix, it tends to be computationally

very expensive due to the high dimensionality of the SPDs.

Moreover, as indicated in [21], there would unavoidably

induce distortions during the flattening from Riemannian

manifold to the Euclidean space. To overcome these lim-

itations, Harandi et al. [21] model the mapping from high-

dimensional SPD manifold to a low-dimensional one with

an orthogonal projection. Similarly, Huang et al. [28] pro-

pose Log-Euclidean metric learning to directly map an orig-

inal tangent space to a more discriminative tangent space.

Lu et al. [34] extend the second-order statistic to multiple

order statistics including the mean vector, the covariance

matrix and the Kronecker product between them. Unfortu-

nately, the obtained features of images can be in the third

order of magnitude of the original feature vectors, which

will induce very high computational cost.

The Grassmann manifold has been playing an impor-

tant role in image-set classification [18]. The assumption

of methods based on Grassmann manifolds is that a set of

images can be well approximated by a low dimensional

subspace. Then, discriminant analysis methods are intro-

duced on Grassmann manifolds [27, 19, 23]. Kernel meth-

ods [44] showing great effectiveness for both classifica-

tion [54] and regression [56], have also been explored for

image-set classification. A family of positive definite ker-

nels on the Grassmann manifold of image sets is developed

[14, 50, 18, 22], which indicates the great potential of di-

rectly matching image sets by kernels.

To handle the large variations of image appearance in

the set, affine hull or convex hull models [6, 26] have been

introduced to model image sets. The distances between im-

age sets are measured by geometric distances between con-

vex models or sparse approximated nearest points (SANP).

However, due to the affine/linear subspace assumption, they

would not able to handle the highly nonlinear variations of

image appearance, and moreover, the performance is prone

to outliers because of the used inter-point distance [25]. In

addition, the computational cost can be too expensive due

to the requirement of the one-to-one match for a query set.

Most of the above methods were developed under certain

specific assumptions, which would not hold in practice or

be shared across different applications. We propose deep

match kernels (DMK) under the match kernel framework

[35, 16], which removes those assumptions and provides a

direct measurement between image sets.

3. Deep Match Kernels

The major challenge in image-set classification is to

faithfully measure the similarity between sets. We pro-

pose directly learning the similarity by deep match kernels

(DMK) in the match kernel framework. The DMK builds

local match kernels on the arc-cosine kernel which mimics

a deep infinite neural network with the strong capability of

measuring the similarity of images; these local match ker-

nels are aggregated via anchors into a global match kernel

between image sets, which is learned by kernel alignment.

3.1. Preliminaries

We briefly revisit two fundamental concepts, e.g., the

kernel between sets and match kernels. We reveal that the

kernel between two image sets is essentially characterized

by the similarity between images from the two sets, which

motivates us to learn the kernel between image sets by di-

rectly matching images from them.

3.1.1 Kernel between Sets

We start with the distance between sets of vectors, e.g., im-

age sets, which will be used to construct the kernel between

sets in image-set classification. To keep general, we con-

sider the distance between image distributions of sets.

Given two image sets a and b denoted by Xa =

{x
(a)
i }

|Xa|
i=1 and Xb = {x

(b)
i }

|Xb|
i=1 , respectively, without loss

of generality, the distance between their distributions pa(x)
and pb(x) can be measured by the Hellinger distance [5, 20]

as follows:

D2
H(pa||pb) =

1

|Xa|

|Xa|∑

i=1

(√

R(x
(a)
i )−

√

1−R(x
(a)
i )

)2

+
1

|Xb|

|Xb|∑

i=1

(√

R(x
(b)
i )−

√

1−R(x
(b)
i )

)2

,

(1)
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where

R(x) =
pa(x)

pa(x) + pb(x)
.

The distance is indeed a function of R(x). By using kernel

density estimators [39] with a bandwidth of h, we obtain

R(x) =

1
|Xa|

∑|Xa|
i=1 k(

x−x
(a)
i

h )

1
|Xa|

∑|Xa|
i=1 k(

x−x
(a)
i

h ) + 1
|Xb|

∑|Xb|
i=1 k(

x−x
(b)
i

h )
.

(2)

We can observe from (1) and (2) is that the kernel between

image sets can be ultimately calculated by measuring the

similarity/distance between each pair of images from them,

which indicates that we can directly find a match kernel be-

tween two image sets by matching images from the two sets.

We revisit the match kernel framework in Sec. 3.1.2, which

serves as the theoretical foundation for the derivation of our

deep match kernels (DMK).

3.1.2 Match Kernels

Match kernels as fundamental tools have been widely used

in computer vision and machine learning [35, 16, 4], which

provide a direct effective way to measure the similarity be-

tween two sets of feature vectors, e.g., image sets. A widely

used match kernel between two sets of feature vectors is the

sum match kernel defined as follows:

Definition 1 (Sum Match Kernel [35]). Let Xa =

{x
(a)
i }

|Xa|
i=1 and Xb = {x

(b)
i }

|Xb|
i=1 be two image sets, the

normalized summation of match kernel is defined as:

K(Xa, Xb) =
1

|Xa|

1

|Xb|

|Xa|∑

i=1

|Xb|∑

j=1

k(x
(a)
i ,x

(b)
j ), (3)

where k(x
(a)
i ,x

(b)
j ) is the local match kernel between fea-

tures vectors x(a) and x(b) from Xa and Xb respectively.

A new Mercer kernel was introduced in [35] by replacing

the local match kernel in (3) with
[
k(x

(a)
i ,x

(b)
j )
]p

, where

p ≥ 1. To guarantee the convergence of learning algorithms

and existence of a unique global optimal solution, match

kernels are required to satisfy the Mercer condition [46].

We introduce the definition of Mercer kernels and their clo-

sure properties, which will be used to construct our DMK.

Definition 2 (Mercer Kernel [46]). Let X be any input

space and k : X × X → R is a symmetric function, k is

a Mercer kernel, also known as positive definite kernel, if

and only if the kernel matrix formed by restricting k to any

finite subset of X is positive definite.

The following closure properties of the positive definite

kernels are widely adopted to construct Mercer kernels.

1. If two kernels k1 and k2 are positive definite (p.d.),

then so is their linear combination a1k1+ a2k2, where

a1, a2 ≥ 0. [42]

2. Let k be a p.d. kernel defined on k : X × X →
R, for any finite A,B ⊆ X , define k′(A,B) =
∑

x∈A

∑

x̂∈B k(x, x̂). Then k′ is a p.d. kernel.

(Lemma 1 in [24])

When constructing global match kernels between image

sets, the following properties are highly desired.

• The local match kernel should faithfully reflect the

similarity between images.

• The global match kernel should satisfy the Mercer con-

dition, e.g., positive definitiveness.

• The different discriminative ability of local match ker-

nels should be distinguished when aggregating into

global match kernel.

• The computation of global match kernels should be ef-

ficient in both time and space.

We propose deep match kernels which simultaneously

address the above issues and achieve discriminative and

computationally efficient kernels between image sets.

3.2. Deep Local Match Kernel

We propose building deep local match kernels upon the

arc-cosine kernel [10] to leverage its great capability of

measuring the similarity between images. By mimicking

the computation in deep learning networks of infinite units,

the arc-cosine kernel outperforms the widely used radius

basis function (RBF) kernel [43], which can be viewed as a

single-layer infinite network [40].

Specifically, the r-th order arc-cosine kernel between

two vectors, x, x̂ ∈ R
d, is defined in an integral representa-

tion as follows:

kr(x, x̂) =

2

∫
e−

||w||2

2

(2π)d/2
Θ(w · x)Θ(w · x̂)(w · x)r(w · x̂)rdw,

(4)

where Θ(z) = 1
2 (1 + sign(z)) denotes the Heaviside step

function. (4) can be viewed as the dot product computa-

tion between infinite dimensional outputs of a single-layer

neural network with Gaussian random weights w and the

activation function

gr(z) = Θ(z)zr. (5)

The arc-cosine kernel is highly flexible in that gr(·) can

achieve the step function, ramp function with rectification

nonlinearity [17] and the quarter-pipe function by setting

r = 0, 1, 2, respectively. With different orders r, the activa-

tion function gr(z) has different abilities of handling non-

linearity, which significantly increases the capability of the

representation in neural networks.
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The arc-cosine kernel in (4) can be analytically com-

puted [10] by

kr(x, x̂) =
1

π
||x||r||x̂||rJr(θ), (6)

which is composed of the magnitudes of input vectors and

the angle between them. The angular dependence function

Jr(θ) is defined as

Jr(θ) = (−1)r(sin θ)2r+1
( 1

sin θ

∂

∂θ

)r(π − θ

sin θ

)

(7)

where θ = arccos
(

〈x,x̂〉
||x||||x̂||

)

.

We provide the formulations of the first four orders, r =
0, 1, 2, 3, of the angular dependence function Jr(θ), which

will be used in our deep match kernels.

J0(θ) = π − θ,

J1(θ) = (π − θ) cos θ + sin θ,

J2(θ) = (π − θ)(1 + 2 cos2 θ) + 3 sin θ cos θ,

J3(θ) = (π − θ)(9 sin2 θ cos θ + 15 cos3 θ) + 4 sin3 θ

+ 15 sin θ cos2 θ.

By the arc-cosine kernels, the inputs x and x̂ are matched

by transforming them through the infinite network with an

activation function gr(·), which achieves a deep local match

kernel to measure the similarity between images.

The kernel function can be viewed as inducing a nonlin-

ear mapping from inputs x to a high even infinite dimen-

sional feature vector φ(x). The power of the arc-cosine

kernel stems from its ability to achieve deep learning with

multiple layers by applying ℓ successive times of nonlinear

mapping φ(·).

k(ℓ)(x, x̂) = 〈φ(φ(· · ·φ(x)))
︸ ︷︷ ︸

ℓ times

, φ(φ(· · ·φ(x̂)))
︸ ︷︷ ︸

ℓ times

〉. (8)

This can be computed efficiently due to the nested composi-

tions of kernels rather than explicitly training a multi-layer

neural network [10]. Specifically, the construction of the

arc-cosine kernels for ℓ-layer networks is given by

k(ℓ+1)
r (x, x̂) =

1

π

[
k(ℓ)r (x,x)k(ℓ)r (x̂, x̂)

] r
2 Jr(θ

(ℓ)
r ). (9)

where θ
(ℓ)
r is the angle between the inputs in feature space

induced by ℓ-fold composition and can be written as

θ(ℓ)r = arccos

(

k
(ℓ)
r (x, x̂)

√

k
(ℓ)
r (x,x)k

(ℓ)
r (x̂, x̂)

)

. (10)

The obtained local match kernels essentially accomplish

deep learning to construct kernels between images, which

we, therefore, refer as deep local match kernels.

3.3. Anchor Global Match Kernel

We propose aggregating those deep local match kernels

into a global kernel between image sets by introducing an-

chors based on which kernel alignment is employed to learn

discriminative kernels between image sets.

3.3.1 Anchor Match Kernel

Introducing anchors for aggregating local match kernels

brings us two desirable benefits: 1) we are able to explore

the different discriminant abilities of local match kernels by

learning the weights associated with anchors in a supervised

way; 2) and we are able to compute more efficiently by just

matching images assigned to the same anchors.

We first construct a set of M anchors C = {cm}Mm=1

by quantizing all the images from the training samples by

the k-means clustering algorithm. Images from each set

are then assigned to anchors. Unlike traditional assignment

methods, for each anchor, we find the n nearest images

from each image sets and assign them to this anchor, which

avoids empty anchors.

We then compute the match kernel Km between im-

ages assigned to each anchor cm ∈ C, where Km is re-

ferred as the anchor match kernel. Specifically, the anchor

match kernel is the sum of local match kernels between

images assigned to anchors. Specifically, given two sets

Xa = {x
(a)
i }

|Xa|
i=1 and Xb = {x

(b)
i }

|Xb|
i=1 , the anchor match

kernel is defined as:

Km(Xa, Xb) =

1

n2

∑

x
(a)
i

∈N
(a)
n,cm

∑

x
(b)
j

∈N
(b)
n,cm

k(cm − x
(a)
i , cm − x

(b)
j ) (11)

where N
(a)
n,cm

denotes the n nearest neighbors of the m-th

anchor in the set a, and N
(b)
n,cm

is defined similarly. The use

of the difference between images and anchors is inspired

by its success in the construction of vector of locally ag-

gregated descriptors (VLAD) [29], which has shown great

effectiveness in image representations.

Having anchor match kernels in (11), the global match

kernel between the two image sets is obtained by

KG(Xa, Xb) =

M∑

m=1

ωmKm(Xa, Xb) (12)

where ω = {ω1, · · · , ωm, · · · , ωM} with ω ≥ 0 are the

weight coefficients associated with anchor match kernels.

The positive definiteness of the obtained global match

kernel is crucial to the robust solution with a unique opti-

mum which is guaranteed by Theorem 1.

Theorem 1 (Positive Definiteness of Anchor Global Match

Kernel). The anchor global match kernel in (12) satisfies

the Mercer condition and is, therefore, positive definite.
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The positive definiteness of the anchor global match

kernel is essentially guaranteed by deep local match ker-

nels built on arc-cosine kernels. Indeed, the arc-cosine

kernel can be viewed as the inner product between high-

dimensional feature maps from the neural network of infi-

nite units. Denote {wi}
h
i=1 as ith row of the weight matrix

W of the network with the activation function in (5). The

inner product is

gr(Wx)·gr(W x̂) =

h∑

i=1

Θ(wi·x)Θ(wi·x̂)(wi·x)
r(wi·x̂)

r.

(13)

which induces a positive definite kernel. The arc-cosine ker-

nel can be obtained with h → ∞, e.g.,

kr(x, x̂) = lim
h→∞

gr(Wx) · gr(W x̂). (14)

Therefore, the arc-cosine kernel is positive definite. Since

the anchor global match kernel is aggregated from deep lo-

cal match kernels built on arc-cosine kernels by a linear

combination with ω ≥ 0, therefore we can straightfor-

wardly derive the positive definiteness from closure prop-

erties 1, 2 under the definition of Mercer kernels (Definition

2).

3.3.2 Learning by Kernel Alignment

We propose learning the weight coefficients ω associated

with anchors in a supervised way by kernel target align-

ment, which has shown great effectiveness in learning the

optimal combination of multiple kernels [12, 11].

The core idea of kernel alignment is to align an input

kernel K to a target kernel KT by maximizing the similarity

or the degree of agreement between them. Specifically, the

alignment between kernels is defined as

A(K,KT ) =
〈K,KT 〉F

√

〈K,KT 〉F 〈KT ,KT 〉F
. (15)

Intuitively, the measurement of alignment can be viewed as

the cosine of the angle between two bi-dimensional vectors

K and KT . Kernel alignment offers a best-suited way to

obtain the weight coefficients ω. We now introduce the ker-

nel alignment formulation to learn our anchor global match

kernel. We would like to maximize the alignment between

the target kernel matrix KT and the global kernel KG(ω)
denoted as Kω for simplicity, and based on (15), we have

the following optimization problem

ω∗ = argmaxA(Kω,KT ) = argmax
Tr(KωKT )
√

Tr(KωKω)
.

(16)

The target kernel matrix KT is constructed by defining the

target kernel KT = Y Y ⊤, where Y is the matrix composed

of the class label vectors, e.g., Y = [y1, · · · ,yi, · · · ,yN ]⊤

for N samples, and yi is a binary vector of the length of

classes, in which only the c-th element is 1 if xi is from the

c-th class.

As indicated in [11], to obtain the high correlation be-

tween performance and kernel alignment, it is necessary to

center all kernel matrices Km before alignment. Let [Km]ij
denote the element in Km and the centered kernel matrix

can be computed by

[
K̄m

]

ij
=
[
Km

]

ij
−

1

N

N∑

i=1

[
Km

]

ij

−
1

N

N∑

j=1

[
Km

]

ij
+

1

N2

N∑

i,j=1

[
Km

]

ij
.

(17)

We can further equivalently rewrite the objective func-

tion in (16) as follows:

ω∗ = argmax
||ω||=1,ω≥0

ω⊤ββ⊤ω

ω⊤Ωω
(18)

where ω ≥ 0 guarantees the positive definiteness, ||ω|| = 1
is a regularization term, for i, j ∈ {1, · · · ,M}, β is defined

by βi = Tr
(
K̄iKT

)
and the matrix Ω is defined by Ωij =

Tr
(
K̄iK̄j

)
.

This alignment maximum problem in (18) can be re-

duced to a simple quadratic programming (QP) problem

[38] as shown in the Proposition 1, which does not require

the inversion of Ω in (18) and can be solved efficiently.

Proposition 1. Let q∗ be the solution of the following QP:

q∗ = argmin
q≥0

q⊤Ωq− 2q⊤β. (19)

Then, the solution ω∗ of the alignment maximization prob-

lem (18) is given by

ω∗ =
q∗

||q∗||
. (20)

Proof. The proof can be referred to the proof of Proposi-

tion 3 in [11].

3.3.3 Complexity Analysis

Due to the introduced anchors, the proposed deep match

kernels (DMK) are computationally more efficient than

conventional match kernels, e.g., the sum match kernel

(SMK). We provide the time complexity analysis to show

the efficiency advantage. The complexity of match ker-

nels is mainly induced by the computation of the kernel

between two image sets. Given N image sets with a max-

imum of L images, M anchors, and n nearest neighbors,
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the time complexity of our DMK is O(N2n2M) in com-

parison to O(N2L2) for the SMK. Given a typical setting

with M = 50, n = 10 and L = 500, n2M(= 5, 000) ≪
L2(= 250, 000). Therefore, the time complexity is largely

reduced in our DMK compared to the SMK.

4. Experiments

We show the effectiveness of the proposed deep match

kernels (DMK) on three challenging computer vision tasks,

e.g., video-based face recognition, dynamic scene classifi-

cation, and set-based object categorization.

4.1. Experimental Settings

We set the parameters ℓ, r in arc-cosine kernels to be

ℓ = 4, r = [0, 1, 3, 3], respectively by cross-validation,

which generally produces the best overall performance on

all the datasets. The number of anchors and neighbors are

the key parameters to be set, which have been thoroughly

investigated on all the datasets in our experiments. We im-

plement two variants of sum match kernels (SMK) (3) as

baseline match kernels. We adopt the support vector ma-

chine (SVM) [8] with the setting of pre-computed kernels

for classification.

We compare with representative state-of-the-art algo-

rithms including subspace-based modeling for DCC [31],

GDA [18], MDA [51], PML [51], GEDA [23], CDL [52],

SPD-ML [21], LEML [28], DARG [53] and MPDF [20].

Specifically, we implement 3 variants of MPDF, namely

kFDA-J, kFDA-HL and NN-J-DR. The default parameters

of all these methods are tuned by following the original

work. For DCC, PCA is performed to learn the subspace

by keeping 90% energy. The numbers of basis vectors for

subspace in GDA, MDA and GEDA are chosen by cross-

validation and we report the best result. The parameter of

dimension d in PML [51] is chosen as reported by the au-

thor. LDA is used for discriminative learning in CDL [52].

For LEML, two parameters η and ζ are searched in the

range of [0.1, 1, 10] and [0.1 : 0.1 : 1] respectively. For

DARG, the number of Gaussian components in GMM is set

to 7 as suggested by the authors [53].

4.2. Results

The proposed DMK consistently produces the high per-

formance on all tasks and largely outperforms the baseline

sum match kernels (SMK) and representative state-of-the-

art algorithms. The results are reported in Tables 1. In what

follows, we provide the implementation and comparison de-

tails on each task.

4.2.1 Video-based Face Recognition

We conduct experiments for video-based face recognition

on the commonly used YTC dataset [30] which contains

1910 video clips of 47 subjects. This dataset exhibits large

diversity in terms of illumination, facial expressions, and

poses. There are hundreds of frames in each clip. By fol-

lowing settings in previous work [25], we adopt the algo-

rithm in [41] to detect the faces for each clip and resize to

patches of the size 50× 50. The local binary pattern (LBP)

[49] is used for face description, which is reduced to 1000
by PCA.

For the fair comparison, we follow the standard valida-

tion protocol [34]; specifically, for each subject, we ran-

domly choose 9 videos with 3 and 6 for training and query

sets, respectively. The results are the average from five

times. We set parameters M , the number of anchors, to

be 100 and n, the number of nearest neighbors to be 4, re-

spectively. As shown in Table 1 (3rd column), our DMK

achieves the highest identification rate of 80.3%.

4.2.2 Dynamic Scene Classification

Dynamic scene classification has been an important task

in computer vision, which has recently been addressed as

image-set classification. We show the advantage of our

DMK on two datasets, e.g., the UCSD [7] and MDSD [47]

datasets for this task. For UCSD, we compute the HoG fea-

tures [13] to describe each frame in videos. We follow the

training/test split settings shared in [20]. The parameters

for this dataset are set as M = 10 and n = 3. For the

MDSD, with 10 videos per class, the dataset contains 13

different classes of dynamic scenes. The task is very chal-

lenging because scenes in the wild are unconstrained with

large variation in scale, view, illumination, background. We

choose the last fully connected layer of the CNN [57, 48] as

the descriptor for each frame and reduce the dimensionality

of the CNN features from 1183 to 400 by PCA.

Following the settings in [20], we test the method based

on two protocols, e.g., standard leave-one-out (LOO) and

seventy-thirty-ratio (STR) which partitions the dataset into

gallery and probes by randomly choosing 7 videos for train-

ing and 3 videos for testing in each class. The parameters in

MDSD dataset are set as M = 10 and n = 100. As shown

in Table 1 (4th-6thcolumns), on the two datasets, our DMK

surpasses all the compared methods.

4.2.3 Set-based Object Categorization

Set-based object classification is an important computer vi-

sion task. We experiment on the ETH-80 dataset [32],

which has been widely used for set-based object classifi-

cation. There are 41 images for each set of different ori-

entations. To achieve the fair comparison with other meth-

ods, we follow the same experimental setup in [52, 34, 33].

Each image is segmented from all the simple background

and scaled 20× 20 for classification. For each object, 5 in-

stances are selected as the gallery and the remaining five are
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Table 1. The performance comparison on the YTC, UCSD, MDSD, ETH-80 datasets.

Method

Dataset
Years YTC UCSD MDSD-STR MDSD-LOO ETH-80

DCC [31] 2007 65.4± 3.9 91.5± 3.4 69.8± 6.1 80.5± 5.5 91.7± 9.0
GDA [18] 2008 66.0± 6.9 92.5± 2.6 70.4± 4.5 81.5± 5.1 95.0± 3.9
MDA [51] 2009 67.2± 4.0 92.7± 3.6 72.3± 4.2 82.4± 3.0 89.0± 2.0
GEDA [23] 2011 69.3± 2.2 92.4± 2.3 70.3± 5.2 82.2± 6.1 92.3± 2.4
CDL [52] 2012 70.1± 4.6 91.7± 0.9 76.7± 7.8 86.5± 5.8 91.5± 3.5
SPD-ML [21] 2014 69.8± 6.7 92.1± 1.5 77.3± 6.2 84.3± 7.2 93.2± 5.3
PML [27] 2015 70.3± 3.7 94.7± 3.1 72.4± 3.7 82.7± 3.7 95.5± 4.3
LEML [28] 2015 73.3± 2.9 92.5± 2.9 77.6± 5.2 86.5± 6.2 96.0± 2.1
DARG [53] 2015 77.1± 4.3 95.5± 3.0 73.6± 4.4 83.5± 5.8 92.3± 2.4
kFDA-J [20] 2015 79.3± 3.6 97.3± 1.4 77.8± 5.3 86.9± 4.3 93.7± 1.4
kFDA-HL [20] 2015 77.5± 3.8 96.5± 1.5 79.0± 3.1 87.1± 5.3 93.1± 2.0
NN-J-DR [20] 2015 78.1± 1.9 95.6± 1.5 80.2± 3.7 82.3± 3.9 93.8± 2.8

SMK∗ (p = 1) [35] 77.5± 3.8 97.0± 1.3 79.5± 3.9 85.7± 4.1 93.0± 2.9
SMK∗ (p = 3) [35] 78.1± 1.9 97.6± 2.4 78.4± 4.1 85.9± 5.2 93.7± 3.8
DMK (Ours) 80.3± 4.7 98.0± 0.9 81.5± 4.7 87.2± 5.0 96.8± 1.5

* p denotes the power of local match kernels in (3).

Anchor ID

1 15 30

Id
e

n
ti
fi
c
a

ti
o

n
 R

a
te

 (
%

)

74

77

80
YTC

Anchor ID

1 5 10

Id
e

n
ti
fi
c
a

ti
o

n
 R

a
te

 (
%

)

90

95

100
UCSD

Anchor ID

1 5 10

Id
e

n
ti
fi
c
a

ti
o

n
 R

a
te

 (
%

)

70

75

80
MDSD-STR

Anchor ID

1 5 10

Id
e

n
ti
fi
c
a

ti
o

n
 R

a
te

 (
%

)

80

90

100
ETH-80

Figure 2. Different discriminant abilities of anchor match kernels.

used for probes. We run 10 times of experiments and per-

form different random selections of the gallery and probes

sets. The parameters are set as M = 5 and n = 30. As

shown in Table 1 (rightmost column), our DMK achieves

the highest identification rate of 96.8% which is much bet-

ter than most of the compared methods.

4.3. Parameter Analysis

The introduced anchors underpin the aggregation of the

deep local match kernels into a global match kernel. We

provide a comprehensive investigation into the effects of

anchors on the performance. We experiment to look into

discriminative abilities of anchor match kernels. As shown

in Figure 2, match kernels associated with individual an-

chors produce distinctive identification rates. This indicates

that local match kernels carry different discriminative infor-

mation, which has been explored in our deep match kernel

framework compared to the SMK. The results validate the

effectiveness of the introduced anchors.

5. Conclusion

In this paper, we have presented the first match kernel

framework, the deep match kernel (DMK), for image-set

classification, which removes specific assumptions on

image distributions and geometrical structures. We build

the local match kernels by the arc-cosine kernel to leverage

its nature of mimicking deep learning architectures. We

introduce anchors to establish a global match kernel

between sets, which is learned by kernel alignment. The

obtained global match kernel is more discriminative and

efficient to compute compared to conventional match

kernels. Experiments on four datasets for three challenging

computer vision tasks demonstrate that our DMK consis-

tently surpasses state of the arts.
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