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Abstract

Non-line-of-sight (NLOS) imaging utilizes the full 5D

light transient measurements to reconstruct scenes beyond

the camera’s field of view. Mathematically, this requires

solving an elliptical tomography problem that unmixes the

shape and albedo from spatially-multiplexed measurements

of the NLOS scene. In this paper, we propose a new ap-

proach for NLOS imaging by studying the properties of

first-returning photons from three-bounce light paths. We

show that the times of flight of first-returning photons are

dependent only on the geometry of the NLOS scene and

each observation is almost always generated from a single

NLOS scene point. Exploiting these properties, we derive

a space carving algorithm for NLOS scenes. In addition,

by assuming local planarity, we derive an algorithm to lo-

calize NLOS scene points in 3D and estimate their surface

normals. Our methods do not require either the full tran-

sient measurements or solving the hard elliptical tomogra-

phy problem. We demonstrate the effectiveness of our meth-

ods through simulations as well as real data captured from

a SPAD sensor.

1. Introduction

Non-line-of-sight (NLOS) imaging [8, 14] refers to esti-

mation of the shape, texture, and reflectance of scene points

that lie beyond the field of view of an imaging system.

There are numerous approaches for estimating the shape of

the scene within the field of view of the imaging system. In

contrast, the NLOS shape estimation is a challenging task

requiring capture and analysis of photons that have traveled

beyond the line of sight (LOS). This is typically achieved by

measuring the so-called 5D light transient transport tensor

which captures light propagation — from the LOS scene

onto the NLOS scene and back — at ultra-high temporal

resolutions (typically, in picoseconds).

1.1. NLOS imaging via the 5D light transient

Suppose that the scene which we seek to recover consists

of two components — the LOS scene L that can be illumi-

nated and imaged by the imaging system, and the NLOS

co-located laser/cameraNNLOS scene

LLOS scene

illumination point

sensing point

field of view

occluder

sj
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Figure 1. Non-line-of-sight imaging setup. NLOS imaging uses

properties measured in LOS L to infer the properties of the NLOS

scene N . In this paper, our goal is to use the first-returning photon

associated with illuminating point lk and sensing point sj to infer

shape of the NLOS scene.

scene N , which is beyond the field of view of the imaging

and illumination system (see Fig. 1); here, we assume that

L and N are simply collections of 3D points.
Consider an imaging system consisting of an ultra-fast

laser, capable of emitting an optical pulse with an ex-
tremely short duration, and an ultra-fast camera; we will
discuss specific approaches to realize such setups in Sec-
tion 2. Given two points lk, sj ∈ L (see Fig. 1), we define
L(t; lk, sj) as the light transient observed at sj while illu-
minating lk with a dirac-delta. We refer to

{L(t; lk, sj) | ∀ lk, sj ∈ L}

as the 5D light transient transport tensor [13, 10] since it

encodes one degree of freedom along time and two angular

degrees, each, for both illumination and sensing.

For simplicity of explanation, lets assume that the LOS

scene L is convex (no interreflections of photons within

LOS). When lk 6= sj , the convexity of L implies that there

are no single- or two-bounce light paths from the laser to

the camera; in fact, there are no light paths from the laser

to the camera that involve only LOS scene points. Hence,

a non-zero intensity in the light transient L(t; lk, sj) en-
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codes properties associated with three- and higher-bounce

light paths that include LOS as well as NLOS scene points.

This forms the basis of NLOS imaging.
We focus solely on three-bounce light paths from the

laser to the camera. We assume that the locations of all LOS
scene points are known and, for simplicity, that the laser and
camera are co-located at the origin. Given this, a non-zero
intensity in L(t; lk, sj) at t = t0, indicates the presence of
three-bounce light path(s) whose length is ct0, where c is
the speed of light, and implies the presence of NLOS scene
point(s) p that satisfy

‖p− lk‖+ ‖p− sj‖ = ct0 − ‖lk‖ − ‖sj‖, (1)

where p ∈ R
3. This constrains p to lie on an ellipsoid

whose foci are at lk and sj [14, 1]. Moreover, the inten-

sity L(t0; lk, sj) encodes both the shape and the reflectance

of all NLOS scene points on the ellipsoid defined in (1).

To further simplify, it is common to assume that the NLOS

scene is Lambertian so that the reflectance function is rep-

resented by a spatially-varying scalar albedo pattern. By

sweeping across the entire 5D transient, namely different

illumination and sensing points as well as time instants,

we can produce a large number of ellipsoidal integral con-

straints on the NLOS albedo. The albedo is subsequently

recovered by solving a complex inverse problem [14].

1.2. First­returning photons

In this paper, we provide a formulation for NLOS shape

recovery that avoids solving a complex inverse problem al-

together. Specifically, instead of parsing through the entire

5D light transient, we only focus on the path length associ-

ated with the first-returning photon, defined as follows:

Definition. The first-returning photon at a LOS point sj ,

when we illuminate lk, is the photon that traverses the short-

est three-bounce light path involving lk and sj , i.e., it is the

first photon that we see at sj while illuminating lk.
The time of flight (ToF) of the first-returning photon is

the smallest time instant t0 such that L(t0; lk, sj) is non-
zero. Its path length, δ(lk, sj) = ct0, can be derived as

δ(lk, sj) = ‖lk‖+ ‖sj‖+ min
p∈N

‖p− lk‖+ ‖p− sj‖. (2)

A key observation is that the shortest path is often unique

and determined by the position of a single NLOS scene

point. This greatly simplifies the shape estimation problem,

since we do not need to solve a complex inverse problem.

1.3. Contributions

Our contributions are in the form of constraints induced

by the ToF of the first-returning photon:

• Space carving. The ToF of the first-returning photon

suggests that the closest NLOS scatterers are a certain

distance away from the LOS scene points. Based on this

observation, we derive a space carving algorithm that re-

stricts the spatial extent of the NLOS object.

• Shape from first-returning photons. We derive a set

of constraints that relates the 3D positions of the NLOS

scene points to the ToF of first-returning photons. This

enables a simple algorithm for estimating the 3D loca-

tions of the NLOS scene points.

• Surface normals from first-returning photons. Once

the scene point is localized in 3D, we show that the sur-

face normal can also be recovered provided the NLOS

is locally smooth. The derivation is essentially based on

Fermat’s principle of shortest path that is associated with

the path taken by the first-returning photons.

Advantages. There are numerous advantages to a frame-

work of NLOS shape estimation that relies purely on first-

returning photons. First, the ToF of the first-returning pho-

ton is purely a function of the shape of the NLOS scene and

largely invariant to its reflectance; hence, unlike prior work,

our proposed algorithms can be applied to a wide range of

reflectances. Second, as we are interested only in the ToF

of the first-returning photons, our method does not depend

on the radiance measurements, which can help in relaxing

the sensing requirements.

Limitations. Shape estimation from first-returning pho-

tons has some obvious limitations. First, the paths taken

by the first-returning photons depend on the geometry of

the NLOS scene and hence, our method has limited control

over the sampling of the NLOS scene. Second, the ToF of

first-returning photons is a subset of the measurements en-

coded in the full 5D light transient; having access to the full

transient can enable additional robustness especially when

imaging complex scenes.

2. Related Work

We discuss several techniques to acquire the 5D transient

as well as related worksdd in NLOS imaging.

Acquiring the 5D light transient. Direct acquisition of

the 5D light transient requires a time-gated laser to produce

a light ray and emit an impulse pulse, and an image sensor

that can resolve light at very high temporal resolutions. By

orienting the sensor and the laser, independently, to differ-

ent orientations we can sample the 5D light transient. There

are many approaches to realizing this architecture. Velten et

al. [14] use a streak camera to image at time resolutions of

tens of picoseconds. A streak camera uses a time-varying

electric field to introduce a time-dependent spatial displace-

ment to incoming photons. Single-photon avalanche diodes

(SPADs) provide an alternative, less-expensive approach for

measuring the transient. The SPAD has an infinite gain and

hence, saturates whenever a photon is incident on the sen-

sor; the time-stamp of this event measures the ToF of the
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photon. Buttafava et al. [1] show that, when illuminating

the scene with an impulse train, the histogram of photon

arrivals is a good approximation to the light transient.

An inexpensive approach to measure the light transient

is to illuminate the scene with an amplitude-modulated

source and measure the phase shifts, in the amplitude wave,

caused by light propagation using a photonic mixer de-

vice (PMD) [3]. The PMD measurements can be inter-

preted as the Fourier coefficients of the transient response

at the frequency of the illumination; hence, by illuminating

the scene with different frequencies, the light transient can

be acquired by measuring and inverting the Fourier coeffi-

cients [12]. This approach provides temporal resolution in

nanoseconds. Another method is to use the wave property

of light to find the path length via interferometry [2, 6].

Non-line-of-sight imaging. A common approach to

NLOS imaging is to parse the 5D light transient and de-

rive ellipsoidal constraints on the albedo of the NLOS ob-

ject [14, 1]. Heide et al. [4] demonstrate NLOS shape re-

construction directly from a PMD’s readout by using a gen-

erative model, instead of ellipsoidal constraints. Another

common approach is to introduce surface priors to simplify

the shape estimation problem. Kadambi et al. [7] use sig-

nal sparsity to recover distinct scene points. Pediredla et

al. [11] estimate planar scenes by comparing SPAD read-

out with rendered results. Klein et al. [9] perform NLOS

pose estimation using just image intensities. In this case,

the number of unknowns is smaller and image intensities

are sufficient for estimating the hidden object.

3. Geometry of First-Returning Photons

Problem setup. We assume an imaging system consist-

ing of an ultra-fast laser and camera. We image the NLOS

object through a diffuse LOS scene. Given two LOS scene

points lk, sj ∈ L, we assume that the setup can measure the

path length associated with the first-returning photon at sj
when we illuminate lk with an impulse.

Since the first-returning photon traverses the shortest
three-bounce light path involving lk and sj , its path length
δ(lk, sj) is given in (2). Given a known LOS scene, we can
deduct from δ(lk, sj) the distance of the laser and camera
to illumination point lk and sensing point sj , respectively.
This provides us with the length of the shortest path from lk
to sj via the NLOS scene,

d(lk, sj) = min
p∈N

‖p− lk‖+ ‖p− sj‖. (3)

Our goal is to identify points belonging to the NLOS scene
N given a collection of shortest path lengths:

{d(lk, sj) | lk, sj ∈ L}.

In the following, we will derive constraints on the NLOS

scene given the path length of the first-returning photon

when illuminating lk and sensing at sj .

sj

LOS scene L

lk

bp

p∗

E(lk, sj)
NNLOS scene

sj

LOS scene L

lk

p∗

E(lk, sj)
NNLOS scene

bp1

bp2

bp3

…
......

(a) (b)

Figure 2. Proof for Observation 1. (a) There exists a visible point

that creates a shorter light path, which leads to violation of the

definition of first-returning photon. (b) Specialized case that needs

to be excluded.

Ellipsoidal constraint. Given d(lk, sj), as in (3), we can
deduce that there is at least one NLOS scene point lying on
an ellipsoid E(lk, sj) given as:

E(lk, sj) = {p | ‖p− lk‖+ ‖p− sj‖ = d(lk, sj)}.

Since the first-returning photon traverses the shortest

path associated with lk and sj , this creates spatial constraint

on occupancy of the NLOS object, which can be explained

in the following observation.

Observation 1. There are no NLOS scene points in the

interior of the ellipsoid E(lk, sj).

Proof. Suppose that there exists a NLOS scene point p̂ in-

side the ellipsoid E(lk, sj).
If p̂ is visible to both lk and sj , then a three-bounce light

path from lk to p̂ to sj will create a shorter light path, which

contradicts the definition of first-returning photon.
Suppose that p̂ is not visible to lk. Then there exists an

occluder p̂1 that blocks p̂ from lk; the occluder p̂1 lies on
the line joining p̂d and lk and is visible to lk (see Fig. 2(a)).
If p̂1 is not visible to sj , then we repeat the process to find a
point p̂2 that is visible to sj , and so on. We define the path
length caused by the occluder p̂i to be

di = ‖p̂i − lk‖+ ‖p̂i − sj‖. (4)

We observe that d1 > d2 > d3 > · · · , that is, the

path length decreases each time instant. Given that {di}
is bounded from below by ‖lk − sj‖, and is decreasing, it

will converge via the monotone convergence theorem.

Let d∗ = limi→∞di be the converged value. When d∗ >

‖lk − sj‖, it is easily shown that p̂i also converges and the

converged point will necessarily be visible to both lk and

sj (if not, we repeat the process above and the path length

decreases). We can hence find a point visible to both lk and

sj with a shorter light path than the first-returning photon,

which is a contradiction.

If d∗ = ‖lk − sj‖, then p̂i lies on the line connecting lk
and sj and can potentially oscillate — this only happens in

the scenario of Fig. 2 (b) when lk and sj are occluded from

each other. This scenario is avoided by assuming that the

points are visible to each other — a scenario that is entirely

consistent with our envisioned operating conditions.
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Figure 3. No NLOS scene within the ellipsoid. The ToF of the

first-returning photon at each illumination and sensing pair cre-

ates an ellipsoidal constraint. Since we measure the shortest path

between lk and sj , there should be no other NLOS scene with a

shorter light path, and thus we carve out space inside the ellipsoid.

Defining the interior of E(lk, sj) as

χ(lk, sj) = {p | ‖p− lk‖+ ‖p− sj‖ < d(lk, sj)}, (5)

we observe that

χ(lk, sj) ∩N = φ.

This observation is visualized in Fig. 3.

Observation 1 constrains space where the NLOS scene

N can exist. We will build our observation how to use local

smoothness assumption to estimate the NLOS scene. First,

we discuss the assumption that the shortest path is generated

by a single NLOS point.

Uniqueness of the shortest path. Given lk and sj , the
shortest three-bounce path between them is assumed to be
unique, i.e., we assume that there exists only one NLOS
scene point p∗(lk, sj) such that

d(lk, sj) = ‖p∗(lk, sj)− lk‖+ ‖p∗(lk, sj)− sj‖.

For simplicity, we will denote p∗(lk, sj) simply as p∗.

Recall from Section 1.1 that given (1), the NLOS scene

point(s) that contribute to the three-bounce light transient

L(t0; lk, sj) lie on an ellipsoid; further, when t0 is in-

creased, the ellipsoid increases in size. Consider the

point(s) of contact between the NLOS scene and the ellip-

soid when t0 is gradually increased; the shortest path be-

tween lk and sj is unique only when the contact is at a sin-

gle location. This is always the case when the NLOS scene

is a convex shape.

There are instances of non-convex NLOS scenes that vi-

olate this uniqueness assumption. In fact, given lk and sj ,

it is not hard to construct a NLOS scene such that there are

multiple points of contact to the ellipsoid. However, this is

not a generic condition in that it requires very careful design

of the NLOS scene for a given LOS scene pair; hence, if we

perturb lk and sj , the symmetry of the scene is invariably

broken and we recover uniqueness of the shortest path. In

practice, this implies that non-unique shortest path scenar-

ios occur, at best, for a tiny subset of LOS scene pairs and

occluder

p

p∗

ellipsoidal constraint

NLOS scene

LOS scene L

N

p∗
ellipsoidal constraint

supporting hyperplane

NLOS scene points 

violating Observation 1

sjlk

E(lk, sj)

E(lk, sj)
co-located 

laser/camera

field of view

supporting hyperplane

Figure 4. When Observation 2 is violated, there exist NLOS

scene points violating Observation 1. If the supporting hyper-

plane at p∗ is not tangential to the ellipsoid E(lk, sj), there will

exist NLOS scene points belonging to the interior of the ellipsoid.

can be handled as outliers. We elaborate specific examples

in the supplemental material.

With local smoothness assumption, we can characterize

the local neighborhood of the unique scene point p∗.

Observation 2. Suppose that NLOS scene is locally

smooth at p∗. Then, the (unique) supporting hyperplane

at p∗ is tangential to the ellipsoid E(lk, sj).

Proof. Suppose that the supporting hyperplane to the

NLOS scene at p∗ is not tangential to the ellipsoid

E(lk, sj). Then, given local smoothness, we can show

that there are NLOS scene points in an infinitesimal neigh-

borhood of p∗ that belong to the interior of the ellipsoid,

χ(lk, sj). This contradicts Observation 1.

We visualize this scenario in Fig. 4 and provide a de-

tailed algebraic proof in the supplemental material. It is

also worth noting that when local smoothness is violated —

for example, at corners — the supporting hyperplane to the

NLOS object is not unique.

Observation 2 also implies that the supporting hyper-

planes at p∗ to both the NLOS scene and the ellipsoid are

identical. This provides us with an explicit expression for

the surface normal of the NLOS object at p∗.

Observation 3. Under local smoothness of the NLOS
scene at p∗, the surface normal n(p∗) is the angular bi-
sector of the vectors from p∗ to the illumination spot lk
and sensing spot sj , respectively; that is,

n(p∗) ∝
lk − p∗

‖lk − p∗‖
+

sj − p∗

‖sj − p∗‖
. (6)

Observation 3 directly follows the property of ellipsoids.

The following geometric interpretation of Observation 3 is

useful for the shape recovery algorithms in Section 4. Given

the supporting hyperplane H at p∗, we find the mirror im-

age of the illumination point lk with respect to H; we de-

note the mirror image as l′k. When the surface normal n

satisfies (6), then it can be shown that the straight line join-

ing the mirror image l′k to sj passes through p∗. A brief

proof of this is presented in Fig. 5.
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NLOS scene

LOS scene L

N

p∗
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n(p∗)
H

sjlk

l0k

Figure 5. Geometric interpretation of the normal being the an-

gle bisector. l′k is the mirror image of lk w.r.t H . Then, θ1 = θ2
and the distance from any point on H to lk is the same as the dis-

tance to l′k. Since the shortest path from l′k to sj is the straight

line connecting them, p∗ lies on this straight line; otherwise, there

exists an alternate path that is shorter. Therefore, θ3 = θ1. We can

conclude that θ4 = π/2− θ2 = π/2− θ1 = π/2− θ3 = θ5. The

normal n(p∗) is the angular bisector.

ellipsoidal constraints

illumination point

carved out space

NLOS scene N
co-located 

laser/camera

field of view

occluder

lks1 s2 s3 s4

sensing points

4[

j=1

χ(lk, sj)

Figure 6. Space carving for NLOS imaging. From Observation 1,

we carve out space inside each ellipsoid. The space carved region

will contain no NLOS scene points.

4. Shape from First-Returning Photons

We propose two algorithms utilizing the finding in the

three observations in Section 3 — the first for carving out

the space the NLOS object cannot occupy and the second

for recovering the location and surface normals of NLOS

scene points that generate the first-returning photons.

Algorithm 1 — Space carving for NLOS imaging. We
can extend Observation 1 by incorporating space carving
constraints from all pairs of illumination and sensor points.
Specifically, the NLOS scene N cannot lie within the union
of the individual ellipsoids, i.e.,

∪
lk,sj∈L

χ(lk, sj) ∩N = φ,

where χ(lk, sj) is defined in (5). We illustrate space carv-

ing from multiple first-returning photons in Fig. 6, when

illuminating a single LOS spot.

Algorithm 2 — NLOS shape recovery under local pla-

narity assumption. We assume that a small neighbor-

hood of LOS sensing spots {sj ∈ Ω} receive first-returning

photons from a locally-planar NLOS scene patch. There-

fore, we can combine the measured ToFs to infer the loca-

tion and orientation of the locally-planar patch. We achieve

bnΩ

s1 s2

NLOS scene

LOS scene L

N

p∗

H

lk

bx = l0k

Figure 7. NLOS shape and normal under local planarity. If we

assume the first-returning photons from neighboring sensors are

from the same local planar patch, then they share the same mir-

rored light source location l′k. Thus, finding l′k can subsequently

lead to the recovery of NLOS scene point and surface normal.

this by estimating the location of the mirror image of the

illumination point (see Fig. 7).

Recall that the length of the shortest path from lk to sj
is equal to the distance between the mirror image l′k and sj ,
‖l′k−sj‖; hence, d(lk, sj) = ‖l′k−sj‖. Given the collection
{d(lk, sj) | sj ∈ Ω}, we can solve for the location of the
mirror image as

min
x

∑

sj∈Ω

(d(lk, sj)− ‖x− sj‖)
2 . (7)

The optimization problem is non-convex; we solve it using
gradient descent techniques and, thus, the result depends
heavily on the initialization. We initialize with the algebraic
minimizer of the objective function, which we detail in the
supplemental material. Once we have an estimate for the
mirror image x̂, the estimate of the surface normal to the
planar patch is given as

n̂Ω =
(lk − x̂)

‖lk − x̂‖
.

We can also identify (lk+x̂)/2 as a point on the supporting

hyperplane H , which gives us the equation of the planar

patch. We now identify points on the plane that produce the

first-returning photons by intersecting this plane with the

straight lines from x̂ to each of the points sj ∈ Ω.

5. Experiments

We demonstrate the effectiveness of our two proposed

algorithms. We show how space carving can help reduce

the free space where the NLOS object resides. Also, we use

local planarity to localize scene points. Unless otherwise

noted, the NLOS scene is Lambertian and the neighborhood

size used for (7) is 15.

5.1. Simulated Results

Rendering setup. We used the code base from [5] to ren-

der the 5D light transient. Rendering three-bounce light

paths is a time consuming process, therefore, to improve

the efficiency of rendering, we modify the imaging setup by
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co-located 

laser/camera

sjlk

Figure 8. Scene setup for demonstrating the space carving al-

gorithm. We place a bunny behind an occluder and orient the laser

and SPAD toward the wall to image the NLOS bunny. For ease of

visualization, we omit the top wall. We show the space carving

result of using 100 pairs of illumination and sensing spots.

space carving result               ground truth

space carving result               ground truth

space carving result               ground truth

space carving result               ground truth

Figure 9. Space carving algorithm result. We present the space

carving result alongside with the ground truth in four views. For

best visualization, please refer to the supplementary material.

placing an omnidirectional light source and an omnidirec-

tional sensor on the LOS scene and rendering single-bounce

light paths. This setup is equivalent to NLOS imaging.

Space carving for NLOS imaging. We demonstrate

NLOS space carving for the scene, shown in Fig. 8, consist-

ing of a bunny in a room occluded from the laser/camera

location. The result of the space carving is visualized in

Fig. 9. We observe that the bunny is outside the carved re-

gion. Further, the volume of the entire NLOS scene is 5.56
cubic meters. With space carving, we identify free space in

the NLOS scene and hence, the resulting NLOS scene vol-

ume is reduced to 0.44 cubic meters, which is only 7.86%
of the original space. The volume that the bunny occupies is

0.20 cubic meters. Our method successfully decreases the

space of possible NLOS scene. However, due to the com-

plex shape of the bunny, some space will not be carved out.

Shape recovery with different reflectances. The ToF is

solely a function of the geometry of the NLOS scene. Thus,

our proposed method can work for NLOS scene with highly

specular reflectance as long as some diffuse component is

present. We verify this claim by rendering the 5D light tran-

sient of the NLOS scene with different reflectances, from

illumination point

NLOS scene Nco-located 

laser/camera

field of view

occluder

LOS scene Llk

Figure 10. Shape recovery scene setup. Here we show the side

view of the setup. The NLOS scene consists of a sphere. We image

the sphere through 1 illumination point and 957 sensing points.

2

3

4

5

6

2

3

4

5

6

2

3

4

5

6
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(a) (b) (c)

ground truth

recovered points

Figure 11. Shape reconstruction under varying NLOS scene

reflectance. Here we show results of 3 different material re-

flectances. (a) Reflectance visualization, shown by illuminating

the sphere with a point light source. (b) The rendered ToF at each

sensing location. (c) The recovered NLOS scene points.

purely Lambertian to highly specular. We control the re-

flectance via the parameters of the Blinn-Phong model. We

show the scene setup in Fig. 10. The NLOS object is a

sphere and we illuminate one point and sense at 957 points.

As shown in Fig. 11, the rendered ToF and hence, the recov-

ered points, are largely invariant to the NLOS reflectances.

Shape recovery with different noise levels. The scene
contains a sphere where the location of the center o and
the radius r are known. We compute the recovery error by
finding the average distance between the recovered point to
the surface of the sphere.

Ep =
1

m

m∑

i=1

|‖pi − o‖ − r|,
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Figure 13. NLOS imaging setup in [1]. (a) The laser scans 185
locations on the wall while SPAD focuses on one spot on the

wall. (b) The 5D light transient collected by [1]. We extract first-

returning photons from (b) to demonstrate the effectiveness of our

proposed algorithms.

where pi is the i-th recovered point. As for the normal re-
covery error, we find the average angular error between the
recovered normal and the normal of the projected point on
the sphere.

En =
1

m

m∑

i=1

cos−1

(
n
⊤
i

pi − o

‖pi − o‖

)
,

where ni is the normal estimation of recovered point pi.

As shown in Fig. 12(a), we observe that the reconstruc-

tion error is roughly linear to noise level. We also show the

recovered shapes in Fig. 12(b) for visualization.We show

recovered normals in Fig. 12(c) with color coded normal;

En is less than 0.1◦ in all configurations.

Shape recovery with different neighborhood sizes. In

(7), we use a local neighborhood to solve the mirrored light

source location. By choosing larger area, we include more

measurements, thus the effect of noise can be alleviated.

However, for very large neighborhoods, the locally planar

assumption can be violated, causing large model misfit er-

rors. We use the setup in Fig. 10 and compare the re-

construction results with respect to different neighborhood

sizes. We observe in Fig. 12 that the error first reduces with

increasing neighborhood size and subsequently, increases

due to violation of the local planarity assumption.

5.2. Real Scene

Buttafava et al. [1] collect three-bounce light paths using

185 illumination points and sensing at a single spot on the

wall (see Fig. 13). There are three NLOS objects, a T shape,

a larger square behind the T shape, and a smaller square.

There is an additional surface due to optical setup.

From the 5D light transient, we find the ToF of first-

returning photon by finding the first time instant that ex-

ceeds a set threshold (14 in our experiment). Because of

Helmholtz reciprocity, we can switch the role of illumina-

tion and sensing, then apply the shape recovery algorithm.

We use a neighborhood size of 5 for shape recovery us-

ing local planarity assumption (Algorithm 2) and filter out

points that satisfy the space carving constraint (Algorithm

1). The recovered result is shown in Fig. 14(a). Notice that

we can only recover the two parts closest to the wall since

the square behind the T shape cannot create first-returning

photon observations.

By observing the 5D light transient (see Fig. 13(b)) , we

can clearly see multiple peaks in the light transient. Those

are first-returning photons generated by other surfaces that

are farther from the wall, thus they will not be picked out by

finding the first time instant when the photon count exceeds

the threshold. Therefore, we use signal processing method

to find the peaks in the light transient then assign labels by

clustering. As seen in Fig. 14(b), we are able to recover

more scene points.
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we only show the side view of the reconstruction, please refer to our supplementary video for complete 3D view. (a) First-returning photons
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surfaces. For each surface, we repeat the process in (a). We can see that by finding first-returning photons from different surfaces in the 5D

light transient, we can recover most of the NLOS scene.

Notice that we recover each scene point independently.

The recovered scene points lie on different planar scene ob-

jects, which are consistent to the setup described in [1].

Also, the recovered normals (see Fig. 14) are roughly per-

pendicular to the point collection, which means our normal

estimation is meaningful.

6. Conclusion and Discussions

This paper studies the geometry of first-returning pho-

tons in NLOS imaging and identifies novel constraints that

arise from the study of shortest paths. To our knowl-

edge, ours is the first technique that directly resolves NLOS

shape and normals without solving complex inverse prob-

lems. The method proposed in this paper is computation-

ally lightweight, hence is suitable for initializing and ac-

celerating more complex methods that utilize the full light

transient. To this end, we believe that this is an important

step towards simpler techniques for NLOS imaging. In the

following, we discuss some aspects of our approach.

Sampling of the NLOS scene points. A drawback of us-

ing first-returning photon is that the NLOS scene points that

produce the first-returning photon is a function of the scene

geometry, i.e., we have limited control over the points that

end up generating the first-returning photons. As a conse-

quence, it is entirely possible that some scene points will

never create first-returning photons. One such example is

the surface on the top right corner of Fig. 14. Only if we use

signal processing techniques to extract more first-returning

photons from the light transient can we recover the shape.

NLOS reflectances, smoothness, and convexity From

the Observation 3, the light path of first-returning pho-

ton follows the mirror direction. This means that specular

BRDF is actually most advantageous for smooth convex ob-

ject, since all photons will be first-returning photons. Lam-

bertian reflectance, on the contrary, creates light paths that

belongs to the tail of the light transient. This makes deter-

mining the ToF of first-returning photon harder.

Specular BRDF is not always favorable, especially

for smooth non-convex objects, when there exist inter-

reflections on the NLOS object. This makes separating

three-bounce light path from higher-bounce light paths

harder. However, in this case, for Lambertian reflectance,

higher order bounce light paths attenuate faster and it is eas-

ier to identify three-bounce light paths. Speculur BRDF is

also not suitable for non-smooth object since some light-

ing/sensing pairs cannot receive any photon.
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