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Abstract

In this work we pursue a data-driven approach to the

problem of estimating surface normals from a single inten-

sity image, focusing in particular on human faces. We in-

troduce new methods to exploit the currently available fa-

cial databases for dataset construction and tailor a deep

convolutional neural network to the task of estimating fa-

cial surface normals ‘in-the-wild’. We train a fully convo-

lutional network that can accurately recover facial normals

from images including a challenging variety of expressions

and facial poses. We compare against state-of-the-art face

Shape-from-Shading and 3D reconstruction techniques and

show that the proposed network can recover substantially

more accurate and realistic normals. Furthermore, in con-

trast to other existing face-specific surface recovery meth-

ods, we do not require the solving of an explicit alignment

step due to the fully convolutional nature of our network.

1. Introduction

Facial surface reconstruction from a single image is a

problem that has attracted considerable attention over the

past 25 years. This is in part due to both the multitude of

applications related to face recognition and facial expres-

sion analysis, as well as its tractability due to the desir-

able properties of the physical structure of the human face.

In contrast to the difficulty of the general case, the recov-

ery of 3D facial shape has been highly successful. Human

faces have a number of qualities that are desirable for shape

recovery: they are extremely homogeneous in configura-

tion (all healthy human faces have two eyes, a nose and

mouth in the same approximate location), convex, exhibit

approximately Lambertian reflectance [54, 17, 61, 43], are

largely captured from a single direction (frontal) and are de-

formable and mostly not self occluding. Furthermore, there

exists a large amount of publicly available imagery of faces

and human faces are of significant interest to a number of

fields including entertainment, medicine, and psychology.

The two main lines of research consist of (a) Shape from

Shading (SfS) methods, which can also potentially employ

a statistical face prior [71, 3, 65, 12, 55, 59, 56], or (b) build-

ing and fitting a 3D Morphable Model (3DMM) [8, 7, 1]. A

convnet normals face shape

Figure 1: Depiction of our pipeline for 3D face shape es-

timation. Using a number of images of facial normals we

train a fully convolutional network for normal estimation.

Using the estimated normals we can retrieve the 3D face

shape by classical normal integration techniques.

3DMM consists of a linear statistical model of the facial tex-

ture and surface which is learnt from a set of captured and

well-aligned 3D facial scans. For many years, the only pub-

licly available 3DMM was the Basel model [40], which was

constructed from 200 Caucasian people displaying a neutral

expression. Now, large-scale 3DMMs of neutral faces are

available in LSFM [8] and expressive 3DMMs can be con-

structed by combining the statistical model of neutral faces

with blendshapes [26, 9]. Nevertheless, fitting a 3DMM

to single images requires solving a high-dimensional non-

linear optimisation problem which is not only computation-

ally demanding but also requires a near-optimal initialisa-

tion. Due to the difficulty of solving the original optimisa-

tion problem for 3DMMs, recent methods do not attempt

to optimise the texture consistency term, but instead only

fit the facial surface part of the 3DMM to a set of 2D fa-

cial landmarks [1, 26]. SfS [24], is the process of recov-

ering surface by assuming that shading (i.e., the intensity

of a pixel in the image) is generated as a function of the
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surface geometry and its interaction with light which is re-

flected/absorbed by the surface and captured by an imaging

device. This function is generally modelled by the image

irradiance equation:

I(x, y) ∝ R(sx(x, y), sy(x, y)), (1)

which states that the measured brightness of the image

I(x, y) is proportional to the radiance R at the correspond-

ing point on the surface sx(x, y), sy(x, y). The most com-

monly employed radiance function is the Lambertian func-

tion, which describes the measured brightness as being pro-

portional to the cosine of the angle between the direction

of the incident light and the surface normal. Explicitly,

the Lambertian function describes the observed intensity

at a single pixel as I = ρdn
⊤s, where ρd is the albedo,

n is the unit normal of the surface for the given pixel

and s is a single unit point light placed at infinity. Al-

though this is a relatively simple explanation for the poten-

tially complex interaction between a surface and the light

sources within an environment, it has been shown to de-

scribe up to 90% [68] of the low-frequency component of

the lighting for images of a human face [5, 4, 68]. How-

ever, it is well known that shading alone is insufficient to

disambiguate shape (e.g., the well known bas-relief ambi-

guity [6]), hence generic SfS methods such as [3] are of-

ten suboptimal for more structured objects such as faces.

Thus, statistical priors of facial surface normals have been

utilised to constrain generic SfS methods in order to im-

prove results. For example, generic methods such as that of

Worthington et al. [65] have been extended by performing

a linear projection of the recovered surface normals onto a

constructed basis of facial normals [55, 56, 59]. Similarly,

the work of Barron et al. [3] was extended to incorporate

face specific priors by [35]. However, both of these meth-

ods required pre-built models in order to constrain their so-

lutions. The current state-of-the-art SfS methods that do not

require models [57, 28] combine ideas from uncalibrated

photometric stereo [4] and low-rank tensor decompositions

to robustly recover a combined model of shape and identity.

Other methods have also explored the adaptation of fitted

3D templates with surface normals for more plausible sur-

face recovery [45, 46, 30, 29]. However, the majority of

these methods require an explicit alignment step in order to

bring the facial model into correspondence with the facial

image. Despite impressive advances in the area of facial

alignment, this remains to be a challenging problem. Fur-

thermore, dense alignment, as is required for the recovery of

dense facial shape, is often achieved through highly expen-

sive operations such as optical flow [28, 58]. Both 3DMMs

and SfS are generative methods. In this paper, we take a dif-

ferent direction for estimation of the facial normals in un-

constrained images and propose the first, to the best of our

knowledge, discriminative deep learning methodology for
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Figure 2: Facial surface normal estimation results from

state-of-the-art techniques on the “in-the-wild” image of

Fig. 1. Left to right: Proposed, IMM: state-of-the-art SfS

technique [57], and generic state-of-the-art network [2].

the task of facial normal estimation. In particular, motivated

by the success of deep learning to various tasks including

object detection, dense semantic segmentation, and normal

estimation of scenes [23, 2, 32, 62] etc., we propose to ex-

ploit the available large scale facial databases captured both

in controlled, as well as in unconstrained conditions [8, 47]

to train a fully convolutional deep network that maps image

pixels to normals.

More precisely, to acquire accurate ground truth of fa-

cial normals we synthesise images of faces created with

the use of recently released Large-Scale 3D Facial Mod-

els (LSFM) [8] which contains facial shapes of individuals

with diverse ethnicities and characteristics. To retrieve the

3D facial shape of the subject, we integrate the recovered

normals using standard methods [14].

We provide experiments with multiple deep architectures

using various loss functions appropriate for the task. We

show that the proposed networks achieve state-of-the-art

performance in estimation of facial normals in controlled

conditions, as well as impressive reconstruction for very

challenging “in-the-wild” facial images.

2. Prior work on Discriminative Surface Nor-

mal Estimation

Discriminative estimation of normals has recently re-

ceived increased attention [2, 13, 62, 32, 44, 15]. One

of the first methods was proposed in [70]. The training

images were segmented using multiple unsupervised seg-

mentation methods and then several dense features were

extracted (e.g., texton [38], SIFT [37], etc) and discrim-

inative feature representations combining contextual and

segment-based features were built. The ground truth nor-

mals were approximated by applying local feature coding

by a weighted sum of representative normals and a discrim-
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inative regressor (based on boosting) for these coefficients

is trained. In the test phase, the likelihood of each represen-

tative normal was predicted by the classifier and the output

normals were recovered as a weighted sum of representa-

tive normals. Richter and Roth [44] relax the requirement

for external training data and instead use synthetic training

data. The object silhouette is used to approximate an initial

normal map, which is then used to approximate the object

reflectance map in order to relight synthetic training data for

the training the regressor.

One of the first methods that exploited the power of Deep

Convolutional Neural Networks (DCNNs) for estimating

the normals were proposed in [62]. The method in [62] used

DCNNs to combine normal estimates from local and global

scales, incorporating cues from room layout, edge labels

and vanishing points. The method posed the surface normal

regression problem as a classification one by applying the

surface normal triangular coding technique from Ladicky et

al. [70]. In particular, a codebook using k-means and a De-

launay triangulation was constructed over the words. Given

this codebook and triangulation, a normal can be re-written

as a weighted combination of the codewords in whose trian-

gle it lies. At training-time, a softmax classifier is trained on

the codewords. Recently, [15] used reliable surface normals

reconstructed from multiview stereo as training data for a

DCNN, which then predicts continuous normals from im-

age intensity patches. This allows for object specific train-

ing and was shown to improve viewpoint specific recon-

struction.

The first method that directly regresses to the sur-

face normals was proposed in [13], which simultaneously

trained a course-to-fine multi-scale DCNN for three tasks:

depth prediction, surface normal estimation, and semantic

labelling. The convolutional layers of the first scale (coarse

level) were initialised by training on the object classifica-

tion task over ImageNet [11]. The remaining network pa-

rameters for the mid- and fine levels were trained from

scratch on the surface normal prediction task using NYU

depth [50, 49]. The element-wise loss function used for

surface estimation was the dot product between the ground-

truth and the estimated surface normals.

Another regression based DCNN for normal estimation

was proposed in [2]. Similar to [13], this method leverages

the rich feature representation learnt by a DCNN trained

on large-scale data tasks, such as object classification over

ImageNet. The architecture combined a fully-convolutional

architecture adapted from VGG-16 [52] with structures in-

spired by the hypercolumn representation [22]. The net-

work was optimised using the ℓ2-norm between ground-

truth and estimated surface normals.

Most recently, another regression DCNN trained for sur-

face estimation was proposed in [32]. This DCNN is a part

of the so-called UberNet architecture which was proposed

for jointly solving multiple image labelling tasks: such as

detection of boundaries, saliency, semantic segmentation,

human-parts prediction, surface normals recovery etc. The

building block of Ubernet is VGG-16 [53]. For surface nor-

mal estimation, the ℓ1-norm between ground-truth and the

estimated surface normals was used.

All the above networks for surface normal estimation

were trained on data samples displaying various indoor

scenes [49, 50], hence, are likely sub-optimal for estimat-

ing the normals of human faces (please see Fig. 2). In this

paper, we explore various DCNN architectures trained on

facial databases for the task of facial surface normal esti-

mation.

3. Databases of facial normals

Over the past two decades, the computer vision com-

munity has made considerable efforts to collect facial im-

ages for varying applications. Notable examples of early

attempts include the FERET database [42] for face recog-

nition and Cohn-Kadade database [27] for facial expression

recognition. The interested reader may refer to [19] for a

survey on face databases.

In this paper, we are interested in databases that can be

used for training a DCNN for surface normal estimation.

Ideally, we would use datasets that contain samples whose

texture is captured in unconstrained conditions or whose

texture is as close as possible to “in-the-wild” textures. Un-

fortunately, even with modern 3D capturing devices it is

very difficult to acquire the 3D or 2.5D surface information

from “in-the-wild” images. To mitigate this, we propose a

learning strategy where we mix synthetic and real data for

training the proposed network.

The databases appropriate for training our network are

those that provide 3D surface scans, as well as databases

captured under varying illuminations where the normals can

be recovered using Photometric Stereo (PS) [64]. Currently,

there are many databases that provide 3D facial scans, in-

cluding FRGC [41], BU-3D [67], BU-4D [66] and BP4D-

Spontaneous [72]. Nevertheless, collectively they do not

contain more than 620 unique identities. Fortunately, a re-

cent effort was made to collect a large database of faces and

to build a large scale 3D Morphable Model (3DMM) [8]. In

this paper, we use this database to generate a large amount

of synthetic data.

The databases that contain samples captured under dif-

ferent illuminations include YALE-B [16], PIE [51] and

MULTI-PIE [20], as well as the recently collected Photo-

face database [69]. The Photoface database [69] was col-

lected using a custom-made four-source PS device designed

to enable data capture with minimal interaction with peo-

ple. The device was placed at the entrance to a busy work-

place and captured many sessions from more than 450 peo-

ple displaying various expressions. Each session comprises
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four different images, under four different illuminants, from

which the surface normal can be calculated using PS [64].

We also used the 3D Relightable Facial Expression

database (ICT-3DRFE) [60] which contains 23 subjects and

15 expressions for a total of 345 images. The ICT-3DRFE

dataset was acquired using a face scanning system that em-

ploys a spherical light stage with 156 white LED lights.

This database can be used to synthesise high quality facial

samples under different illuminations due to the separation

of both specular and diffuse normals for each individual.

Finally, in order to incorporate the statistics of “in-the-

wild” facial textures, we used the facial landmarks of the

300W data [48] to fit a 3DMM, following [26, 73]. We

visually inspected the fittings and we kept those images for

which the fitting was deemed acceptable.

In the remainder of this section we provide more details

regarding how the data have been prepared with some visu-

alisations of these data can be seen in Fig. 3.

3.1. Synthetic data generation from ICT­3DRFE

We generated synthetic data using the ICT-3DRFE

database. The ICT-3DRFE dataset was captured using a

high resolution face scanning system that employs a spher-

ical light stage with 156 white LED lights. The lights are

individually controllable in intensity and are used to light

the face with a series of controlled spherical lighting condi-

tions which reveal detailed shape and reflectance informa-

tion. Linear polariser filters on the LED lights and an active

polariser on the cameras allow specular and diffuse reflec-

tion to be recorded independently, yielding the diffuse and

specular reflectance maps needed for photorealistic render-

ing under new lighting. We relit each sample under different

random illuminations using the diffuse normals, as shown

in Fig. 4.

3.2. Synthetic data generation using the LSFM
3DMM

As discussed above, the largest obstacle in solving the

normal estimation problem for in-the-wild images is the

lack of ground truth accurate normals in unconstrained sce-

narios. Although there are many databases suitable for

normal recovery using Photometric Stereo (PS) [64], these

lighting conditions are highly unrealistic. Also, the nature

of PS capture set-ups is highly constrained and thus the

variety in both identity and expression are low for these

databases. For this reason, we constructed a large amount of

synthetic data using rendered images. Specifically, we per-

formed the following two steps (1) use a generative model

of shape and texture to create a 3D instance of a face; (2)

given this shape and a texture instance render it in a pseudo-

photorealistic way on top of a randomly chosen scene.

The solution to (1) can be obtained by the use of three-

dimensional statistical models of human facial shape and

texture, known as 3D morphable models (3DMMs). A

3DMM is constructed by performing some form of dimen-

sionality reduction, typically Principal Component Analysis

(PCA), on a training set of 3D scans of faces that are in cor-

respondence. Given this model, one can generate an infinite

amount of realistic normals by synthesising a new instance

x of the model. Specifically, choosing parameters from a

normal distribution cI ∼ N (0, I) and using the mean shape

µ ∈ R
3N and weights of the model W ∈ R

3N×k we can

synthesise a new instance x ∈ R
3N×p,

x = µ+W Ic (2)

Booth et al. [8], provide a powerful 3DMM constructed

with 9, 663 distinct subjects from a diverse set of demo-

graphics. Although this dataset is very diverse in terms of

identity variation, it does not contain any diversity with re-

spect to facial expression as all the subjects were captured in

a neutral expression. To circumvent this, we use the expres-

sion bases created from the FaceWarehouse Database [9] to

create a dual basis model of expression and identity, similar

to [73],

x = µ+W IcI +WEcE .

This process is further depicted in Fig. 5 where we detail

the process that we used to generated the synthetic images

of this dataset. As the true 3D facial structure is known, we

obtain high quality ground truth normals for every synthe-

sised image.

From the newly constructed mesh, we can retrieve the

surface normals n at a vertex location v ∈ R
3 by the vector

cross product of two edges of that the vertex’s triangle,

n =
(vu − v)× (vv − v)

‖(vu − v)× (vv − v)‖2

where vu and vv are vertices adjacent to v in the mesh

structure along the positive horizontal and vertical direc-

tions.

A caveat with these generated samples is that a powerful

regressor, as is the case with a large convolutional network,

is that it can ‘cheat’ by taking into account various peculiar-

ities of the synthesised samples such as the discontinuities

between the face and the background or inaccurate light-

ing to learn to more easily recognise the pose and shape

of the face. To account for this, we align these generated

images to existing large-scale 2D datasets of “in-the-wild”

images [47] in order to provide more realistic backgrounds.

Each of these facial images contains a set of sparse anno-

tations s2d ∈ R
68×2. Thus, we manually annotate the 3D

mesh in the same manner in order to provide a set of 68 cor-

responding points s3d ∈ R
68×3 with the 2D images. Once

we establish this correspondence, we can align the 3D shape

to the image plane by employing a Perspective-n-Point (P-

n-P) problem:

s2d = KRs3d + t (3)
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Figure 3: From left to right: Photoface, ICT-3DRFE, 3D Morphable Models fitting, Synthesised image using a 3D Morphable

model. Below are the associated ground truth normals for each dataset.

Figure 4: Relitting of the of the ICT-3DRFE dataset using

the diffuse normals. On the left is the albedo texture, and

on the right three examples of the relit texture.

where

K =





fx 0 cx
0 fy cy
0 0 1





is the matrix of intrinsic camera parameters, containing

the focal length f ∈ R
2 and the principle point location

c ∈ R
2. In this way we generate a supplementary 100 000

images of synthetic faces.

3.3. Synthetic data generation fitting a 3DMM

As has been previously mentioned, the constructed data

using the 3DMM may not contain the desired facial texture

of the “in-the-wild” images. To this end, we also fit the

3DMM to the “in-the-wild” images by employing the avail-

able sparse landmarks, similar to [1, 26, 73]. Specifically,

to fit the 3DMM to the available images we employ the fol-

Figure 5: 1. The generated shape and texture instance using

the LSFM morphable model; 2. Addition of expression us-

ing the FaceWarehouse expression basis; 3. An image from

the series Breaking Bad; 4. The rendered aligned model.

lowing optimisation problem

argmin
c,R,t

‖P(R(s̄+Uc) + t))− s2d‖
2

F , (4)

where the goal is to recover the rotation R, translation t

and parameters c of the morphable model, under a weak-

perspective projection P. Beginning with just the mean 3D

shape s̄, we optimise in an alternating manner first the pose

parameters R, t and then the shape model parameters c.

Unfortunately, as shown in Fig. 3, the fittings do not ac-

curately capture the identity of the person. However, these

fittings can still be employed to regularise the optimisation

problem. They ensure that the normals correctly capture the

pose and expression of the subject.

3.4. Data from the Photoface Database

The last database we used was the Photoface

database [69]. In the Photoface database, each ses-
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sion contains four images captured under a different

illumination. Examples of the Photoface are shown

in Fig. 3. In order to estimate the normals from the images,

we used the standard 4 source PS [64]. The standard PS

assumes three or more grayscale images of a Lambertian

object and constructs the following matrix equation:

I = ρ⊙NL (5)

where I = [I1, I2, . . . , IN ] is a P×N matrix containing ir-

radiance values from all images, and P and N are the num-

ber of pixels and images respectively. Each row of I cor-

responds to a pixel position in an image, and each column

corresponds to a different image. The albedo ρ ∈ R
P com-

bined with the normals matrix N ∈ R
P×3 represents the

surface properties. The lighting matrix L = [l1, . . . , lN ] ∈
R

3×F represents the lighting directions and intensities, i.e.,

the j-th column of the matrix L corresponds to the lighting

direction in the j-th image scaled by its intensity. Assum-

ing that the light source vectors are known, we can solve a

least squares version of the system in Eq. 5 for the albedo

and the surface normal components at each pixel. Having

available the albedo and normal information of a face, we

can generate synthesised examples of the same subject by

varying the light direction. We synthesised 3148 images by

sampling random illuminations.

4. Model

As in [34, 36], we use a ‘fully convolutional’ net-

work to extract an increasingly sophisticated hierarchy

of features. Since the normal estimation task can ben-

efit from both low and high level features, we use

skip layers [21] that take intermediate layer activa-

tions as inputs and perform simple linear operations

on them. In particular, we pool features from layers

conv1, block2/unit4, block3/unit6, block4/unit3 of the

Resnet-50 [23] network. At each layer we learn linear map-

pings from the high-dimensional intermediate neuron acti-

vation space to the three-dimensional output space required

for normal estimation.

We process these intermediate layers with batch normal-

isation [25] so as to bring the intermediate activations into

a common scaling. As in [32] we keep the task-specific

memory and computation budget low by applying linear op-

erations within these skip layers, and fuse skip-layer results

through additive fusion with learnt weights.

We appropriately place interpolation layers to ensure that

results from different skip layers have commensurate di-

mensions, while, as in [39, 10], we use atrous convolution

to increase the spatial resolution of high-level neurons. Fi-

nally, to account for the varying face sizes in the images we

employ a 3-scale pyramid of our proposed network where

at scales 2 & 3 we down-sample the image by half and a

quarter times respectively by using a 2D average pooling

operation, similar to [32]. The outputs of the different res-

olutions are combined through an additional fusion scheme

that delivers the final normal estimates.

We consider two possible objective functions for the

problem of surface normal regression. As our evaluation

criterion is to minimise the angular distance between the

network predictions f(I) and the available ground truth

normals n∗ it is preferable to use the same loss function

to train our fully convolutional network. To ensure that the

resulting predictions are valid unit normal vectors we add a

further ℓ2 constraint, after of which we arrive at,

Lcosine = 1−
∑

i∈M

f(I)⊤i n
∗
i

s.t. ‖f(I)‖2
2
= ‖n∗‖2

2
= 1,

where M is a mask containing the image indices corre-

sponding to the visible face region. In addition to the co-

sine distance, we consider the smooth ℓ1-loss [18] which

was used in dense estimation tasks such as surface normal

retrieval, segmentation [32] and object detection [18]. The

ℓ1-loss is regarded generally as a robust penaliser which

helps to avoid the effect over over-smoothing the dense re-

constructions [63]. To incorporate the smooth ℓ1-loss we

add again the ℓ2 constrain for the network predictions,

Lℓ1 =
∑

i∈M

smoothL1
(f(I)i − n∗

i )

s.t. ‖f(I)‖2
2
= ‖n∗‖2

2
= 1

5. Experiments

We conducted two sets of experiments. The first set

is quantitative experiments on the Photoface database [69]

where we consider as ground-truth the normals produced

by the calibrated 4-source Photometric Stereo. For the pur-

poses of this experiment we have withheld 100 subjects

from the training set of all algorithms. Due to the lack of

“in-the-wild” databases of normals, our second experiment

is purely qualitative and includes images obtained from the

Helen [33] and 300W [47] databases.

5.1. Experimental Setup

For learning the weights of the network we employ

stochastic optimisation with Adam [31] with the default hy-

perparameters and one image per mini-batch. We use an

initial learning rate of 0.001 with a polynomial decay rule,

decreasing the learning rate by a factor of 10 every 10 000

iterations. To initialise the weights of the network we use

the ImageNet-pretrained Resnet-50 model and initialise the

weights of the new layers with random weights drawn from

a Normal distribution.
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Figure 6: Example facial normal estimation and surface reconstruction from the Helen Dataset.

5.2. Experiments in Photoface

We compare with an array of state-of-the-art techniques

for estimation of normals. Although we are concerned

about the problem of surface normal estimation from a sin-

gle image, we also provide experimental results for two

well established techniques for SfS which require many im-

ages of the same subject under different illuminations as

input [28, 57, 4]. First is Photometric Stereo with Un-

known lighting (PS w/o Light), as porposed by [4] where

we used the images from all four available illuinations to

estimate the normals. Second, we applied the SfS method

of [28, 57] (IMM). The method in [28, 57] reconstructs the

facial normals from a collection of images of the same ob-

ject. Hence, they have been applied on all the available

data of Photoface to perform normal estimation. We ap-

plied the robust version of [28], proposed in [57], though

the database does not contain occlusions and thus the re-

sults are expected to be very similar to [28]. We also com-

pare against a landmark-driven fitting of the state-of-the art

large scale 3DMM that we used for synthetic data gener-

ation in Section 3.2 (the model can describe both identity

and expression variations). Finally, regarding state-of-the-

art generic networks, we compare against the publicly avail-

able pre-trained networks [32, 2]. For all methods, we com-

puted the angular error between the ground-truth and the

estimated surface normals.

The results are summarised in Tab. 1. The proposed

network has the best performance and achieves the lowest

angular error. It is worth noting that the average perfor-

mance of 3DMM fitting is good because it can capture gen-

eral facial characteristics, but there are far fewer pixels with

errors below 20◦ as 3DMMs lack the ability to capture high-

frequency details of the facial surface. It is also worth not-

ing that our method does not require an explicit alignment

step, in comparison to both [28] and the landmark driven

3DMM estimation.

Table 1: Angular error for all the tested surface normal es-

timation methods. We show the results of the proposed net-

work trained using the ℓ1 loss.

Name Mean ± Std < 20
◦ < 25

◦ < 30
◦

PS w/o Light 42.9± 15.2 1.1% 13.1% 35.8%
IMM [28, 57] 24.2± 5.4 23.5 64.6% 88.3%

3DMM 26.3± 10.2 4.3% 56.05% 89.4%
Marr Rev. [2] 28.3± 10.1 31.8% 36.5% 44.4%
UberNet [32] 29.1± 11.5 30.8% 35.5% 55.2%

Proposed 22.0± 6.3 36.63% 59.8% 79.6%

Loss Mean ± Std < 20
◦ < 25

◦ < 30
◦

Cosine Loss 21.5± 6.9 29.9% 55.9% 81.5%

Smooth ℓ1 Loss 22.0± 6.3 36.63% 59.8% 79.6%

Table 2: Angular error for the different loss functions.

Architecture Mean ± Std < 20
◦ < 25

◦ < 30
◦

Resnet + Cosine 21.5± 6.9 29.9% 55.9% 81.5%

Pixelnet + Cosine 23.5± 6.3 35.17% 58.0% 78.2%

Table 3: Angular error for the different architectures.

Finally, we performed a series of experiments in order to

evaluate the effect (a) of the loss function for the task (i.e.,

ℓ1 vs cosine distance) and (b) of the network architecture

(i.e., Resnet vs the PixelNet, which is based on VGG [2]).

The experiments are summarised in Tables 2 and 3. As can

be seen there is small difference between the performance

of the two losses but the cosine distance is slightly better.

Furthermore, the proposed architecture produces better re-

sults than PixelNet trained on exactly the same data and us-

ing the same loss function.
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Figure 7: Representative surface reconstruction results from the challenging 300W dataset of “in-the-wild” facial images.

The network generalises well to a diverse set of individuals and expressions. On the left is the original image from the 300W

dataset. Next is the 3D shape reconstruction and the sampled texture from the image onto the shape.

5.3. Experiments “in­the­wild” databases

Since, there is no ground-truth for “in-the-wild” images,

we can show only qualitative examples. For these experi-

ments, we used the data provided by the 300W facial land-

mark localisation challenge[47, 48]. The methods we com-

pare against are the robust version of the Internet Mor-

phable Model (IMM) [28] proposed in [57] and, as before, a

landmark-based fitting of the large scale 3DMM. The IMM

reconstructs a collection of images, hence we have used

3000 “in-the-wild” facial images (the reconstruction pro-

cess takes around 20 minutes). Fig. 6 shows some represen-

tative reconstruction cases of the proposed network versus

IMM and the surface normal estimation network in [2]. For

all surface reconstructions from normals we used the stan-

dard Frankot-Chellappa method [14].

It is evident that the proposed network provides very

high-quality facial normals, even in images captured in very

challenging recording conditions. Visual comparison ver-

sus the 3DMM are provided in the supplementary materi-

als, since although the 3DMM can recover the pose and the

expression, up to a certain extent, it cannot capture the fine-

grained details. Finally, Fig. 7 shows more facial surfaces

reconstructed by the proposed network.

6. Conclusions

We have presented the first, to the best of our knowl-

edge, discriminative methodology tailored to facial surface

estimation “in-the-wild”. To this end, we capitalised on

both the available facial database, as well as on the power

of deep convolutional neural networks (DCNNs). We pro-

posed methodologies for preparing training data for the

task. We show that the proposed DCNN outperforms both

the state-of-the-art facial surface normal estimation tech-

niques, as well as the state-of-the-art pre-trained networks

for normal estimation.
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