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Abstract

Estimating dense visual correspondences between ob-

jects with intra-class variation, deformations and back-

ground clutter remains a challenging problem. Thanks to

the breakthrough of CNNs there are new powerful features

available. Despite their easy accessibility and great suc-

cess, existing semantic flow methods could not significantly

benefit from these without extensive additional training.

We introduce a novel method for semantic matching with

pre-trained CNN features which is based on convolutional

feature pyramids and activation guided feature selection.

For the final matching we propose a sparse graph match-

ing framework where each salient feature selects among a

small subset of nearest neighbors in the target image. To

improve our method in the unconstrained setting without

bounding box annotations we introduce novel object pro-

posal based matching constraints. Furthermore, we show

that the sparse matching can be transformed into a dense

correspondence field. Extensive experimental evaluations

on benchmark datasets show that our method significantly

outperforms existing semantic matching methods.

1. Introduction

Finding correspondences between images is a funda-

mental problem of computer vision and key to many ap-

plications like 3D reconstruction, video analysis, image re-

trieval and object recognition. Classical correspondence

methods like stereo matching [21] and optical flow [23, 35]

consider input images showing same objects or scenes from

different viewpoints. With the development of better fea-

tures which are more robust against deformations and ap-

pearance changes, researchers started to estimate corre-

spondences across different instances and scenes of the

same semantic category. In the literature this problem is

often denoted as semantic matching or semantic flow in the

case of dense correspondences.

Despite of the success of deep features in many fields

of computer vision, previous work on semantic matching

Figure 1: Overview of our approach for dense semantic

matching. After salient feature extraction we utilize a MRF

for finding sparse correspondences, which are used to esti-

mate a dense flow field using thin plate splines (TPS).

[20, 33] reported that pre-trained CNN features perform

similarly or even worse compared to hand-engineered fea-

tures such as SIFT [34] or HOG [12, 22]. In this work we

revisit deep semantic feature matching and propose an ef-

ficient algorithm specifically designed for this task, which

addresses the following main issues of previous approaches:

(1) Local structures are not robust against intra-class

variation and for finding semantic correspondences more

context is necessary. We extract particular context-sensitive

features by utilizing a deep feature pyramid representation

[19], where we encode image regions by aggregating re-

spective cells of the feature pyramid over two levels. This

provides more discriminative region descriptors compared

to methods where regions are just cropped, rescaled and
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passed through the network [20, 50].

(2) Recently, Ham et al. [20] introduced a more gen-

eral task of semantic matching, namely to align two ob-

jects in real-world images without information about their

class, scale and location. In this unconstrained setting with

no bounding box annotations and severe background clut-

ter, matching approaches using grid-based feature sampling

[28, 31] or classical feature detectors like MSER [37] are

prone to incorrect correspondences. To focus on object like

structures, Ham et al. [20] utilize modern object proposal

methods [4, 36, 45, 51, 24]. But this does not address the

issue that convolutional filters learn in particular to respond

to image regions which are discriminative for the original

classification task. In contrast to approaches which learn la-

tent parts using a large set of instances of the same object

category [42, 3, 16, 40], we try to find well-encoded latent

structures using the convolutional filter responses of a sin-

gle image. Although, not the whole object is covered by

these regions, they guide weaker encoded regions towards

geometric consistent matches.

(3) Semantic matching of objects in real-world images

requires spatial regularization which is on the one hand ca-

pable to overcome the matching ambiguity and on the other

hand flexible enough to adjust to non-rigid deformations.

Therefore, we introduce a sparse MRF framework which

reduces matching ambiguities by enforcing geometric con-

sistency between all feature pairs. This is infeasible for

pixel-level approaches [28, 31] which estimate a continu-

ous displacement field. Moreover, our framework is ca-

pable of adjusting to more complex object deformations

compared to Hough Voting based approaches [20]. Fea-

ture detection is in particular not stable against intra-class

variation, meaning that detected features in one image may

not have a correspondence in the set of detected features in

the other image. Therefore, standard graph matching ap-

proaches [43, 9, 10] extract a large set of features in both

images and search for correspondences between these sets.

This leads to a large number of outliers and matching am-

biguities. In contrast, we use salient features as sliding-

window detectors and extract a small number of nearest

neighbors as matching candidates. In this way we simplify

our optimization problem and alleviate the combinatorially

difficult one-to-one matching constraint.

Contributions. The main contributions of this paper are

threefold: (1) We present an efficient MRF framework uti-

lizing deep feature pyramids [19] and convolutional activa-

tion guided feature selection for semantic matching. (2) In

the unconstrained setting of unknown object location, we

introducing new unary and pairwise terms for incorporat-

ing object proposals in our formulation. (3) We demon-

strate that the proposed method significantly outperforms

state-of-the-art semantic matching methods on challenging

benchmark datasets.

(a) (b) (c)

Figure 2: Visualization of our key feature extraction ap-

proach. Column (a) shows the rescaled cell entropy of the

first level of the feature pyramid, as defined in Equ. 1. Col-

umn (b) visualizes the pixel-wise object probability defined

in Equ. 11. And column (c) shows the selected key features

using non-maximum suppression on the combined entropy

and pixel-wise object probability maps.

2. Related work

Image alignment is a key problem of computer vision

and a large body of preliminary work exists. In the follow-

ing we will focus on the most relevant research in the field

of semantic matching and semantic flow.

First steps towards semantic matching was done by Liu

et al. with the development of SIFT Flow [31]. Inspired by

optical flow methods they densely sampled SIFT features

and formulated a discrete optimization problem for solving

a displacement field in a hierarchical scheme. Kim et al.

[28] extended this approach by incorporating links between

pyramid levels in the graph and defining matching costs of

nodes using multiple descriptors. Inspired by deep convo-

lutional neural networks Weinzaepefl et al. [39] estimated

dense correspondences by using a multi-layer architecture

of several layers interleaving convolutions and max pool-

ing. More recently, Bristow et al. [6] used the graphical

model of SIFT Flow and replaced the unary term with sim-

ilarities of pixel-wise LDA classifier for improving the ro-

bustness against intra-class variations. For the task of object

discovery and localization without any information about

input images Cho et al. [8] introduced a region matching

approach using off-the-shelf object proposals as candidate

regions and a probabilistic Hough voting scheme as a spa-

tial regularizer. Proposal Flow [20] extended the region-
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matching idea by introducing a local Hough Voting based

on neighboring regions and estimated a dense flow field us-

ing region correspondences.

In recent years more and more deep learning based meth-

ods have been proposed. There are approaches using CNNs

as plain feature extractors without any taks specific design

or training. For example Fischer et al. [18] reported that

CNN features clearly outperform SIFT in the task of near-

est neighbor matching. Long et al. [33] studied the ca-

pabilities of deep features for semantic alignment by in-

vestigating a SIFT Flow version with CNN features of a

pre-trained classification network. But they achieved only

slightly better performance results compared to the origi-

nal SIFT Flow algorithm. Also Ham et al. [20] investi-

gated the impact of deep features on their approach without

any performance gain. Several deep learning based meth-

ods are utilizing specifically designed and trained architec-

tures. Most of these methods need additional ground truth

data for their learning procedure. For example, Kanazawa

et al. [25] use a pre-trained classification network in combi-

nation with thin plate splines extracted from segmentation

masks for learning a spatial correspondence prior. More-

over, they use additional ground truth segmentation masks

for their final ratio-test based matching. Additional data in

form of synthetic rendered 3D models are used by Zhou et

al. [48] for formulating a cycle constraint between images.

And Choy et al. [11] use ground truth correspondences for

optimizing a correspondence objective for semantic match-

ing. Our approach is in line of the first mentioned research

direction and uses pre-trained CNN features extracted from

a classification network without any additional data or train-

ing.

3. Proposed approach

In this chapter we present our semantic flow algorithm

which is based on pre-trained CNN features and sparse

MRF matching. It first builds a feature pyramid of each

image and selects salient features for matching on differ-

ent scales using informatic criterion on the cell activations

of the pyramid. For each selected feature a set of match-

ing candidates is extracted and the final assignment is ob-

tained by solving an energy minimization problem with an

unary appearance and a binary geometric term. Long-range

contextual relationships are preserved by a fully connected

graph. To improve results in real-world images without

bounding box annotations, additional unary and binary ob-

jectness potentials are introduced. Finally, we estimate a

dense flow field from the sparse correspondences using thin

plate splines (TPS) [5, 14].

3.1. Spatial feature pyramid

Since objects may occur at different scales our algorithm

is based on a multiple image resolution approach. In par-

(a)

(b)

(c)

Figure 3: Figure (a) shows the binary geometric potentials

of our basic formulation, (b) edges between two assign-

ments and (c) the additional binary potential of our object-

proposal guided matching.

ticular, we extract a spatial feature pyramid analogously to

Girshick et al. [19]. For each input image a pyramid of

8 levels with scaling factor 2−1/2 is generated. For the

first level the input image is padded and rescaled with-

out change of aspect ratio and fixing the largest dimen-

sion. Based on the image pyramid a feature pyramid is

generated, where each level consists of convolutional fea-

tures extracted from images with decreasing resolution. In

our experiments we use Conv 4 features of AlexNet [29]

pre-trained on ILSVRC2012 [13]. Each cell of the feature

pyramid has 384 channels and for each cell we associate

a squared region in the input image at the center of its re-

ceptive field. We set the size of these regions to the recep-

tive field stride, i.e. 16 pixels. To increase the descriptive-

ness we concatenate neighboring 5× 5 cells over two pyra-

mid levels and obtain an overall feature vector dimension of

19 ·103. The concatenated cells induce a grid of squared re-

gions with sizes between 64 up to 724 pixels in the original

image space. The receptive field sizes of these regions are

between 195 up to the full image size.

3.2. Key feature selection

We select salient features, which we will denote key fea-

tures in the following, based on the extracted pyramid fea-

ture maps. We introduce two criteria. Firstly, the overall

signal should be strong. We quantify this by computing the

cell-wise sum of activations over all feature map channels

and set a threshold. Secondly, the information contained

in the signal should be as high as possible. Therefore, we

use the entropy according to Shannon’s formula [41] as a
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standard information theoretic-ranking criterion, i.e.

SH(ps) = −

Nc
∑

c=1

fc(ps)log2(fc(ps)), (1)

where f(ps) are the normalized features at position ps and

feature pyramid level s. Based on the entropy maps over

several levels we select a fixed number of features using

non-maximum suppression, which leads to a good coverage

and key features of different scales. Since too large image

regions may lead to bad localization results we restrict the

feature selection to some of the first pyramid levels. Fig.

2 illustrates our key feature extraction approach in the un-

constraint setting, where we include the pixel-wise object

probabilities as additional criteria, which will be explained

in Sect. 3.4.

3.3. Key feature based matching

In general feature detection is not perfectly repeatable

[44], which means detected features in one image may not

have a correspondence in the set of detected features in the

other image. This holds in particular for semantic matching

and our feature extraction. Therefore, we directly search

for nearest neighbors as matching candidates in the oppo-

site image, where we use a sliding window approach over

several pyramid levels and the cosine similarity metric to

find them.

Matching energy function. The overall matching task

is to assign each key feature k ∈ K to its most consistent

matching candidate lk ∈ Hk, which can be formulated as

an energy minimization problem,

Es(l) =
∑

k∈K

ψk(lk) +
∑

(k,k′)∈K×K

ψk,k′(lk, lk′), (2)

where ψk models feature similarity and ψk,k′ geometric

compatibility of pairwise assignments. For simplicity, we

assume a fixed number H of matching candidates for all K
key features. In the following we explain the energy poten-

tials in more detail.

Unary appearance potential. The function ψk favors

correspondences between features with similar appearance,

which is defined as

ψk(lk) =

{

λf
(

e(1−sim(fk,flk ))
2/σ2

f − 1
)

, if lk 6= H + 1,

λocceocc , otherwise,

(3)

where fk, flk are respective feature descriptors as explained

in Sect. 3.1 and sim the cosine similarity. At this point, we

introduced an additional labelH+1 which accounts for the

possibility that features are not assigned to any candidate,

which imposes a constant penalty eocc . If the key feature

is assigned to a candidate we call the assignment as being

active.

Figure 4: Matching examples on the Proposal Flow dataset

[20] using our object proposal guided matching. The bot-

tom right example shows a failure case.

Binary geometric potential. The function ψk,k′ en-

forces spatial consistency between assignments and consists

of two terms,

ψk,k′(lk, lk′) = δ(k, k′, lk, lk′) · ψ̂k,k′(lk, lk′), (4)

where ψ̂k,k′ measures the geometric consistency and δ mod-

els the spatial range of this term, which will be described in

the next sub-point. Inspired by graph matching approaches

[43] we enforce geometric consistency between two active

assignments by the relative length difference and absolute

angle of corresponding edges, i.e.

ψ̂k,k′(lk, lk′) =
[

λd
(

e(d
2

k,k′ (lk,lk′ )/σ2

d) − 1
)

+λγ
(

e(γ
2

k,k′ (lk,lk′ )/σ2

γ) − 1
)

]

,
(5)

where λd and λγ are scalar weights. See Fig. 3b for an

illustration of edges and the notation of feature locations.

The function dk,k′ measures the relative length difference

of edges between two assignments, i.e.

dk,k′(lk, lk′) =
∣

∣

∣
‖xI1k − xI1k′‖/DI1 − ‖xI2k − xI2k′‖/DI2

∣

∣

∣
,

(6)

where DI1 , DI2 are bounding box diagonals and xI1k , xI2k
feature locations of assignment k 7→ lk in image I1, I2,

respectively. If no bounding box annotations are given we

set term (6) to zero. The function γk,k′ in (5) measures the

absolute angle between two edges, i.e.

γk,k′(lk, lk′) = arccos

(

xI1k − xI1k′

‖xI1k − xI1k′‖
·
xI2k − xI2k′

‖xI2k − xI2k′‖

)

,

(7)

Geometric interaction range. Stronger geometric con-

straints help to overcome matching ambiguities and to find

6917



consistent matches. Therefore, we consider a fully con-

nected graph which enforces geometric consistency be-

tween all feature pairs. But in the case of severe view-point

changes and object deformations this may lead to geomet-

ric inflexibilities. To balance this effect gracefully, we in-

clude a damping function δ(·) which reduces the influence

of the binary term if both feature pairs are far away from

each other. This is done by a sigmoid function, i.e.

δ(k, k′, lk, lk′) =
1

1 + e−(dmin−do)/σδ
, (8)

dmin := min(‖xI1k − xI1k′‖/DI1 , ‖x
I2
k − xI2k′‖/DI2), (9)

where do and σδ determines the offset and steepness. This

term depends on the object scale and we set it to one if no

bounding box information is available.

Model properties. Our model is invariant to translation

and scale but due to the use of absolute angles it is rotation

dependent. By setting pairwise costs of two assignments

with one identical feature to infinity, for example if two

key feature have the same matching candidate, our model

produces valid one-to-one matchings. But this occurs very

rarely and the overall influence of this constraint is very lim-

ited.

3.4. Object­proposal guided matching

In this section, we consider the unconstrained setting

of aligning objects without bounding box annotations and

background clutter. To reduce the resulting matching am-

biguities we utilize generic object proposal methods [45]

inspired by Ham et al. [20]. In particular we modify the

key feature extraction approach and introduce an additional

unary and binary term.

Unary objectness potential. For each image we assume

that one object proposal r̂ in the set of all extracted propos-

als R exists, which covers the object to be matched per-

fectly. Then we estimate the probability of a pixel x being

in r̂ with the following marginal probability over all region

proposals,

p(x|R) =
∑

r∈R

p(x|r)p(r|R) ≈
∑

r∈R({x})

p(r|R),
(10)

where R(P) denotes object proposals containing all pixels

in the set P . Notice, the probability p(x|r) is zero if x /∈
r and in the other case we assume a uniform distribution,

since we do not consider restrictions regarding the object

position. We estimate the second probability with a Gibbs

distribution over the object proposal scores and obtain our

final pixel-wise object probability, which is given by

p(x|R) =
1

Z

∑

r∈R(x)

eβsobj (r), (11)

(a) (b) (c)

Figure 5: Thin plate spline transformation from source im-

age (a) to target image (b) using the estimated point corre-

spondences, where image (c) shows the warped result.

where Z is the partition function of the Gibbs distribution

and sobj (·) the region proposal score function. We utilize

this objectness prior in two ways. Firstly, we include this as

an additional unary term,

ψuo
k (lk) = −λuo

∑

j=1,2

log p
(

x
Ij
k |R

)

, (12)

in our energy function (2) with a weighting factor λuo. Sec-

ondly, we utilize the pixel-wise object probability as an ad-

ditional criterion for our key feature selection, such that our

selection approach focuses on regions where the probabil-

ity is high that the object is located there. In Fig. 2 some

examples of object probability maps are shown.

Binary objectness potential. Besides the unary term we

include an additional binary term. Given object proposal

sets R1, R2 in images I1, I2, respectively, we estimate the

probability that key features k, k′ are assigned to hypotheses

lk, lk′ and both are lying inside the dominant object, with

the marginal distribution

p (lk, lk′ |R,R′) =
∑

r1∈R1(k,k
′)

r2∈R2(k,k
′)

p (lk, lk′ |r1, r2)p(r1, r2|R1,R2) , (13)

where Rj(k, k
′) := Rj({x

(j)
k , x

(j)
k′ }). Again, the second

probability is zero if one of the assigned features is not lo-

cated in one of the object proposals. Since the dominant ob-

jects in both images belong to the same category we model

the second probability with a Gibbs distribution, which fa-

vors similar appearance and aspect ratio of proposals r1 and

r2. Regarding the first probability, we use the given ob-

ject proposals as reference frames and model it as a Gibbs

distribution favoring similar edge lengths ‖xI1k − xI1k′‖ and

‖xI2k − xI2k′‖ relative to the diagonals of r1 and r2. Analo-

gously to the unary prior, we include the probability (13) as

an additional binary term,

ψbo
k,k′(lk, lk′) = −λbo log p

(

lk, lk′ |R1,R2

)

, (14)

in our matching energy with a weighting factor λbo.
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(a) Source. (b) Target. (c) DSP. (d) Ours. (e) Source. (f) Target. (g) DSP. (h) Ours.

Figure 6: Qualitative examples on the PASCAL-Part dataset [7]. Column (a), (b): Source and target image. Column (c), (d):

Warping results using DSP and our method. Column (e), (f): Annotated part segments for source and target image. Column

(g), (h): Predicted part correspondences using DSP and our method. (Best viewed in pdf.)

Methods aero bike boat bottle bus car chair table mbike sofa train tv Avg.

Ours 0.23 0.36 0.05 0.36 0.45 0.42 0.14 0.08 0.23 0.18 0.16 0.33 0.25

Ours (EB) 0.23 0.31 0.05 0.37 0.41 0.38 0.14 0.08 0.20 0.19 0.17 0.33 0.24

Ours (NN) 0.20 0.21 0.04 0.21 0.29 0.29 0.06 0.03 0.11 0.09 0.10 0.19 0.15

DSP [28] 0.17 0.3 0.05 0.19 0.33 0.34 0.09 0.03 0.17 0.12 0.12 0.18 0.17

Collection Flow [27] 0.16 0.17 0.04 0.31 0.25 0.16 0.09 0.02 0.08 0.07 0.06 0.09 0.12

RASL [38] 0.18 0.17 0.04 0.33 0.31 0.17 0.09 0.04 0.12 0.1 0.11 0.23 0.16

Congealing [30] 0.12 0.23 0.03 0.22 0.19 0.14 0.06 0.04 0.12 0.07 0.08 0.06 0.11

Flow Web [49] 0.29 0.41 0.04 0.34 0.54 0.5 0.14 0.04 0.21 0.15 0.15 0.33 0.26

Table 1: PCK on 12 rigid PASCAL-Part classes using FlowWeb [49] clusters (α = 0.05).

Methods IOU PCK

Ours 0.43 0.25

Proposal Flow [20] 0.41 0.17

Congealing [30] 0.38 0.11

RASL [38] 0.39 0.16

Collection Flow [27] 0.38 0.12

DSP [28] 0.39 0.17

Flow Web [49] 0.43 0.26

Table 2: Evaluation of dense flow field on the PASCAL-Part

dataset following the FlowWeb [49] evaluation protocol.

3.5. Inference

The discrete optimization problem in Equ. 2 is an In-

teger Quadratic Program (IQP) which is NP hard and opti-

mization methods with polynomial complexity do not exist.

Therefore, we have to use approximate inference methods.

For solving the optimization problem we use the discrete

graphical model library OpenGM [2] and use the fusion al-

gorithm from Kappes et al. [26] for inference, where we

choose Loopy Belief Propagation [17] as proposal generator

and Lazy Flipping of search depth 2 [1] as fusion operator.

3.6. Semantic flow field

Depending on the input image pair, our sparse graph

matching gives a set of 30-60 point correspondences, see

Fig. 4. In most cases, these are quite uniformly distributed

over the whole object and a standard TPS [5, 14] then gen-

eralizes this to a dense flow field, see Fig. 5.

4. Experimental evaluation

In this chapter we present comparative evaluations and

diagnostic experiments using the publicly available bench-

mark datasets of PASCAL-Part [7] and Proposal Flow [20].

4.1. Key feature based matching

Firstly, we evaluate our key feature based matching in

the setting of known object locations. We measure the ac-

curacy of transferred keypoints and segmentation masks by

following the evaluation protocol of FlowWeb [49]. The

dataset consists of representative viewpoint clusters of the

PASCAL-Part dataset [7]. In addition, body part masks and

keypoint annotations are provided [46].

Experimental details. We pad images by 24 pixels on

all sides and upscale them to 721 pixels maximum dimen-

sion. We set the number of key features K per image to

35 and the number of hypotheses H to 10. The key feature

selection is restricted to the first three pyramid levels. Since

object location and scale is given we utilize all MRF terms

introduced in Sect. 3.3. We determined the parameters of

our MRF using cross-validation on a small subset.

Part segment matching. We evaluate the quality of

estimated flow fields based on the transformation of part

segmentation masks. As quantitative measure, we use the

weighted intersection over union (IOU), where the weights

are determined by the area of each part. For classes without
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Method car(S) car(G) car(M) duck(S) mot(S) mot(G) mot(M) win(w/o C) win(w/ C) win(M) Avg.

Ours 0.91 0.67 0.66 0.77 0.63 0.35 0.4 0.88 0.67 0.8 0.68

Ours (w/o BOP) 0.9 0.66 0.67 0.74 0.62 0.35 0.4 0.89 0.63 0.78 0.66

Ours (w/o BOP,UOP) 0.86 0.66 0.62 0.61 0.55 0.33 0.34 0.83 0.63 0.78 0.62

LOM [20] 1.0 0.59 0.51 0.65 0.47 0.27 0.27 0.91 0.41 0.67 0.56

Table 3: Detailed per class PCK comparison (α = 0.1) between Proposal flow [20] and our approach.

Method PCK

Ours 0.68

LOM [20] 0.56

GMK [15] 0.27

SIFT Flow [32] 0.38

DSP [28] 0.37

Table 4: PCK evaluation (α = 0.1) of dense flow field on

the PF dataset.

part annotations, object silhouettes are used. In Table 2 the

mean IOU value over all classes is provided. Our method

outperforms all other pairwise correspondence methods and

only Flow Web shows similar performance. Fig. 6 shows

two qualitative examples.

Keypoint matching. For measuring keypoint transfor-

mation accuracy we use the percentage of correct keypoints

(PCK) [47]. Each keypoint is transferred using the esti-

mated flow field and we determine whether the keypoint is

transferred correctly by measuring the Euclidean distance

between predicted and annotated ground-truth correspon-

dences. The predicted correspondence is correct if the Eu-

clidean distance is lower than α ·max(H,W ), whereH and

W are the image height and width. The mean PCK values

(α = 0.05) over all classes are reported in Tab. 2 and a more

detailed comparison per class in Tab. 1. Our method signifi-

cantly outperforms all methods except for Flow Web, which

is rather a post-processing method since it refines initial cor-

respondences using cycle constraints between several im-

ages. Notice, we also showed significant improvement over

DSP which is comparable to Long et al. [33].

Key feature selection. To demonstrate the influence of

our proposed key feature selection method we perform the

same experiment using the objectness score of EdgeBox

[51]. To do so we compute the scores for each patch which

belongs to a concatenation of 5× 5 cells within a given fea-

ture pyramid and apply non-maximum suppression to get a

good coverage of the image. The results are summarized

in Tab. 1, where (EB) denotes the EdgeBox based selec-

tion procedure. Our specific feature detection improves the

overall performance.

Nearest neighbour matching. We investigated the ef-

fect of nearest neighbor (NN) matching without any spatial

constraint, see Tab. 1. The drastic performance drop shows

the importance of our spatial regularization.

4.2. Object proposal guided matching

In this section, we evaluate our object proposal guided

matching and follow the evaluation protocol of the Pro-

posal Flow [20] benchmark. The dataset contains images

with background clutter, intra-class variations, viewpoint

changes and deformations. It consists of 4 main classes

with several sub-classes according to background clutter

and viewpoint changes 1.

Experimental details. We pad images by 64 pixels on

all sides and upscale them to 931 pixels maximum dimen-

sion. Wet set the number of key features K to 35 and num-

ber of candidate matches to 5. The key feature selection

is restricted to the first 4 pyramid levels. Since no bound-

ing box annotations are available we neglect the MRF terms

(6) and (8). Therefore, the only spatial regularization is en-

forced by the angle between edges. For the unary and binary

objectness potentials we extract around 1000 object propos-

als using Selective Search [45]. The similarity between ob-

ject proposals in Equ. 13 are determined using cosine sim-

ilarity of the associated cells in the feature pyramid, where

we use bilinear interpolation to get the same feature dimen-

sionality. We determine the parameters of the MRF using

cross-validation on a small subset. The time for inference

during testing (including terms (3), (4), (12),(14)) is about

10 seconds.

Keypoint matching. Considering the keypoint match-

ing accuracy, the variables H and W are now height and

width of the rectangle drawn by annotated keypoints. In

Tab. 4 we give a quantitative comparison with several se-

mantic flow methods for α = 0.1. Our approach signifi-

cantly outperforms all methods. In Tab. 3 we give a detailed

per class comparison with Proposal Flow [20]. Our method

shows superior results for all classes, except for cars from

the side and wine bottles without background clutter. For

these classes a translation with unequal scaling is sufficient

for getting a good alignment of keypoints. The table indi-

cates that the classes mot(S) and mot(M) are much more

1The abbreviations (S) and (G) stand for side and general viewpoints

and (C) for background clutter. The (M) indicates a mixture of images,

i.e. mixed viewpoints for the class cars and a mixture of images with and

without background clutter for the class wine bottles.
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(a) Source (b) Target (c) SIFT Flow (d) DSP (e) PF (f) Ours (g) GT-TPS

Figure 7: Qualitative examples on the Proposal Flow dataset [20]. The source image (a) is warped to the target image (b)

using various methods: SIFT Flow [32] (c), DSP [28] (d), Proposal Flow [20] (with SS and HOG) (e), our method (f) and

TPS [5, 14] using annotated keypoints.

difficult compared to the rest. This is reasonable since a

lot of the motorbikes are tilted or turned sideways and our

model is not invariant against rotations. Fig. 7 gives some

qualitative examples. Overall our method is more robust

against view-point changes and background clutter.

Unary and binary objectness potentials. For evaluat-

ing the influence of the additional terms of our object pro-

posal guided matching, we perform the following ablation

studies. First we set the binary (w/o BOP) and then the

binary and unary (w/o BOP,UOP) terms in addition with

the modified key feature selection to zero and run our al-

gorithm again, see Tab. 3. The unary term has overall

more influence. This is reasonable since it guides assign-

ments towards object like structures. We also measured the

percentage of inlier correspondences between both objects.

Therefore, we manually labeled ground-truth boxes cover-

ing the whole object, and measured the percentage of cor-

respondences lying in both bounding boxes. By including

the unary and binary objectness potentials the percentage of

inliers increases from 60 to 88 percent.

5. Conclusion

We have presented a semantic matching algorithm using

standard pre-trained CNN features without additional data

or training. Our approach is based on a convolutional fea-

ture pyramid representation in combination with a salient

feature selection method for extracting discriminative de-

scriptors. Tailored to these descriptors we have proposed a

candidate driven MRF matching formulation which circum-

vents the combinatorically difficult one-to-one matching

constraint. Moreover, we have improved our method for the

challenging task of matching unknown objects across differ-

ent scenes by introducing new object-proposal based match-

ing constraints, which leads to the majority of sparse corre-

spondences are lying inside the unknown object bounding

boxes. Experiments have shown competitive performance

on standard semantic matching benchmark datasets.
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