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Abstract

This paper presents a set of full-resolution lossy image
compression methods based on neural networks. Each of
the architectures we describe can provide variable compres-
sion rates during deployment without requiring retraining
of the network: each network need only be trained once. All
of our architectures consist of a recurrent neural network
(RNN)-based encoder and decoder, a binarizer, and a neural
network for entropy coding. We compare RNN types (LSTM,
associative LSTM) and introduce a new hybrid of GRU and
ResNet. We also study “one-shot” versus additive recon-
struction architectures and introduce a new scaled-additive
framework. We compare to previous work, showing improve-
ments of 4.3%—8.8% AUC (area under the rate-distortion
curve), depending on the perceptual metric used. As far as
we know, this is the first neural network architecture that is
able to outperform JPEG at image compression across most
bitrates on the rate-distortion curve on the Kodak dataset
images, with and without the aid of entropy coding.

1. Introduction

Image compression has traditionally been one of the tasks
which neural networks were suspected to be good at, but
there was little evidence that it would be possible to train
a single neural network that would be competitive across
compression rates and image sizes. [!7] showed that it
is possible to train a single recurrent neural network and
achieve better than state of the art compression rates for a
given quality regardless of the input image, but was limited
to 32x32 images. In that work, no effort was made to capture
the long-range dependencies between image patches.

Our goal is to provide a neural network which is compet-
itive across compression rates on images of arbitrary size.
There are two possible ways to achieve this: 1) design a
stronger patch-based residual encoder; and 2) design an en-
tropy coder that is able to capture long-term dependencies
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between patches in the image. In this paper, we address both
problems and combine the two possible ways to improve
compression rates for a given quality.

In order to measure how well our architectures are doing
(i.e., “quality”), we cannot rely on typical metrics such as
Peak Signal to Noise Ratio (PSNR), or L,, differences be-
tween compressed and reference images because the human
visual system is more sensitive to certain types of distortions
than others. This idea was exploited in lossy image compres-
sion methods such as JPEG. In order to be able to measure
such differences, we need to use a human visual system-
inspired measure which, ideally should correlate with how
humans perceive image differences. Moreover, if such a
metric existed, and were differentiable, we could directly
optimize for it. Unfortunately, in the literature there is a
wide variety of metrics of varying quality, most of which
are non-differentiable. For evaluation purposes, we selected
two commonly used metrics, PSNR-HVS [7] and MS-SSIM
[19], as discussed in Section 4.

1.1. Previous Work

Autoencoders have been used to reduce the dimension-
ality of images [9], convert images to compressed binary
codes for retrieval [13], and to extract compact visual repre-
sentations that can be used in other applications [18]. More
recently, variational (recurrent) autoencoders have been di-
rectly applied to the problem of compression [6] (with results
on images of size up to 64 x 64 pixels), while non-variational
recurrent neural networks were used to implement variable-
rate encoding [17].

Most image compression neural networks use a fixed
compression rate based on the size of a bottleneck layer [2].
This work extends previous methods by supporting variable
rate compression while maintaining high compression rates
beyond thumbnail-sized images.
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2. Methods

In this section, we describe the high-level model architec-
tures we explored. The subsections provide additional details
about the different recurrent network components in our ex-
periments. Our compression networks are comprised of an
encoding network F, a binarizer B and a decoding network
D, where D and E contain recurrent network components.
The input images are first encoded, and then transformed
into binary codes that can be stored or transmitted to the
decoder. The decoder network creates an estimate of the
original input image based on the received binary code. We
repeat this procedure with the residual error, the difference
between the original image and the reconstruction from the
decoder.

Figure 1 shows the architecture of a single iteration of our
model. While the network weights are shared between itera-
tions, the states in the recurrent components are propagated
to the next iteration. Therefore residuals are encoded and
decoded in different contexts in different iterations. Note
that the binarizer B is stateless in our system.

We can compactly represent a single iteration of our net-
works as follows:

by = B(Et(rt—l))7

rtza?—i"t,

&y = Di(be) + 241, (1)
To = T, ,@0 =0 (2)
where D, and E}; represent the decoder and encoder with
their states at iteration ¢ respectively, b, is the progressive
binary representation; ; is the progressive reconstruction
of the original image x with v = 0 for “one-shot” recon-
struction or 1 for additive reconstruction (see Section 2.2);
and r; is the residual between x and the reconstruction ;.
In every iteration, B will produce a binarized bit stream
b, € {—1,1}™ where m is the number of bits produced af-
ter every iteration, using the approach reported in [17]. After
k iterations, the network produces m - k bits in total. Since
our models are fully convolutional, m is a linear function of
input size. For image patches of 32x32, m = 128.

The recurrent units used to create the encoder and decoder
include two convolutional kernels: one on the input vector
which comes into the unit from the previous layer and the
other one on the state vector which provides the recurrent
nature of the unit. We will refer to the convolution on the
state vector and its kernel as the “hidden convolution” and
the “hidden kernel”.

In Figure 1, we give the spatial extent of the input-vector
convolutional kernel along with the output depth. All convo-
lutional kernels allow full mixing across depth. For example,
the unit D-RNN#3 has 256 convolutional kernels that operate
on the input vector, each with 3x3 spatial extent and full
input-depth extent (128 in this example, since the depth of
D-RNN#2 is reduced by a factor of four as it goes through
the “Depth-to-Space” unit).

The spatial extents of the hidden kernels are all 1x1,
except for in units D-RNN#3 and D-RNN#4 where the hidden
kernels are 3x3. The larger hidden kernels consistently
resulted in improved compression curves compared to the
1x 1 hidden kernels exclusively used in [17].

During training, a L; loss is calculated on the weighted
residuals generated at each iteration (see Section 4), so our
total loss for the network is:

B> Irel 3)
t

In our networks, each 32 x32x 3 input image is reduced to
a2x2x32 binarized representation per iteration. This results
in each iteration representing 1/8 bit per pixel (bpp). If only
the first iteration is used, this would be 192:1 compression,
even before entropy coding (Section 3).

We explore a combination of recurrent unit variants and
reconstruction frameworks for our compression systems. We
compare these compression results to the results from the
deconvolutional network described in [ 1 7], referred to in this
paper as the Baseline network.

2.1. Types of Recurrent Units

In this subsection, we introduce the different types of
recurrent units that we examined.

LSTM: One recurrent neural-network element we exam-
ine is a LSTM [10] with the formulation proposed by [20].
Let x, ¢t, and h; denote the input, cell, and hidden states,
respectively, at iteration ¢. Given the current input x;, previ-
ous cell state c;_1, and previous hidden state h;_1, the new
cell state ¢; and the new hidden state h; are computed as

[f.i,0,5]" = [0, 0,0, tanh]” (Wazy + Uhs—1) +b), ()
G=fOc1+i0j, (5)
hy = 0 ® tanh(c;), (6)

where ® denotes element-wise multiplication, and b is the
bias. The activation function o is the sigmoid function
o(x) = 1/(1 + exp(—)). The output of an LSTM layer at
iteration ¢ is h;.

The transforms W and U, applied to x; and h;_1, respec-
tively, are convolutional linear transformations. That is, they
are composites of Toeplitz matrices with padding and stride
transformations. The spatial extent and depth of the W con-
volutions are as shown in Figure 1. As pointed out earlier in
this section, the U convolutions have the same depths as the
W convolutions. For a more in-depth explanation, see [ 7].

Associative LSTM: Another neural network element we
examine is the Associative LSTM [5]. Associative LSTM
extends LSTM using holographic representation. Its new
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Figure 1. A single iteration of our shared RNN architecture.

states are computed as

[fid,0,4,mi,m0]" =
[, 0,0,bnd, bnd, bnd]T((Wxt +Uhi—1) + b), @)
a=fOc1+r0i0], 3)
ht = 0@ bnd(r, ® ¢), 9)
hy = (Re hy, Im hy). (10)

The output of an Associative LSTM at iteration ¢ is hy. The
input x;, the output h;, and the gate values f, %, o are real-
valued, but the rest of the quantities are complex-valued. The
function bnd(z) for complex z is z if |z| < 1 and is z/|z]
otherwise. As in the case of non-associative LSTM, we use
convolutional linear transformations W and U.

Experimentally, we determined that Associative LSTMs
were effective only when used in the decoder. Thus, in all
our experiments with Associative LSTMs, non-associative
LSTMs were used in the encoder. Gated Recurrent Units:
The last recurrent element we investigate is the Gated Recur-
rent Unit [3] (GRU). The formulation for GRU, which has
an input x; and a hidden state/output hy, is:

2zt = o(Woxy + Uyhy—q), (1D
re = o(Weay + Uphi—1), (12)
ht = (1 —2z) ® heq1+

zt © tanh(Way + U(ry © hi—1)). (13)

As in the case of LSTM, we use convolutions instead
of simple multiplications. Inspired by the core ideas from
ResNet [8] and Highway Networks [16], we can think of
GRU as a computation block and pass residual information
around the block in order to speed up convergence. Since
GRU can be seen as a doubly indexed block, with one index
being iteration and the other being space, we can formulate
a residual version of GRU which now has two residual con-
nections. In the equations below, we use h? to denote the
output of our formulation, which will be distinct from the

hidden state h;:

hi =1 —2)0hi—1+
zt © tanh(Wxt + U(T’t ® ht—l)) + ahWhht—l7 (14)
g = ht + Oél-Wofot. (15)

where we use o, = aj, = 0.1 for all the experiments in this
paper.

This idea parallels the work done in Higher Order RNNs
[15], where linear connections are added between iterations,
but not between the input and the output of the RNN.

2.2. Reconstruction Framework

In addition to using different types of recurrent units,
we examine three different approaches to creating the final
image reconstruction from our decoder outputs. We describe
those approaches in this subsection, along with the changes
needed to the loss function.

One-shot Reconstruction: As was done in [ 7], we pre-
dict the full image after each iteration of the decoder (y = 0
in (1)). Each successive iteration has access to more bits
generated by the encoder which allows for a better recon-
struction. We call this approach “one-shot reconstruction”.
Despite trying to reconstruct the original image at each iter-
ation, we only pass the previous iteration’s residual to the
next iteration. This reduces the number of weights, and ex-
periments show that passing both the original image and the
residual does not improve the reconstructions.

Additive Reconstruction: In additive reconstruction,
which is more widely used in traditional image coding, each
iteration only tries to reconstruct the residual from the pre-
vious iterations. The final image reconstruction is then the
sum of the outputs of all iterations (y = 1 in (1)).

Residual Scaling: In both additive and “one shot” re-
construction, the residual starts large, and we expect it to
decrease with each iteration. However, it may be difficult
for the encoder and the decoder to operate efficiently across
a wide range of values. Furthermore, the rate at which the
residual shrinks is content dependent. In some patches (e.g.,
uniform regions), the drop-off will be much more dramatic
than in other patches (e.g., highly textured patches).
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Figure 2. Adding content-dependent, iteration-dependent residual scaling to the additive reconstruction framework. Residual images are of
size HxX W3 with three color channels, while gains are of size 1 and the same gain factor is applied to all three channels per pixel.

To accommodate these variations, we extend our additive
reconstruction architecture to include a content-dependent,
iteration-dependent gain factor. Figure 2 shows the extension
that we used. Conceptually, we look at the reconstruction
of the previous residual image, ;_1, and derive a gain mul-
tiplier for each patch. We then multiply the target residual
going into the current iteration by the gain that is given
from processing the previous iteration’s output. Equation 1
becomes:

gt = G(&), by = B(E(ri—1 © ZOH(gi—1))), (16)

Fe—1 = Dy(by) © ZOH(g¢—1), (17
Ty =By + 1, =T — Iy, (18)
go=1 ro=ux. (19)

where @ is element-wise division and ZOH is spatial upsam-
pling by zero-order hold. G(-) estimates the gain factor, g;,
using a five-layer feed-forward convolutional network, each
layer with a stride of two. The first four layers give an output
depth of 32, using a 3x3 convolutional kernel with an ELU
nonlinearity [4]. The final layer gives an output depth of 1,
using a 2x?2 convolutional kernel, with an ELU nonlinearity.
Since ELU has a range of (—1, c0) a constant of 2 is added
to the output of this network to obtain g; in the range of
(1, 00).

3. Entropy Coding

The entropy of the codes generated during inference are
not maximal because the network is not explicitly designed
to maximize entropy in its codes, and the model does not
necessarily exploit visual redundancy over a large spatial ex-
tent. Adding an entropy coding layer can further improve the
compression ratio, as is commonly done in standard image
compression codecs. In this section, the image encoder is a
given and is only used as a binary code generator.

The lossless entropy coding schemes considered here
are fully convolutional, process binary codes in progressive
order and for a given encoding iteration in raster-scan or-
der. All of our image encoder architectures generate binary
codes of the form c(y, z,d) of size H x W x D, where
H and W are integer fractions of the image height and

width and D is m x the number of iterations. We con-
sider a standard lossless encoding framework that combines
a conditional probabilistic model of the current binary code
¢(y,x,d) with an arithmetic coder to do the actual com-
pression. More formally, given a context T'(y, x, d) which
depends only on previous bits in stream order, we will es-
timate P(c(y,x,d) | T(y,x,d)) so that the expected ideal
encoded length of ¢(y, z,d) is the cross entropy between
P(c | T) and P(c | T). We do not consider the small
penalty involved by using a practical arithmetic coder that
requires a quantized version of P(c | T).

3.1. Single Iteration Entropy Coder

We leverage the PixelRNN architecture [14] and use a
similar architecture (BinaryRNN) for the compression of
binary codes of a single layer. In this architecture (shown on
Figure 3), the estimation of the conditional code probabili-
ties for line y depends directly on some neighboring codes
but also indirectly on the previously decoded binary codes
through a line of states .S of size 1 x W x k which captures
both some short term and long term dependencies. The state
line is a summary of all the previous lines. In practice, we
use k = 64. The probabilities are estimated and the state is
updated line by line using a 1x3 LSTM convolution.

The end-to-end probability estimation includes 3 stages.
First, the initial convolution is a 7x7 convolution used to
increase the receptive field of the LSTM state, the receptive
field being the set of codes ¢(i, j, -) which can influence the
probability estimation of codes c¢(y, z,-). As in [14], this
initial convolution is a masked convolution so as to avoid
dependencies on future codes. In the second stage, the line
LSTM takes as input the result zy of this initial convolution
and processes one scan line at a time. Since LSTM hidden
states are produced by processing the previous scan lines, the
line LSTM captures both short- and long-term dependencies.
For the same reason, the input-to-state LSTM transform
is also a masked convolution. Finally, two 1x1 convolu-
tions are added to increase the capacity of the network to
memorize more binary code patterns. Since we attempt to
predict binary codes, the Bernoulli-distribution parameter
can be directly estimated using a sigmoid activation in the
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Figure 3. Binary recurrent network (BinaryRNN) architecture for
decode time.

last convolution.

We want to minimize the number of bits used after entropy
coding, which leads naturally to a cross-entropy loss. In case
of {0, 1} binary codes, the cross-entropy loss can be written
as:

S —clogy(P(e | 7)) — (1—¢) logy(1— P(c| T)) (20)
y,x,d

3.2. Progressive Entropy Coding

When dealing with multiple iterations, a baseline entropy
coder would be to duplicate the single iteration entropy coder
as many times as there are iterations, each iteration having
its own line LSTM. However, such an architecture would
not capture the redundancy between the iterations. We can
augment the data that is passed to the line LSTM of itera-
tion #k with some information coming from the previous
layers: the line LSTM in Figure 3 receives not just zg like
in the single iteration approach but also z; estimated from
the previous iteration using a recurrent network as shown
on Figure 4. Computing z; does not require any masked
convolution since the codes of the previous layers are fully
available.

4. Results

Training Setup: In order to evaluate the recurrent mod-
els we described, we used two sets of training data. The first
dataset is the “32x32” dataset gathered in [17]. The sec-
ond dataset takes a random sample of 6 million 1280x720
images on the web, decomposes the images into non-
overlapping 32x32 tiles and samples 100 tiles that have
the worst compression ratio when using the PNG compres-
sion algorithm. By selecting the patches that compress the
least under PNG, we intend to create a dataset with “hard-
to-compress” data. The hypothesis is that training on such
patches should yield a better compression model. We refer
to this dataset as the “High Entropy (HE)” dataset.

All network architectures were trained using the Tensor-
flow [1] API, with the Adam [ 1] optimizer. Each network
was trained using learning rates of [0.1, ..., 2]. The L; loss

a single iteration. The gray area denotes the context that is available at

Line LSTM

LSTM state
1T s [ 1]
1x3 Conv Update
LSTM Logic Ix1 ] Ix1
Conv Conv
1x2 Conv l
[ ol [ 1] Ple|T)

Input to state

(see Equation 3) was weighted by 8 = (s x n)71 where s
isequal to B x H x W x C where B = 32 is the batch
size, H = 32 and W = 32 are the image height and width,
and C' = 3 is the number of color channels. n = 16 is the
number of RNN unroll iterations.

Evaluation Metrics: In order to assess the performance
of our models, we use a perceptual, full-reference image
metric for comparing original, uncompressed images to com-
pressed, degraded ones. It is important to note that there is
no consensus in the field for which metric best represents
human perception so the best we can do is sample from the
available choices while acknowledging that each metric has
its own strengths and weaknesses. We use Multi-Scale Struc-
tural Similarity (MS-SSIM) [19], a well-established metric
for comparing lossy image compression algorithms, and the
more recent Peak Signal to Noise Ratio - Human Visual
System (PSNR-HVS) [7]. We apply MS-SSIM to each of
the RGB channels independently and average the results,
while PSNR-HVS already incorporates color information.
MS-SSIM gives a score between 0 and 1, and PSNR-HVS
is measured in decibels. In both cases, higher values imply
a closer match between the test and reference images. Both
metrics are computed for all models over the reconstructed
images after each iteration. In order to rank models, we
use an aggregate measure computed as the area under the
rate-distortion curve (AUC).

We collect these metrics on the widely used Kodak Photo
CD dataset [ 12]. The dataset consists of 24 768 x512 PNG
images (landscape/portrait) which were never compressed
with a lossy algorithm.

Architectures: We ran experiments consisting of { GRU,
Residual GRU, LSTM, Associative LSTM} x {One Shot
Reconstruction, Additive Reconstruction, Additive Rescaled
Residual} and report the results for the best performing
models after 1 million training steps.

It is difficult to pick a “winning” architecture since the
two metrics that we are using don’t always agree. To further
complicate matters, some models may perform better at low
bit rates, while others do better at high bit rates. In order to
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Figure 4. Description of neural network used to compute additional line LSTM inputs for progressive entropy coder. This allows propagation

of information from the previous iterations to the current.

be as fair as possible, we picked those models which had the
largest area under the curve, and plotted them in Figure 5
and Figure 6.

The effect of the High Entropy training set can be seen
in Table 1. In general models benefited from being trained
on this dataset rather than on the 32x32 dataset, suggesting
that it is important to train models using “hard” examples.
For examples of compressed images from each method, we
refer the reader to the supplemental materials.

When using the 32x32 training data, GRU (One Shot)
had the highest performance in both metrics. The LSTM
model with Residual Scaling had the second highest MS-
SSIM, while the Residual GRU had the second highest
PSNR-HVS. When training on the High Entropy dataset,
The One Shot version of LSTM had the highest MS-SSIM,
but the worst PSNR-HVS. The GRU with “one shot” re-
construction ranked 2nd highest in both metrics, while the
Residual GRU with “one shot” reconstruction had the high-
est PSNR-HVS.

We depict the results of compressing image 5 from the
Kodak dataset in Figure 7. We invite the reader to refer to the
supplemental materials for more examples of compressed
images from the Kodak dataset.

Entropy Coding: The progressive entropy coder is
trained for a specific image encoder, and we compare a sub-
set of our models. For training, we use a set of 1280x720
images that are encoded using one of the previous image
encoders (resulting in a 80x45x32 bitmap or 1/s bits per
pixel per RNN iteration).

Figure 5 and Figure 6 show that all models benefit from
this additional entropy coding layer. Since the Kodak dataset
has relatively low resolution images, the gains are not very
significant — for the best models we gained between 5% at
2 bpp, and 32% at 0.25 bpp. The benefit of such a model is
truly realized only on large images. We apply the entropy
coding model to the Baseline LSTM model, and the bit-rate
saving ranges from 25% at 2 bpp to 57% at 0.25 bpp.

5. Discussion

We presented a general architecture for compressing with
RNNs, content-based residual scaling, and a new variation
of GRU, which provided the highest PSNR-HVS out of
the models trained on the high entropy dataset. Because
our class of networks produce image distortions that are
not well captured by the existing perceptual metrics, it is
difficult to declare a best model. However, we provided
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Figure 6. Rate distortion curve on the Kodak dataset given as PSNR-
HVS vs. bit per pixel (bpp). Dotted lines: before entropy coding,
Plain lines: after entropy coding. Top: Two top performing models
trained on the 32x32 dataset. Bottom: Two top performing models
trained on the High Entropy dataset.

a set of models which perform well according to these
metrics, and on average we achieve better than JPEG per-
formance on both MS-SSIM AUC and PSNR-HVS AUC,
both with and without entropy coding. With that said, our
models do benefit from the additional step of entropy cod-
ing due to the fact that in the early iterations the recurrent
encoder models produce spatially correlated codes. Ad-
ditionally, we are open sourcing our best Residual GRU
model and our Entropy Coder training and evaluation in
https://github.com/tensorflow/models/tree/master/comp res-
sion.

The next challenge will be besting compression methods
derived from video compression codecs, such as WebP
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Table 1. Performance on the Kodak dataset measured as area under the curve (AUC) for the specified metric, up to 2 bits per pixel. All
models are trained up for approximately 1,000,000 training steps. No entropy coding was used. After entropy coding, the AUC will be

higher for the network-based approaches.

Trained on the 32 x32 dataset.

Model Rank MS-SSIM AUC Rank PSNR-HVS AUC
GRU (One Shot) 1 1.8098 1 53.15
LSTM (Residual Scaling) 2 1.8091 4 52.36
LSTM (One Shot) 3 1.8062 3 52.57
LSTM (Additive Reconstruction) 4 1.8041 6 52.22
Residual GRU (One Shot) 5 1.8030 2 52.73
Residual GRU (Residual Scaling) 6 1.7983 8 51.25
Associative LSTM (One Shot) 7 1.7980 5 52.33
GRU (Residual Scaling) 8 1.7948 7 51.37
Baseline [17] 1.7225 48.36
Trained on the High Entropy dataset.
LSTM (One Shot) 1 1.8166 8 48.86
GRU (One Shot) 2 1.8139 2 53.07
Residual GRU (One Shot) 3 1.8119 1 53.19
Residual GRU (Residual Scaling) 4 1.8076 7 49.61
LSTM (Residual Scaling) 5 1.8000 4 51.25
LSTM (Additive) 6 1.7953 5 50.67
Associative LSTM (One Shot) 7 1.7912 3 52.09
GRU (Residual Scaling) 8 1.8065 6 49.97
Baseline LSTM [17] 1.7408 48.88
JPEG
YCbCr 4:4:4 1.7748 51.28
YCbCr 4:2:0 1.7998 52.61
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Figure 5. Rate distortion curve on the Kodak dataset given as MS-SSIM vs. bit per pixel (bpp). Dotted lines: before entropy coding, Plain
lines: after entropy coding. Left: Two top performing models trained on the 32x32 dataset. Right: Two top performing models trained on the

High Entropy dataset.

(which was derived from VP8 video codec), on large images
since they employ tricks such as reusing patches that were
already decoded. Additionally training the entropy coder
(BinaryRNN) and the patch-based encoder jointly and

on larger patches should allow us to choose a trade-off
between the efficiency of the patch-based encoder and the
predictive power of the entropy coder. Lastly, it is important
to emphasize that the domain of perceptual differences is
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Figure 7. Comparison of compression results on Kodak Image 5. The top row is target at 0.25 bpp, the bottom row at 1.00 bpp. The left
column is JPEG 420 and the right column is our Residual GRU (One Shot) method. The bitrates for our method are before entropy coding.
In the first row (0.25 bpp) our results are more able to capture color (notice color blocking on JPEG). In the second row (1.00 bpp) our
results don’t incur the mosquito noise around objects (one example is highlighed with an orange circle). Results at 1 bpp may be difficult to
see on printed page. Additional results available in the supplemental materials.

in active development. None of the available perceptual
metrics truly correlate with human vision very well, and if
they do, they only correlate for particular types of distortions.
If one such metric were capable of correlating with human
raters for all types of distortions, we could incorporate it
directly into our loss function, and optimize directly for it.
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