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Abstract

It is well-established by cognitive neuroscience that hu-

man perception of objects constitutes a complex process,

where object appearance information is combined with evi-

dence about the so-called object “affordances”, namely the

types of actions that humans typically perform when in-

teracting with them. This fact has recently motivated the

“sensorimotor” approach to the challenging task of auto-

matic object recognition, where both information sources

are fused to improve robustness. In this work, the afore-

mentioned paradigm is adopted, surpassing current limita-

tions of sensorimotor object recognition research. Specif-

ically, the deep learning paradigm is introduced to the

problem for the first time, developing a number of novel

neuro-biologically and neuro-physiologically inspired ar-

chitectures that utilize state-of-the-art neural networks for

fusing the available information sources in multiple ways.

The proposed methods are evaluated using a large RGB-D

corpus, which is specifically collected for the task of senso-

rimotor object recognition and is made publicly available.

Experimental results demonstrate the utility of affordance

information to object recognition, achieving an up to 29%

relative error reduction by its inclusion.

1. Introduction

Object recognition constitutes an open research chal-

lenge of broad interest in the field of computer vision. Due

to its impact in application fields such as office automation,

identification systems, security, robotics, and the industry,

several research groups have devoted intense efforts in it

(see for example the review in [2]). However, despite the

significant advances achieved in the last decades, satisfac-

tory performance in real-world scenarios remains a chal-

lenge. One plausible reason is the sole use of static object
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appearance features [8, 18, 19]. Such cannot sufficiently

handle the object appearance variance, occlusions, defor-

mations, and illumination variation.

Research findings in cognitive neuroscience establish

that object recognition by humans exploits previous expe-

riences of active interaction with the objects of interest. In

particular, object perception is based on the fusion of sen-

sory (object appearance) and motor (human-object interac-

tion) information. Central role in this so-called “sensori-

motor object recognition” theory has the notion of object

affordances. According to Gibson [10], “the affordances of

the environment are what it offers the animal”, implying the

complementarity between the animal and the environment.

Based on this theory, Minsky [22] argues on the significance

of classifying items according to what they can be used for,

i.e. what they afford. These theoretical foundations have

resulted to the so-called function-based reasoning in object

recognition, which can be viewed as an approach applicable

to environments in which objects are designed or used for

specific purposes [27]. Moreover, the work in [30] describes

three possible ways for extracting functional (affordance)

information for an object: a) “Function from shape”, where

the object shape provides some indication of its function;

b) “Function from motion”, where an observer attempts to

understand the object function by perceiving a task being

performed with it; and c) “Function from manipulation”,

where function information is extracted by manipulating the

object. The present work focuses on (b).

Concerning the neuro-physiological and the correspond-

ing cognitive procedures that take place in the human brain

during sensorimotor object recognition, it is well estab-

lished that there are two main streams that process the visual

information [32]: a) the dorsal, which projects to the poste-

rior parietal cortex and is involved in the control of actions

(motor), and b) the ventral, which runs to the inferotem-

poral cortex and is involved in the identification of the ob-

jects (sensory). There is accumulated evidence that the two

streams interact at different information processing stages

[5]: a) computations along the two pathways proceed both
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independently and in parallel, reintegrating within shared

target brain regions; b) processing along the separate path-

ways is modulated by the existence of recurrent feedback

loops; and c) information is transferred directly between

the two pathways at multiple stages and locations along

their trajectories. These identified interconnections indi-

cate how the human brain fuses sensory and motor informa-

tion to achieve robust recognition. Motivated by the above,

mimicking the human sensorimotor information processing

module in object recognition by machines may hold the key

to address the weaknesses of current systems.

Not surprisingly, affordance-based information has al-

ready been introduced into the object recognition prob-

lem. However, current systems have been designed based

on rather simple classification, fusion, and experimental

frameworks, failing to fully exploit the potential of the af-

fordance stream. In particular, these works have not yet

exploited the recent trend in computer vision of employ-

ing very deep Neural Network (NN) architectures, the so-

called “Deep Learning” (DL) paradigm. DL methods out-

perform all previous hand-crafted approaches by a large

margin [17, 31, 35].

In this paper, the problem of sensorimotor 3D object

recognition is investigated using DL techniques. The main

contributions lie in the:

• Design of novel neuro-biologically and neuro-

physiologically grounded neural network architec-

tures for sensorimotor object recognition, exploiting

the state-of-the-art automatic feature learning capabil-

ities of DL techniques; to the best of the authors’

knowledge, this is the first work that introduces the DL

paradigm to sensorimotor object recognition.

• NN-based implementation of multiple recent

neuro-scientific findings for fusing the sensory

(object appearance) and motor (object affordances)

information streams in a unified machine perception

computational model. Until now, such neuro-scientific

findings have not been transferred to computer vision

systems.

• Large number of complex affordance types sup-

ported by the proposed methodology. In particular: a)

a significantly increased number of affordances com-

pared to current works that only use few (up to 5); b)

complex types of object affordances (e.g. squeezable,

pourable) that may lead to complex object manipu-

lations or even significant object deformations, com-

pared to the relatively simple binary ones currently

present in the literature (e.g. graspable, pushable); and

c) continuous-nature affordance types, moving beyond

plain binary analysis of presence/non-presence of a

given affordance, while modeling the exact dynamics

of the exhibited affordances.

• Introduction of a large, public RGB-D object recog-

nition dataset, containing several types of interactions

of human subjects with a set of supported objects.

This is the first publicly available sensorimotor object

recognition corpus, including 14 classes of objects,

13 categories of affordances, 105 subjects, and a total

number of approximately 20,8k human-object interac-

tions. This dataset yields sufficient data for training

DL algorithms, and it is expected to serve as a bench-

mark for sensorimotor object recognition research.

• Extensive quantitative evaluation of the proposed fu-

sion methods and comparison with traditional proba-

bilistic fusion approaches.

The remainder of the paper is organized as follows: Sec-

tion 2 presents related work in the field of sensorimotor ob-

ject recognition. Section 3 discusses the introduced 3D ob-

ject recognition dataset. Section 4 details the designed NN

architectures. Section 5 presents the experimental results,

and Section 6 concludes this paper.

2. Related Work

Most sensorimotor object recognition works have so far

relied on simple fusion schemes (e.g using simple Bayesian

models or the product rule), hard assumptions (e.g. naive

Gaussian prior distributions), and simplified experimental

settings (e.g. few object types and simple affordances). In

particular, Kjellström et al. [15] model the spatio-temporal

information by training factorial conditional random fields

with 3 consecutive object frames and extract action features

using binary SVMs; a small dataset with 6 object types and

3 affordances is employed. Högman et al. [13] propose a

framework for interactive classification and functional cate-

gorization of 4 object types, defining a Gaussian Process to

model object-related Sensori-Motor Contigencies [25] and

then integrating the “push” action to categorize new ob-

jects (using a naive Bayes classifier). Additionally, Kluth

et al. [16] extract object GIST-features [24] and model the

possible actions using a probabilistic reasoning scheme that

consists of a Bayesian inference approach and an informa-

tion gain strategy module. A visuo-motor classifier is im-

plemented in [4] in order to learn 5 different types of grasp-

ing gestures on 7 object types, by training an SVM model

with object feature clusters (using K-means clustering) and

a second SVM with 22 motor features (provided by a Cy-

berGlove); the predictions are fused with a weighted linear

combination of Mercer kernels. Moreover, in the field of

robotics, affordance-related object recognition has relied on

predicting opportunities for interaction with an object by

using visual clues [1, 11] or observing the effects of ex-

ploratory actions [20, 23].

Clearly, design and evaluation of complex data-driven

machine perception systems for sensorimotor object recog-
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Figure 1. Examples of human-object interactions captured by the

3 Kinect sensors employed in the corpus recording setup.

nition based on the state-of-the-art DL framework has not

been considered in the literature. Such systems should not

depend on over-simplified or hard assumptions and would

target the automatic learning of the highly complex senso-

rimotor object recognition process in realistic scenarios.

3. RGB-D Sensorimotor Dataset

In order to boost research in the field of sensorimotor

object recognition, a large-scale dataset of multiple object

types and complex affordances has been collected and is

publicly available at http://sor3d.vcl.iti.gr/. The cor-

pus constitutes the broadest and most challenging one in

the sensorimotor object recognition literature, as summa-

rized in Table 1, and can serve as a challenging benchmark,

facilitating the development and efficient evaluation of sen-

sorimotor object recognition approaches.

The corpus recording setup involved three synchronized

Microsoft Kinect II sensors [21] in order to acquire RGB

(1920× 1080 resolution) and depth (512× 424 resolution)

streams from three different viewpoints, all at 30 Hz frame

rate and an approximate 1.5 meters “head-to-device” dis-

tance. A monitor was utilized for displaying the “proto-

type” instance before the execution of every human-object

interaction. Additionally, all involved subjects were pro-

vided with a ring-shaped remote mouse, held by the other

hand than that interacting with the objects. This allowed

the participants to indicate by themselves the start and end

of each session (i.e. performing real-time annotation). Be-

fore the execution of any interaction, all objects were placed

at a specific position on a desk, indicated by a marker on

the table cloth. The dataset was recorded under controlled

environmental conditions, i.e. with negligible illumination

variations (no external light source was present during the

experiments) and a homogeneous static background (all

human-object interactions were performed on top of a desk

covered with a green tablecloth). Snapshots of the captured

video streams from each viewpoint are depicted in Fig. 1.

Regarding the nature of the supported human-object in-

teractions, a set of 14 object types was considered (each

type having two individual instantiations, e.g. small and big

ball). The appearance characteristics of the selected object

Dataset Types Affordances Interactions Subjects Available

[16] 8 1 n/a n/a no

[13] 4 1 4 Robot arm no

[15] 6 3 7 4 no

[4] 7 5 13 20 no

Introduced 14 13 54 105 yes

Table 1. Characteristics of sensorimotor object recognition corpora

reported in the literature, compared to the presented one. Number

of object types, affordances, human-object interactions, and sub-

jects, as well as data public availability, are reported.

types varied significantly, ranging from distinct shapes (like

“Box” or “Ball”) to more challenging ones (like “Knife”).

Taking into account the selected objects, a respective set

of 13 affordance types was defined, covering typical ma-

nipulations of the defined objects. Concerning the com-

plexity of the supported affordances, relatively simple (e.g.

“Grasp”), complex (e.g. leading to object deformations, like

affordance “Squeeze”), and continuous-nature ones (e.g. af-

fordance “Write”) were included. In contrast, other experi-

mental settings in the literature have mostly considered sim-

pler and less time evolving affordances, like “Grasp” and

“Push”. In Table 2, all supported types of objects and af-

fordances, as well as all combinations that have been con-

sidered in the dataset, are provided. As listed, a total of 54
object-affordance combinations (i.e. human-object interac-

tions) are supported. All participants were asked to execute

all object-affordance combinations indicated in Table 2 at

least once. The experimental protocol resulted in a total of

20,830 instances, considering the data captured from each

Kinect as a different human-object interaction instance. The

length of every recording varied between 4 and 8 seconds.

4. Sensorimotor Object Recognition

We now proceed to describe the proposed sensorimotor

object recognition system. Specifically, we first provide its

overview, followed by details of video data processing and

the DL modeling approaches considered.

4.1. System overview

The proposed system is depicted in Fig 2. Initially,

the collected data are processed by the visual front-end

module. This produces three visual feature streams, one

of which corresponds to conventional object appearance,

while the remaining two capture object affordance infor-

mation. These streams are subsequently fed to appropri-

ate DL architectures, implementing single-stream process-

ing systems for the recognition of object types and affor-

dances. Eventually, appearance and affordance information

are combined to yield improved object recognition, follow-

ing various fusion strategies.
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Object types
Affordances

Grasp Lift Push Rotate Open Hammer Cut Pour Squeeze Unlock Paint Write Type

Ball
√ √ √

Book
√ √ √ √ √

Bottle
√ √ √ √

Box
√ √ √ √ √

Brush
√ √ √

Can
√ √ √

Cup
√ √ √ √

Hammer
√ √ √

Key
√ √ √ √

Knife
√ √ √

Pen
√ √ √

Pitcher
√ √ √ √ √

Smartphone
√ √ √ √

Sponge
√ √ √ √ √

Table 2. Supported object and affordance types in the presented corpus. Considered object-affordance combinations are marked with
√

.

4.2. Visual front­end

The RGB data stream is initially mapped to the depth

stream for each Kinect, making use of a typical calibration

model [12]. Since the exact positioning of the Kinect sen-

sors is known in the developed capturing framework, a “3D

volume of interest” is defined for each Kinect, correspond-

ing to the 3D space above the desk that includes all per-

formed human-object interactions. Pixels that correspond to

3D points outside the defined volumes of interest are con-

sidered as background and the respective RGB/depth val-

ues are set to zero. Subsequently, a centered rectangular

region (300 × 300 resolution), containing the observed ob-

ject manipulations, is cropped from the aligned RGB and

depth frames. Then, using a simple thresholding technique

in the HSV color space [33], pixels corresponding to the

desk plane (tablecloth) are removed, and subsequently skin

color pixels (corresponding to the hand of the performing

subject) are separated from the object ones.

For the extracted object and hand depth maps, a “depth

colorization” approach is followed, similar to the one in-

troduced by Eitel et al. [9]. The depth colorization enables

the common practice of utilizing networks (transfer learn-

ing [26, 34]) pre-trained on ImageNet [6], and fine-tuning

them on the collected data. In particular, the depth value

at every pixel location is linearly normalized in the inter-

val [0, 255], taking into account the minimum and maxi-

mum depth values that have been measured in the whole

dataset and for all pixel locations. Subsequently, a “hot col-

ormap” is applied for transforming each scalar normalized

depth value to a triplet RGB one. In parallel, the 3D flow

magnitude of the extracted hand depth maps is also com-

puted. The algorithm of [14] for real-time dense RGB-D

scene flow estimation is used. Denoting by Ft(x, y, z) the

3D flow-field of the depth video at frame t, the 3D mag-

nitude field
∑T

t=1
|Ft(x, y, z)| is considered, accumulated

over the video duration (T frames). For the latter field, the

same colorization approach with the RGB case is applied

(Fig. 3). Thus, the visual front-end provides three infor-

mation streams (Fig 2 middle): a) colorized object depth

maps, b) colorized hand depth maps, and c) colorized hand

3D flow magnitude fields.

4.3. Single­stream modeling

For each information stream, separate NN architectures

are designed, as depicted in Fig 4. Regarding the appear-

ance stream, the well-known VGG-16 network [29], which

consists of 16 layers in total, is used for analyzing the ap-

pearance of the observed objects. The VGG-16 model con-

sists of 5 groups of Convolutional (CONV) layers and 3

Fully Connected (FC) ones. After each CONV or FC layer,

a Rectified Linear Unit (RL) one follows. For the rest of

the paper, the notation depicted in Fig 4 (top) is used (e.g.

CONV43 is the 3rd CONV layer of the 4th group of convo-

lutions).

Regarding the affordance stream, the colorized hand

depth map and 3D flow magnitude are alternatively used

for encoding the corresponding dynamics. In particular, two

distinct NN architectures, aiming at modeling different as-

pects of the exhibited motor (hand) actions, are designed: a)

a “Template-Matching” (TM), and b) a “Spatio-Temporal”

(ST) one. The development of the TM architecture is based

solely on the use of CNNs (Fig 4 top), aiming at estimat-

ing complex multi-level affordance-related patterns along

the spatial dimensions. The different CONV layers of the

employed CNN now model affordance-related patterns of

increasing spatial complexity. With respect to the develop-

ment of the ST architecture, a composite CNN (VGG-16)

- Long-Short Term Memory (LSTM) [28] NN is consid-

ered, where the output of a CNN applied at every frame is

subsequently provided as input to an LSTM. This architec-
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Figure 2. System overview. The visual front-end module (left) processes the captured data, providing three information streams (middle)

that are then fed into a single-stream or fusion DL model (right).

ture is similar to the generalized “LRCN” model presented

in [7]. The aim of the ST architecture (Fig 4 bottom) is

to initially model correlations along the spatial dimensions

and subsequently to take advantage of the LSTM sequential

modeling efficiency for encoding the temporal dynamics of

the observed actions. In preliminary experiments, the col-

orized hand depth map led to better results than using 3D

flow information as input. A set of 20 frames, uniformly

sampled over the whole duration of the observed action, are

provided as input to the LSTM.

4.4. Fusion architectures

Prior to the detailed description of the evaluated sensori-

motor information fusion principles, it needs to be noted

that these are implemented within two general NN ar-

chitectures, namely the “Generalized Template-Matching”

(GTM) and the “Generalized Spatio-Temporal” (GST) one.

The GTM (Fig. 5) and the GST (Fig. 6) architectures are

derived from the corresponding TM and ST ones, respec-

tively, and their fundamental difference concerns the nature

of the affordance stream modeling; GTM focuses on model-

Figure 3. Examples of colorized flow magnitude field (top row)

and RGB snapshots of the corresponding actions (bottom row).

ing correlations along the spatial dimensions, while GST re-

lies on encoding time-evolving procedures of the performed

human actions. Anatomical studies [3] on the physiological

interconnections between the ventral and the dorsal streams

have resulted, among others, in the following dominating

hypothesis: The ventral (appearance) stream might receive

up-to-date action-related information from the dorsal (af-

fordance) stream, in order to refine the object internal rep-

resentation [32].

4.4.1 Late fusion

Late fusion refers to the combination of information at the

end of the processing pipeline of each stream. For the GTM

architecture, this is implemented as the combination of the

features at: a) the same FC layer, or b) the last CONV

layer. The FC layer fusion is performed by concatenat-

ing the FC features of both streams. It was experimentally

shown that fusion after the RL6 layer was advantageous,

compared to concatenating at the output of the FC6 layer

Figure 4. Single-stream models. Top: appearance CNN for object

recognition, and affordance CNN (TM architecture). Bottom: af-

fordance CNN-LSTM (ST architecture). The CNN layer notation

used in this paper is depicted at the top figure.
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Figure 5. Detailed topology of the GTM architecture for: a) late fusion at FC layer, b) late fusion at last CONV layer, c) slow fusion, and

d) multi-level slow fusion. In each case, the left stream represents the appearance and the right the affordance network, respectively.

(i.e. before the nonlinearity). After fusion, a single process-

ing stream is formed (Fig. 5a). Regarding fusion at the last

CONV layer, the RL53 activations of both appearance and

affordance CNNs are stacked. After feature stacking, a sin-

gle processing stream is again formed with four individual

structural alternatives, using: i) 1 CONV (1× 1 kernel size)

and 1 FC, ii) 2 CONV (1 × 1 kernel size) and 1 FC, iii) 1

CONV (1× 1 kernel size) and 2 FC (best performance, de-

picted in Fig. 5b), and iv) 2 CONV (1 × 1 kernel size) and

2 FC layers.

For the GST architecture, the late fusion scheme con-

siders only the concatenation of the features of the last FC

layers of the appearance CNN and the affordance LSTM

model, as depicted in Fig. 6a. In particular, the features

of the FC7 layer of the appearance CNN and the internal

state vector [h(t)] of the last LSTM layer of the affordance

stream are concatenated at every time instant (i.e. at every

video frame). Eventually, a single stream with 2 FC layers is

formed. On the other hand, there is accumulated evidence

that asynchronous communication and feedback loops oc-

cur during the sensorimotor object recognition process [5].

In this context, an asynchronous late fusion approach is also

investigated for the GST architecture. Specifically, the GST

late fusion scheme (Fig. 6a) is again applied. However, the

information coming from the affordance stream [i.e. the in-

ternal state vector h(t) of the last LSTM layer] is provided

with a time-delay factor, denoted by τ > 0, compared to

the FC features of the appearance stream; in other words,

the features of the affordance stream at time t− τ are com-

bined with the appearance features at time t.

4.4.2 Slow fusion

Slow fusion for the GTM architecture corresponds to the

case of combining the CONV feature maps of the appear-

ance and affordance CNNs in an intermediate layer (i.e. not

the last CONV layer) and subsequently forming a single

processing stream, as depicted in Fig. 5c. For realizing

this, two scenarios are considered, which correspond to the

fusion of information from the two aforementioned CNNs

at different levels of granularity: a) combining the feature

maps of the appearance and the affordance CNN from the

same layer level; and b) combining the feature maps of the

appearance and the affordance CNN from different layer

levels. The actual fusion operator is materialized by sim-

ple stacking of the two feature maps. It needs to be noted

that only appearance and affordance feature maps of same

dimensions are combined. For the GST architecture, the

slow fusion scheme considers only the concatenation of the

features of the RL7 layer of the appearance and the affor-

dance CNNs models, followed by an LSTM model, as can

be seen in Fig. 6b.

In order to simulate the complex information exchange

routes at different levels of granularity between the two

streams, a multi-level slow fusion scheme is also examined.

In particular, the two streams are connected both at an in-

termediate/last CONV and at the FC layers. The particular

NN topology that implements this multi-level slow fusion

scheme for the GTM architecture is illustrated in Fig. 5d.

In the remainder of the paper, the following naming con-

vention is used for describing the different proposed NN
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Figure 6. Detailed topology of the GST architecture for: a) late

fusion and b) slow fusion.

architectures: GATFT (param), where the Generalized Ar-

chitecture Type, GAT ∈ {GTM, GST}, and the Fusion

Type, FT ∈ {LS,LA, SSL, SML} ≡ {Late Synchronous,

Late Asynchronous, Slow Single Level, Slow Multi Level}
and param indicates the specific parameters for each par-

ticular fusion scheme (as detailed above). At this point, it

needs to be highlighted that any further information pro-

cessing performed in the affordance stream after the fusion

step does not contribute to the object recognition process;

hence, it is omitted from the descriptions in this work.

5. Experimental Results

The proposed NN architectures are evaluated using the

introduced dataset. The involved human subjects were ran-

domly divided into training, validation, and test sets (25%,

25%, and 50%). The utilized VGG-16 network was pre-

trained on ImageNet. For all 300 × 300 formed frames,

a 224 × 224 patch was randomly cropped and provided

as input to the NNs. The negative log-likelihood criterion

was selected during training, whereas for back-propagation,

Stochastic Gradient Descent (SGD) with momentum set

equal to 0.9 was used. The GTM- and GST-based NNs were

trained with learning rate set to 5 × 10−3 (decreasing by a

factor of 5×10−1 when the validation error curve plateaued)

for 60 and 90 epochs, respectively. For the implementation,

the Torch1 framework and a Nvidia Tesla K-40 GPU were

used.

5.1. Single­stream architecture evaluation

The first set of experiments concerns the evaluation of

the single-stream models (Section 4.3). From the results

presented in Table 3 (only overall classification accuracy is

1http://torch.ch/

given), it can be observed that object recognition using only

appearance information yields satisfactory results (85.12%

accuracy). Regarding affordance recognition, the TM ar-

chitecture outperforms the ST one, indicating that the CNN

model encodes the motion characteristics more efficiently

than the composite CNN-LSTM one. For the ST model 3

LSTM layers with 4096 hidden units each were used, based

on experimentation.

5.2. GTM and GST architectures evaluation

In Table 4, evaluation results from the application of dif-

ferent GTM-based fusion schemes (Section 4.4) are given.

From the presented results, it can be seen that for the case

of late fusion combination of CONV features (i.e. fusion at

the RL53 layer) is generally advantageous, since the spa-

tial correspondence between the appearance and the affor-

dance stream is maintained. Concerning single-level slow

fusion models, different models are evaluated. However,

single-level slow fusion tends to exhibit lower recognition

performance than late fusion. Building on the evaluation

outcomes of the single-level slow and late fusion schemes,

multi-level slow fusion architectures are also evaluated. In-

terestingly, the GTMSML(RL5
app
3

, RL5
aff
3

, RL6) outper-

forms all other GTM-based models. This is mainly due to

the preservation of the spatial correspondence (initial fusion

at the CONV level), coupled with the additional correlations

learned by the fusion at the FC level.

Experimental results from the application of the GST-

based fusion schemes (Section 4.4) are reported in Table

5. In all cases, a set of 20 uniformly selected frames were

provided as input to the respective NN. Additionally, two

evaluation scenarios were realized, namely when for the fi-

nal object classification decision the prediction of only the

last frame was considered (“last-frame”) or when the pre-

dictions from all frames were averaged (“all-frames”). For

the case of the synchronous late fusion, it can be seen that

the averaging of the predictions from all frames is advan-

tageous. Concerning the proposed asynchronous late fu-

sion scheme, evaluation results for different values of the

delay parameter are given. It can be observed that asyn-

chronous fusion leads to decreased performance, compared

to the synchronous case, while increasing values of the de-

lay parameter τ lead to a drop in the recognition rate. More-

over, the slow fusion approach results to a significant de-

crease of the object recognition performance.

From the presented results, it can be observed that the

GTMSML(RL5
app
3

, RL5
aff
3

, RL6) architecture constitutes

the best performing scheme. The latter achieves an absolute

increase of 4.31% in the overall recognition performance

(which corresponds to an approximately 29% relative error

reduction), compared to the appearance CNN model (base-

line method). For providing a better insight, the object

recognition confusion matrices obtained from the applica-

6173



Method Task Accuracy (%)

Appearance CNN object recognition 85.12

Affordance CNN affordance recognition 81.92

Affordance CNN-LSTM affordance recognition 69.27

Table 3. Single-stream results for object and affordance recogni-

tion.

GTM-based fusion architecture [after fusion] Accuracy (%)

GTMLS(FC6) 87.40

GTMLS(RL53) [1 CONV, 1 FC] 87.65

GTMLS(RL53) [1 CONV, 2 FC] 88.24

GTMLS(RL53) [2 CONV, 1 FC] 87.64

GTMLS(RL53) [2 CONV, 2 FC] 86.40

GTMSSL(RL3
app
3

, RL3
aff
3

) 78.74

GTMSSL(RL4
app
3

, RL4
aff
3

) 87.20

GTMSSL(RL4
app
3

, RL4
aff
1

) 85.82

GTMSSL(RL5
app
3

, RL5
aff
1

) 88.13

GTMSML(RL5
app
3

, RL5
aff
1

, RL6) 88.23

GTMSML(RL5
app
3

, RL5
aff
3

, RL6) 89.43

Table 4. Object recognition results using different GTM-based fu-

sion schemes.

tion of the GTMSML(RL5
app
3

, RL5
aff
3

, RL6) architecture

and the appearance CNN are given in Fig. 7. From the

presented results, it can be observed that the proposed fu-

sion scheme boosts the performance of all supported object

types. This demonstrates the discriminative power of affor-

dance information. Additionally, it can be seen that objects

whose shape cannot be efficiently captured (e.g. small-size

ones like “Pen”, “Knife”, “Key”, etc.) are favored by the

proposed approach. Moreover, affordance information is

also beneficial for objects that exhibit similar appearance

(e.g. “Brush” with “Pen” and “Knife”).

5.3. Comparison with probabilistic fusion

The GTMSML(RL5
app
3

, RL5
aff
3

, RL6) architecture is

also comparatively evaluated, apart from the appearance

CNN model, with the following typical probabilistic fusion

approaches of the literature: a) the product rule for fusing

the appearance and the affordance CNN output probabil-

ities, b) concatenation of appearance and affordance CNN

features and usage of a SVM classifier (RBF kernel) [4, 15],

and c) concatenation of appearance and affordance CNN

features and usage of a naive Bayes classifier [13]. From

the results in Table 6, it can be seen that the literature ap-

proaches for fusing the appearance and affordance informa-

tion streams fail to introduce an increase in the object recog-

nition performance in the introduced challenging dataset;

the aforementioned methods were evaluated under signifi-

cantly simpler experimental settings. On the contrary, the

proposed approach exhibits a significant performance in-

crease over the baseline method (appearance CNN).

GST-based fusion architecture [after fusion] Accuracy (%)

GSTLS(last-frame) 86.28

GSTLS(all-frames) [1 CONV, 2 FC] 86.50

GSTLA(all-frames, τ = 2) 86.42

GSTLA(all-frames, τ = 4) [1 CONV, 2 FC] 86.17

GSTLA(all-frames, τ = 6) [1 CONV, 2 FC] 85.28

GSTSSL(all-frames) [1 CONV, 2 FC] 79.65

Table 5. Object recognition results using different GST-based fu-

sion schemes.

Fusion architecture Fusion Layer Accuracy (%)

Appearance CNN no fusion 85.12

Product Rule Softmax 73.45

SVM [15, 4] RL7 83.43

Bayes [13] RL7 75.86

GTMSML RL5
app
3

, RL5
aff
3

, RL6 89.43

Table 6. Comparative evaluation of GTMSML(RL5
app
3

, RL5
aff
3

,

RL6) architecture.

Figure 7. Object recognition confusion matrices of appearance

CNN (left) and GTMSML(RL5
app
3

, RL5
aff
3

, RL6) architecture

(right).

6. Conclusions

In this paper, the problem of sensorimotor 3D ob-

ject recognition following the deep learning paradigm

was investigated. A large public 3D object recogni-

tion dataset was also introduced, including multiple ob-

ject types and a significant number of complex affordances,

for boosting the research activities in the field. Two

generalized neuro-biologically and neuro-physiologically

grounded neural network architectures, implementing mul-

tiple fusion schemes for sensorimotor object recognition

were presented and evaluated. The proposed sensorimo-

tor multi-level slow fusion approach was experimentally

shown to outperform similar probabilistic fusion methods

of the literature. Future work will investigate the use of

NN auto-encoders for modeling the human-object interac-

tions in more details and the application of the proposed

methodology to more realistic, “in-the-wild” object recog-

nition data.
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