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Figure 1: When curb ramps (green rectangle) are missing from a segment of sidewalks in an intersection (orange rectangle),

people with mobility impairments are unable to cross the street. We propose an approach to determine where objects are

missing by learning a context model so that it can be combined with object detection results.

Abstract

Most of computer vision focuses on what is in an im-

age. We propose to train a standalone object-centric context

representation to perform the opposite task: seeing what is

not there. Given an image, our context model can predict

where objects should exist, even when no object instances

are present. Combined with object detection results, we can

perform a novel vision task: finding where objects are miss-

ing in an image. Our model is based on a convolutional

neural network structure. With a specially designed train-

ing strategy, the model learns to ignore objects and focus

on context only. It is fully convolutional thus highly effi-

cient. Experiments show the effectiveness of the proposed

approach in one important accessibility task: finding city

street regions where curb ramps are missing, which could

help millions of people with mobility disabilities.

1. Introduction

Most fundamental computer vision tasks, e.g., image

classification and object detection, focus on seeing what is

there: for example, is there a curb ramp in this image, if

yes, where is it? Using deep neural network models, com-

putational approaches to such tasks are catching up to hu-

man performance in more and more benchmarks. However,

humans can easily outperform algorithms in the task of in-

ferring objects that are ‘not there’: for example, is there a

curb ramp in this image, if no, where could it be?

We are interested in finding where objects are missing in

an image: an object of interest is not there, even though the

environment suggests it should be. From a computational

perspective, an object can be defined as missing in an image

region when: 1) an object detector finds nothing; 2) a pre-

dictor of the object’s typical environment, i.e. context, indi-

cates high probability of its existence. Given an image, we

want to detect all such regions efficiently. We summarize
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the relationship between an object’s detector and its context

model in Table 1. While there are many existing works on

utilizing context in object detection (Section 2), they mainly

focus on improving performance on finding typical objects

with contextual and object information entangled. In this

work we propose to train a standalone object-centric con-

text representation to find missing objects. By looking at

the reverse conditions, it can be adapted to find out of con-

text objects too.

One practical motivation for finding missing objects

comes from the street view curb ramp detection problem

(Figure 1). The task is to label curb ramps in a city’s inter-

sections so that people with mobility impairments can plan

their routes with confidence. Although existing work [9]

shows good performance in detecting constructed curb

ramps, it cannot detect missing curb ramps regions. Know-

ing this information is highly valuable: users can assess the

accessibility of an area; navigation algorithms can calculate

better routes for pedestrians; governments can plan for fu-

ture renovations accordingly. This is a very expensive and

time consuming task for human labelers, which is partially

the reason why such information is missing from public

databases. Therefore, we are interested in developing an

automatic algorithm that is effective and efficient. It can be

used to scan a whole city to find regions where curb ramps

are missing. In this scenario, the number of found true miss-

ing curb ramp regions (recall) is more important than preci-

sion because it is much more light-weight to ask humans to

verify algorithm results than to label images from scratch.

Moreover, even if the algorithm reports one true missing

curb ramp region but mistakenly ignores three others in an

image, it is still valuable as a preprocessing step: govern-

ments can prioritize intersection assessments in a city and

allocate auditors more efficiently.

We believe the key to tackle this problem is to learn a

model that focuses on context only and works efficiently

just like an object detector: it scans each image and gener-

ates a probability heat map in which each pixel represents

the probability that an object exists, even when no object is

in sight. One big advantage of the context and object de-

composition is that we don’t need abnormal object labels

(missing/out-of-context) for training. A standalone context

model can be learned from typical objects and later used for

finding abnormal objects. This greatly simplifies training:

normal objects are abundant and much easier to collect and

label than abnormal objects.

In this paper, we propose such a model based on convolu-

tional neural networks and a novel training strategy to learn

a standalone context representation of a target object. We

start by introducing a base network in Section 3. It takes

input images with explicit object masks and learns useful

context from the remaining areas of the images. Because

of the limitations discussed in Section 4, we then propose

Object Score Context Score Image Region Remark

High High Typical objects

Low High Missing objects

High Low Out of context objects

Table 1: Relationship between object and context. Ob-

ject score is obtained from an object detector, while context

score is from its context model.

a fully convolutional version of the network that learns an

implicit object mask such that it ignores objects in an image

and focuses purely on context. It does not require object

masks during test time. Section 5 describes the procedure

for using the context model to find missing objects regions

and Section 6 presents experimental results.

The contributions of this work are as follows. First, we

propose a method to learn an object-centric context rep-

resentation by learning from object instances with masks.

Second, we propose a training strategy to force the network

to ignore objects and learn an implicit mask. The model

is fully convolutional so it also speeds up probability heat

map generation significantly. Finally we present promis-

ing results on the missing curb ramps detection problem in

street view images, and a preliminary result on finding out-

of-context faces.

2. Related Work

Context in Object Recognition. A large body of evi-

dence has shown that contextual information affects hu-

man visual search and recognition of objects [3, 12]. In

computer vision, recently it also has become a well ac-

cepted idea that context helps in object recognition algo-

rithms [5, 11, 13, 19]. Usually, context is represented by

semantic labels around an object. [15] uses a Conditional

Random Field to model contextual relations between ob-

jects’ semantic labels to post-process object recognition re-

sults. [11] builds a deformable part model that incorpo-

rates context labels around an object as ‘parts’. Because of

the coupling between context and object information, these

methods are unsuitable to detect missing object regions.

Torralba et al. proposed the Context Challenge [18] that

consists in detecting an object using exclusively contextual

information. They take the approach of learning the relation

between global scene statistical features and object scale

and position. Visual Memex [10] is a model that can either

retrieve exemplar object instances or predict the semantic

identity of a hidden region in an image. It uses hand-crafted

features and models context as inter-category relations. Our

approach can be seen as a general approach that attempts to

address this challenge, without the need for designing hand-

crafted features or using preset object classes.

Finding Missing Objects. Grabner et al. proposed to use
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the General Hough Transform to find objects that are miss-

ing in video frames during object tracking [7]. The idea

is to estimate positions of a target object from surrounding

objects with coupled motions.

Computer Vision with Masked Images. Recently Pathak

et al. [14] proposed to learn a convolutional neural network

context encoder for image inpainting. Both their work and

ours train convolutional neural networks with masked im-

ages. But the purpose is very different as they try to learn a

generative model to inpaint the mask while we learn a dis-

criminative model to infer what is inside the mask. Also,

our work uses an efficient fully convolutional structure.

Accessibility Tasks. With massive online resources such

as the Google Street View (GSV) service, many computer

algorithms are designed to help people with disabilities and

improve their quality of life. CrossingGuard [8] is a system

designed to help visually impaired pedestrians to navigate

across intersections with help from Amazon Mechanical

Turk. Tohme [9] is a semi-automated system that combines

crowdsourcing and computer vision to collect existing curb

ramp positions in city intersections using GSV images. It

uses the Deformable Part Models [6] as a curb ramp detec-

tor and asks Mechanical Turkers to verify the results. They

provide a street view curb ramp dataset with 1086 city in-

tersection images, which we use in the experiment section.

3. Learning Context from Explicit Object

Masks

In this section, we introduce a base version of the pro-

posed context learning algorithm. If ‘context’ is defined to

be everything that surrounds an object except the object it-

self, this model is learning context literally: every target

object instance in training images is masked out. Here we

assume an object’s visual extent is fully represented by its

bounding box label.

This is a binary classification problem. Positive samples

are collected so that each image sample has an object at

its center, with a black mask (value equals zero after pre-

processing) covering the object’s full extent. The bounding

box width to the whole image width ratio is set to 1/4 for

the purpose of including a larger contextual area. Negative

samples are random crops with similar black masks at their

centers. The position of a negative crop is chosen so that

the masked region will not cover any groundtruth labeled

objects with more than a Jaccard index 1 of 0.2.

If there are multiple object instances in an image, we

mask out one object at a time for positive samples. This is

because the existence of other object instances could be use-

ful context: for example, curb ramps often appear in pairs.

To prevent our context model trivially learning the par-

ticular mask shape, we force negative samples to share a

1Defined as the intersection-over-union ratio of two rectangles.

similar distribution of mask dimensions with positive sam-

ples. The sampling strategy is to interleave the positive sam-

pling and negative sampling processes, and use the previous

positive sample’s mask dimension in the next negative sam-

ple.

We train a convolutional neural network model Q. The

network consists of four convolutional layers with pooling

and dropout, and two fully connected layers. Its structure is

summarized in Table 2. Cross entropy loss (Eq. 1) is used

as the classification loss:

Lc = −Qy(Im) + log
∑

y

eQy(Im), (1)

where y ∈ {1, 2} is the groundtruth label for a masked im-

age Im (1 for positive, 2 for negative), Q(Im) is a 2x1 vector

representing the output from the network Q, while Qy(Im)
represents its y-th element.

Layer (type) Shape Param #

Convolution2D (3, 3, 32) 896

Convolution2D (3, 3, 32) 9248

MaxPooling2D (2, 2) 0

Dropout - 0

Convolution2D (3, 3, 64) 18496

Convolution2D (3, 3, 64) 36928

MaxPooling2D (2, 2) 0

Dropout - 0

FullyConnected (53*53*64, 256) 46022912

Dropout - 0

FullyConnected (256, 2) 514

Total params: 46,088,994

Table 2: Neural network structure summary for the base

network. Convolution filter shapes are represented by (filter

width, filter height, number of filters) tuples. The network

expects to take an input image of size 224x224, with an

explicit mask at the center.

Convolution2D (53, 53, 256) 46022912

Dropout - 0

Convolution2D (1, 1, 2) 514

Table 3: Fully convolutional layers to substitute for the last

three layers of the base network. This network can take

arbitrary sized input, with no explicit mask needed.

During test time, a sliding window approach is used to

generate a probability heat map for a new image so that

each pixel has a context score of how likely it is to con-

tain an object. At each position, a fixed size (224x224 in

our implementation) image patch is cropped with the cen-

ter region masked out to be fed into the base network. The

mask size is determined empirically from the training set.
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Figure 2: Training scheme of the Siamese trained Fully convolutional Context network (SFC). The intuition is to enforce the

fully convolutional network Q to output similar results regardless of whether an image is masked or not. Additionally, the

network should produce correct classification labels. The training is done in a Siamese network setting with shared weights

w.

4. A Fully Convolutional Model that Learns

Implicit Masks

There are several issues with a network trained with

masked images. First, the network tends to learn arti-

facts. [14] reports that training with rectangular mask makes

a network learn “low level image features that latch onto

the boundary of the mask”. They propose to use random

mask shapes to prevent this issue. However, we cannot use

random masks because our mask is defined over the visual

extent of an object. Second, during testing time, the base

network expects every input to have an explicit mask. This

is highly inefficient when we evaluate the network at all po-

sitions and scales to generate a heat map. There are standard

procedures to convert a convolutional neural network with

fully connected layers into a fully convolutional one [17]

so that the map generation is much more efficient for im-

ages of arbitrary sizes. However, in our case the situation is

complicated. During training, the base network always sees

input images with all zeros at the center, so the weights of

neurons with receptive fields on this region can be arbitrary

because no gradients are updated. If we apply the converted

fully convolutional network to unmasked images, outputs

from those neurons can affect the final map arbitrarily.

The question is then, can we train a network so that it

is fully convolutional and learns context by ignoring the

masked region ‘by heart’?

The answer is yes and we now propose a training strat-

egy to make a network learn an implicit object mask. The

intuition is that we want the network to output similar re-

sults regardless of whether an input image is masked or not.

By enforcing this objective, the network should learn to find

visual features that are shared in both masked and raw im-

ages: i.e. from the unmasked regions.

Formally, we want to minimize a distance loss in addi-

tion to the classification loss used in the base network:

Ld = ||Q(Im)−Q(I)||p, (2)

where Q(Im) is the output vector from the network Q with

masked image Im as the input, Q(I) is the output vector

from Q with the unmasked raw image I as the input, and

‖ · ‖p represents the Lp-norm.

Effectively, we have two shared-weight networks that are

fed with masked and raw image pairs (Figure 2). The net-

work is a fully convolutional version of the base network

(Table 3). One stream of the network computation takes a

masked image as input and outputs Q(Im). In parallel, the

other stream of network computation takes the unmasked

raw image as input and outputs Q(I). The classification loss

Lc is calculated based on Q(Im) alone, while the distance

loss Ld is calculated by Q(Im) and Q(I). This structure is

known as a Siamese Network [4] so we call it the Siamese

trained Fully convolutional Context (SFC) network. Fol-

lowing [4], we choose the L1 norm in distance loss Ld. We

expect the SFC network to learn an implicit object mask

by assigning zero weights to neurons whose receptive field
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falls onto the center object mask region. During test time,

unlike the base network, we don’t have to manually set the

mask size: the SFC network has encoded this information

in convolutional filters’ weights.

Finally, the overall training objective is defined as a

weighted sum of the two losses:

L = λLd + Lc, (3)

where λ = 0.5 in our implementation.

The benefits of this training strategy are three fold:

1) Because the SFC learns to ignore object mask regions,

we can directly apply it to new unmasked images with ar-

bitrary sizes: it is now highly efficient to generate a dense

probability map. Figure 3 shows a comparison between heat

maps generated by the base network and the SFC network.

A 1024x2048 pixels image costs about 5 minutes to gener-

ate a heat map with the base network while the SFC network

takes less than 4 seconds to generate a map with higher spa-

tial resolutions.

2) The SFC network is less prone to artifacts. It is possi-

ble for the base network to learn artifact features along the

boundary of masks. Since such features are not present in

unmasked images, the SFC network learns to ignore them.

3) During training, we can perform hard negative mining

efficiently. Between each training epoch, we can apply the

SFC network on all training images to generate heat maps

and find high score false positive regions. Because of the

efficiency of fully convolutional networks, this step can be

easily included in training. Section 6.2 shows that hard neg-

ative mining indeed improves the network performance by

a large margin.

5. Finding Missing Object Regions Pipeline

With a trained standalone context network (base network

or SFC network), we summarize the procedure for finding

missing object regions in a test image.

1) Generate a context heat map using the context network

Q. This map shows where an object should appear.

2) Generate object detection results using any object de-

tector. Convert detection boxes into a binary map by assign-

ing 0 to the detected box region, 1 otherwise. This binary

map shows where no objects are found.

3) Perform element-wise multiplication between the

context heatmap and the binary map. The resulting map

shows the regions where an object should occur according

to its context but the detector finds nothing.

4) Crop the high scored regions (above a preset thresh-

old) from the image according to the resulting map. These

are the regions where objects are missing.

Figure 3: Top: an input street view panorama image. Mid-

dle: the heat map generated by the base network using a

sliding window approach. Bottom: the dense heat map gen-

erated by the SFC network.

6. Experiments

In this section, we first examine the characteristics of the

base network and the SFC network in Subsection 6.1. Then

we evaluate their effectiveness. With the decomposition of

context and object information, we study two unique tasks

that can be efficiently performed using a standalone con-

text model. Subsection 6.2 shows experimental results of

finding missing curb ramp regions in street view images.

Subsection 6.3 shows preliminary results of detecting out

of context faces.

6.1. Characteristics of the Trained Model

As a validation study, we first check the sensitivity of the

base and the SFC networks with regard to small changes in

input images. All experiments are conducted on the curb

ramp street view dataset. A desirable model has small re-

sponse variations to the center region of an input image,

where a mask was put during training. For evaluation, we

change one pixel value at a time in a test image, by adding

a small noise. The L2 distance between a network’s output

before and after the disturbance is recorded for each pixel.

In the end we obtain a map that shows which region in the

image has large impact on the network’s output. This can

be seen as an estimate of the first order derivative of a net-

work with respect to its input. Figure 4 shows the result
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with comparison between the base network and the SFC

network. This result is summed over 20 different image

samples.

Figure 4: The sensitivity map of the base network (left) and

the SFC network (right): a dark dot indicates a high sensi-

tivity spot. Compared to the base network, the SFC map has

a clear blank area at the center, which indicates that changes

in this region have little effect on the network’s output. The

SFC network learns an implicit region mask.

From the result it is clear that the SFC network has small

sensitivity at the center region of the input image. This is

most likely due to the network learning to mute neurons

whose receptive field falls at the center region of the input

image. The blank region in the SFC’s sensitivity map can

be seen as a visualization of an approximation to the learned

implicit region mask.

Next we check the distance loss Ld of the base network

and the SFC network on test data. Using the same set of

training hyper-parameters and setup (learning rate, training

epochs) to train the two networks, the mean Ld loss is sum-

marized in Table 4. It is clear that the SFC network is much

more consistent in producing similar outputs regardless of

object masks.

SFC network Base network

Ld loss 0.041 2.27

Table 4: Mean Ld loss of the two networks on the curb ramp

dataset test set. Lower loss means smaller changes between

a network’s outputs from masked and unmasked images.

The SFC network works as intended: 1) it learns an im-

plicit mask so it is less sensitive to any changes in the center

region; 2) the useful features that it learns for the classifica-

tion task are mainly from unmasked regions.

6.2. Finding Missing Curb Ramp Regions

Setup. We want to find missing curb ramps in the street

view curb ramps dataset [9]. The dataset contains 1086

Google Street View panoramas which come from four cities

in North America: Washington DC, Baltimore, Los An-

geles and Saskatoon (Canada). Each panorama image has

1024x2048 pixels. It provides bounding box labels for ex-

isting curb ramps. On average there are four curb ramps per

image. In addition, for our evaluation, an expert has labeled

all missing curb ramp regions.

The dataset is split into half training and half testing.

Each image is converted to YUV color space and normal-

ized to be zero mean and one standard deviation in all chan-

nels. We use the curb ramp detector provided with the

dataset, a Deformable Part Model, with default settings.

Training. For each epoch, 5000 samples are generated from

training data, with half positives and half negatives. Fig-

ure 5 shows several examples. Each sample has 50% prob-

ability of being horizontally flipped for data augmentation

purposes. Positive samples contain valid context around

curb ramps. Negative samples are cropped randomly from

areas not containing a curb ramp. To train the SFC net-

work, each sample is prepared with two versions: raw and

masked. We resize positive samples such that the object

width is close to 55 pixels in a 224 pixels wide image. Each

negative sample uses the same object mask and scale as

the last positive sample to prevent the network overfitting

to mask shapes.

Figure 5: Training examples of curb ramps. Green rect-

angles represent positive samples, red rectangles represent

negative samples.

We use the Keras/Tensorflow neural network software

package [1]. The optimization algorithm uses Adadelta

with default parameters. Since this is an adaptive learning

rate method, there is no need to set a learning rate schedule

during training. 20% of the training data is used as a vali-

dation set for an early stopping test. A base network and a

SFC network are trained using the same hyper-parameters

and training setup.

Results. Following the procedure described in Section 5,

we run the two networks on test images to generate proba-

bility heat maps of where curb ramps should be in an im-

age. For the base network, each heat map is generated in

a sliding window scheme with a stride of 10 pixels, and

various object mask widths of {50, 70, 100} pixels to gen-

erate multi-scale maps. The SFC network doesn’t need an

object mask size, so we resize the input panorama image

with scales {0.5, 0.7, 1.0}. The numbers are chosen so that

two networks see similar image pyramids. We use the DPM

detector provided with the dataset to generate detection re-

sults. For each panorama, we generate a final map that com-

bines the detection and context map and crop high scored

regions (above a certain threshold) with size d × d. Ac-

cording to preliminary empirical studies, we set the context
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threshold to 0.4 throughout the experiment.

We use human verification to evaluate the quality of the

reported missing curb ramp regions. For that purpose, we

develop a web based interface (Figure 6) that displays a

gallery of found regions, ranked by their context scores. For

each candidate region, a user provides feedback on whether

it is truly a missing curb ramp region. We compare con-

text maps generated by the base and the SFC networks with

three baseline methods: random scores, spatial prior map,

and a Faster RCNN [16] missing curb ramp detector.

Figure 6: The web interface for verification. Each thumb-

nail shows one retrieved region, with its score displayed be-

low. A user clicks on a thumbnail to verify it.

Random scores assigns uniformly random context scores

from [0, 1] to all positions in an image. This is a reference

baseline showing the performance by chance.

A spatial prior map is built using the prior positions of

curb ramps in street view panoramas. We use the prior map

as a replacement for the context map for comparison. We

collect the prior spatial distribution of all curb ramps from

the training images. The collected distribution is smoothed

with a 30x30 pixel Gaussian kernel with sigma=10. Fig-

ure 7 shows the spatial prior map used in our experiment.

Because most panoramas are at street intersections, there is

strong spatial structure consistency among the dataset. We

expect this approach to be a reasonable baseline.

Figure 7: The spatial prior heat map generated from

groundtruth locations of curb ramps in the training set. It

shows that curb ramps are far from uniformly distributed.

With missing curb ramp region labels, we can treat this

task as a standard object detection problem and directly

train a Faster RCNN detector: the positive ‘object’ is a

region labeled as missing curb ramps. Note that a Faster

RCNN detector is capable of learning context because it’s

an end-to-end approach: potentially the detector can learn

from the whole image to predict locations of missing curb

ramp regions. We expect the Faster RCNN detector to be a

strong baseline.

The verification of the missing curb ramp regions re-

quires domain knowledge. One of the authors who has ex-

tensive experience with accessibility problems verified the

results using our web interface. Figure 8 shows the compar-

ison in recall of true missing curb ramp regions versus the

number of visited regions (Recall@K). The retrieved region

size is set to d = 400 pixels. 500 regions were retrieved

from 543 test images.

The result shows that the SFC network with hard nega-

tive mining outperforms all other methods. We believe its

superiority comes from the highly efficient fully convolu-

tional structure that helps in training and generating high

resolution context maps. Spatial prior map shows reason-

able performance, which confirms the spatial bias of curb

ramps locations in the dataset. Unlike the spatial prior map,

the proposed methods can work well on other datasets that

have no such bias. The Faster RCNN detector has signif-

icantly less recall compared with the SFC networks. With

more missing curb ramp regions as training data, we ex-

pect the Faster RCNN detector to show improved perfor-

mance; on the other hand, the SFC network does not even

need missing curb ramp labels in training. The proposed

methods learn useful context information from normal curb

ramps, which are much easier to collect and label than miss-

ing curb ramp regions. Moreover, the SFC network is using

detection results from a less advanced curb ramp detector

(a DPM model shipped with the dataset): 77% of the false

missing curb ramp retrievals are due to inaccurate curb ramp

detections. Due to the page limit, we show more qualitative

results of retrieved regions in the supplementary document.

Additionally, we investigate the effects of the retrieved

region size d on the number of true missing curb ramp re-

gions. Specifically, we vary the cropped region size from

400 pixels in width to 100 pixels. With smaller region size,

it becomes crucial that the region is accurately localized

with missing curb ramps at the center. Table 5 shows that

the SFC network is not affected too much by the reduced

field of view. This is because the regions it found are very

well localized (See Figure 6). On the other hand, two base-

line methods (random scores and prior maps) are perform-

ing poorly when the region size becomes small.

Discussion. Among 543 street view intersections in the test

set, the SFC network is able to find 27% of the missing curb

ramp regions by merely looking at 500 regions. This is an

impressive result: 1) The whole process is very efficient

(Table 6) such that it can be easily deployed to scan new

city areas. For example, there are about 2,820 intersections
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Figure 8: Recall of true missing curb ramp regions vs num-

ber of regions viewed (Recall@K). Our base and SFC net-

works outperform the two baseline methods (random scores

and prior maps) by a large margin. The difference in re-

call between the Faster RCNN detector and the proposed

method is substantial. The SFC network with hard negative

mining has the best result among the proposed methods.

Region Width 400 200 100

SFC 35 33 27

Spatial Prior 13 8 4

Random Scores 4 2 0

Table 5: Effect of retrieved region size on the raw number

of found missing curb ramps with 255 regions (the higher

the better). As the region width shrinks, SFC performs very

consistently while the two baseline methods (random scores

and prior maps) suffer from poor localizations.

Context Map (*) Detection Verification

Cost 4s/image 22s/image 20min/500 ims

Table 6: Time costs for different steps in finding missing

curb ramps. The whole process is efficient as context and

detection maps can be generated in parallel. *Using the

SFC network.

in Manhattan, New York: it will take merely a few hours for

our system to find missing curb ramps in a region with 1.6

million population; 2) Accessibility reports have shown that

curb ramps condition (missing or not) shows high proxim-

ity consistency: if one intersection is missing curb ramps,

it is highly likely that the nearby intersection has similar

issues [2]. Our results can be used as an initial probe to

quickly locate city areas that need special attention.

6.3. Finding Out of Context Faces

The pipeline in Section 5 for finding missing objects can

be adapted to find out of context objects with just a few

small modifications: change step 2 by assigning 1 to de-

tected box regions and 0 for other regions; change step 4 to

retrieve the lowest scored regions. Here we show a prelim-

inary result of finding out of context faces to demonstrate

both the generalization ability of the proposed method in

different domains and possible future directions.

The task is to find out of context faces in the Wider face

dataset [20]. Using a similar procedure as in finding miss-

ing objects and a state-of-the-art face detector [21], we re-

trieve the top 500 face regions that contain high face detec-

tor scores and low context scores from the validation set.

For evaluation, we define an out of context face as a face

without a visible body. Figure 9 shows qualitative results

of the SFC network. We compare the SFC network results

with random scoring. Out of 500 regions, the SFC network

can find 27 out of context faces while random scoring found

14. While this result is preliminary, it suggests that the pro-

posed method has the potential to be used in many other

applications where finding out of context objects is impor-

tant: for example, visual anomaly detection.

Figure 9: Retrieved out of context faces by a SFC network.

7. Conclusion

We present a approach to learn a standalone context rep-

resentation to find missing objects in an image. Our model

is based on a convolutional neural network structure and we

propose ways to learn implicit masks so that the network

ignores objects and focuses on context only. Experiments

show that the proposed approach works effectively and effi-

ciently on finding missing curb ramp regions.
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