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Abstract

Dense 3D reconstruction from RGB images is a highly

ill-posed problem due to occlusions, textureless or reflective

surfaces, as well as other challenges. We propose object-

level shape priors to address these ambiguities. Towards

this goal, we formulate a probabilistic model that integrates

multi-view image evidence with 3D shape information from

multiple objects. Inference in this model yields a dense 3D

reconstruction of the scene as well as the existence and pre-

cise 3D pose of the objects in it. Our approach is able to

recover fine details not captured in the input shapes while

defaulting to the input models in occluded regions where

image evidence is weak. Due to its probabilistic nature, the

approach is able to cope with the approximate geometry of

the 3D models as well as input shapes that are not present

in the scene. We evaluate the approach quantitatively on

several challenging indoor and outdoor datasets.

1. Introduction

Dense 3D reconstruction from RGB images is a highly

ill-posed problem. Occlusions and textureless or reflective

surfaces cause fundamental ambiguities in 3D reconstruc-

tion [4, 34]. In this work, we address these ambiguities by

leveraging semantic information. In particular, we propose

object-level shape priors for 3D reconstruction. Our ap-

proach takes as input RGB images and a set of plausible

3D shape models, and solves for the existence and pose of

each object while reconstructing a dense 3D model of the

entire scene. See Fig. 1 for an illustration.

The proposed object-level shape priors yields two key

benefits. First, the output of our approach is a dense recon-

struction of the entire scene as well as a structural repre-

sentation of the objects in it. This output yields not only

an accurate mapping of the environment but also a semantic

understanding in terms of the objects.

Second, the proposed prior allows for powerful regular-

ization that can resolve large ambiguities common in 3D re-

(a) Images (b) 3D Shape Models

(c) Reconstruction

Figure 1: Given input images (a) and a set of object shape

models (b), our approach jointly reconstructs a dense 3D

model of the entire scene and solves for the existence and

pose of each object model. In (c), we visualize the output

of our method as a point cloud sampling of the dense recon-

struction and object poses (yellow= unlikely, red=likely).

construction. For instance, our shape prior can help recon-

struct the back-side of an object even though it is occluded
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in the images. Existing works that consider low-level geo-

metric priors such as spatial smoothness [6, 22, 38], piece-

wise planarity [16, 33] or Manhattan-world constraints [12,

31] cannot complete large occluded regions, especially for

objects with complex geometry. Nonetheless, these priors

offer complementary regularization that can be combined

with our object shape prior to further improve reconstruc-

tion accuracy as we demonstrate in our experiments.

Our approach requires finding a set of 3D shape mod-

els as input. This retrieval task depends on the available

semantic information. For indoor scenes, recent convolu-

tional neural networks (CNN) together with large annotated

3D databases such as ModelNet [37] and ShapeNet [7] pro-

duce compelling results for object class detection and rough

pose estimation [8, 14, 23, 32]. For outdoor reconstruction,

the GPS signal can be used to collect geolocated 3D models

from online collections such as 3D Warehouse1.

Incorporating object shape models as priors for 3D re-

construction is challenging. Retrieved objects might not be

present in the scene. Further, existing 3D models are of-

ten simplified and thus only coarse approximations of the

true object shapes. Besides, even though current shape

databases contain thousands of examples, no single object

shape in the database might exactly match the observation.

Finally, while object detectors or the GPS signal might pro-

vide a rough initialization, fine-grained object pose infor-

mation is often not available.

To address these challenges, we integrate 3D object

shapes with image observations in a probabilistic fashion.

We build upon the probabilistic 3D reconstruction frame-

work of Ulusoy et al. [34]. Their formulation accurately

models 3D reconstruction from images using a Markov ran-

dom field (MRF) with ray-potentials, but does not consider

scene priors. In this work, we integrate object shape priors

into their framework. Inference in our MRF produces prob-

abilistic estimates of the existence and precise 3D pose of

each object, as well as the dense voxel occupancy and color.

Given enough image evidence, our algorithm is able to re-

construct geometric details that are not present in the input

models. In case of insufficient image information, e.g., in

heavily occluded regions, our approach defaults to the in-

put model geometry under the most likely 3D pose. Finally,

our approach is robust against geometric inaccuracies of the

input models as well as objects that are not present in the

scene. We compare our approach with state of the art 3D

reconstruction methods using three aerial datasets with LI-

DAR ground-truth and a realistic synthetic indoor dataset.

2. Related Work

In this section, we first review existing approaches to vol-

umetric 3D reconstruction. We then discuss methods that

1https://3dwarehouse.sketchup.com/

leverage object shape models for reconstruction.

Volumetric Reconstruction from Images: While there is

a large body of literature on volumetric fusion from range

images [10,25], in this paper we focus on reconstruction di-

rectly from RGB images. Despite the increasing availabil-

ity of 3D sensors, the vast majority of cameras in the world

lack depth sensing capability. Consequently, image-based

reconstruction is more general. Kutulakos and Seitz estab-

lished the foundations of volumetric reconstruction based

on photo-consistency [20]. Early probabilistic extensions

of their approach include [1, 5, 27]. Unfortunately, these

methods lack a global probabilistic model, which makes it

difficult to interpret their probabilistic output. More recent

approaches [13,22,30,33,34] phrase volumetric reconstruc-

tion as inference in an MRF where voxels along each pixel’s

line of sight are connected via high-order ray potentials.

This approach makes precise what is optimized and further

allows incorporating scene priors in a principled way.

All these approaches, except Ulusoy et al. [34], incorpo-

rate priors such as local (pairwise) smoothness [13, 22, 30]

or piecewise planarity [33]. In particular, Savinov et al. ex-

ploit scene semantics and propose class-specific pairwise

priors [30]. While their approach utilizes a local prior for

all shapes of an object class such as building and vegeta-

tion, we exploit 3D shapes of object instances as a more

expressive non-local prior.

Object Shape Priors for 3D Reconstruction: Many exist-

ing works demonstrate the usefulness of object shape priors

for reconstruction. Güney et al. utilize a set of car shapes

to improve stereo estimation in urban environments [15].

Salas-Moreno et al. use 3D models of furniture to improve

camera tracking accuracy in indoor scenes [29]. In this

work, we consider camera poses as input and focus on how

object shape priors can benefit dense 3D reconstruction.

For 3D reconstruction, Pauly et al. match a database of

object shapes against an incomplete point cloud from a 3D

scanner and then align the best fitting shape to reconstruct

occluded regions [26]. Bao et al. densify multi-view stereo

point clouds by fitting 3D shape models [3]. Dame et al. use

a low-dimensional shape space as a prior to improve recon-

struction accuracy and completeness [11]. Zhou et al. detect

objects with similar shapes in the scene and use these detec-

tions to jointly estimate a low-dimensional shape space of

these objects, regularizing the reconstruction [39].

The aforementioned works consider a 3D reconstruc-

tion as input and regularize this reconstruction using shape

priors. Instead, our approach takes as input RGB images

and integrates image-based 3D reconstruction with detec-

tion and pose estimation of objects in the scene. This joint

formulation yields two benefits over previous works. First,

our approach combines images and object shapes in a prin-

cipled probabilistic fashion. This allows reconstructing de-
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tails missing in the input shapes, detecting input objects that

are not present in the scene and yields robustness to inaccu-

rate shape models. Second, by accurately modeling visibil-

ity using ray-potentials, our approach yields improvements

not only where the shape prior is available, but notably also

in other parts of the scene. We demonstrate examples of this

behavior in the experiments section.

3. Probabilistic Model

This section introduces our probabilistic model for

image-based 3D reconstruction using object shape priors.

As input we assume a set of images and camera poses,

which we obtain using structure-from-motion [35, 36]. We

further assume a set of approximate shape models of ob-

jects, which may or may not be present in the scene. De-

pending on the scene and available semantic information, a

shape model database can be retrieved in a variety of ways.

While we do not focus on the retrieval task in this paper,

our experiments demonstrate examples from aerial and in-

door scenes. Note that we do not assume all input objects

to be present in the scene; our inference algorithm automat-

ically estimates which object models are present. While our

approach can take into account object pose information if

provided, we do not assume this input. Probabilistic object

pose estimates are computed as part of the inference.

As our work extends Ulusoy et al.’s probabilistic model

for 3D reconstruction [34], we use their notation whenever

possible. We introduce the variables of our model in Sec-

tion 3.1 and specify the model in Section 3.2. Our inference

algorithm is presented in Section 4.

3.1. Variables

The 3D space is decomposed into a grid of voxels. Each

voxel is assigned a unique index from the index set X . We

associate each voxel i ∈ X with two random variables: a

binary occupancy variable oi ∈ {0, 1}, which signals if the

voxel is occupied (oi = 1) or empty (oi = 0), and an ap-

pearance variable ai ∈ R describing the voxel intensity.

We associate one viewing ray r for each pixel in the input

images. Let R denote the set of viewing rays of all cameras.

For a single ray r ∈ R, let or = {or1, . . . , o
r
Nr

} and ar =
{ar1, . . . , a

r
Nr

} denote the sets of occupancy and appearance

variables associated with voxels intersecting ray r, ordered

by the distance to the respective camera.

An image is formed by assigning each pixel the appear-

ance of the first occupied voxel along the pixel’s ray r [34]:

Ir =

Nr
∑

i=1

ori

∏

j<i

(1− orj) a
r
i + ǫ (1)

where Ir denotes the intensity at the pixel corresponding

to ray r and ori
∏

j<i (1 − orj) evaluates to 1 for the first

occupied voxel along the ray and to 0 for all other voxels.

Finally, ǫ ∼ N (0, σ) is a noise term.

We now introduce the variables related to the object

shape models. Let S denote the set of input object shapes.

We associate each shape model s ∈ S with a binary random

variable bs ∈ {0, 1}, which denotes whether the model is

present in the scene (bs = 1) or not (bs = 0). We represent

the pose of each shape model using a continuous variable

ps ∈ Ω which comprises 3D translation, rotation and scal-

ing on a continuous but bounded domain Ω.

We abbreviate the total set of occupancy and appearance

variables in the voxel grid with o = {oi|i ∈ X} and a =
{ai|i ∈ X} and summarize the set of shape model variables

using b = {bs|s ∈ S} and p = {ps|s ∈ S}.

3.2. Markov Random Field

We formulate volumetric 3D reconstruction as inference

in a Markov random field and specify the joint distribution

over o, a, b and p as

p(o,a,b,p) =
1

Z

∏

i∈X

ϕo
i (oi)

∏

r∈R

ψr(or,ar) (2)

×
∏

s∈S



ϕb
s(bs) ϕ

p
s(ps)

∏

q∈Qs(ps)

κq(oq, bs,ps)





where Z denotes the partition function, ϕ are unary poten-

tials, and ψ and κ are high-order potentials.

Voxel Occupancy Prior: We model the prior belief about

the state of the occupancy variables using a Bernoulli dis-

tribution

ϕo
i (oi) = γoi (1− γ)1−oi (3)

where γ is the prior probability that voxel i is occupied.

Appearance Ray Potential: The ray potentials penalize

deviations from the image formation model as specified in

Eq. 1. They encourage the appearance of the first occupied

voxel along ray r to agree with the image observation Ir at

pixel r:

ψr(or,ar) =

Nr
∑

i=1

ori

∏

j<i

(1− orj) νr(a
r
i ). (4)

where Nr is the number of voxels along ray r. Here, νr(a)
denotes the probability of observing intensity a at ray r. We

follow [34] and model this term using a Gaussian distribu-

tion νr(a) = N (a|Ir, σ).
The preceding two potentials (Eq. 3+4) were introduced

in [34] and model 3D reconstruction from images. The fol-

lowing potentials formulate the proposed object shape prior.

Raylet Potential: Transitions between empty and occu-

pied voxels in the volume imply surfaces. If a shape model
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Figure 2: Raylets (black) are located at the surface of each

shape model (gray) and oriented oriented with the gradient

of the truncated signed distance function (green to red).

is present in the scene, i.e. bs = 1, its surface should agree

with voxel transitions in the volume. In particular, vox-

els directly in front of the model surface should be empty

and voxels at the surface should be occupied. We introduce

high-order raylet potentials to implement this behavior as a

soft constraint. First, we define raylets as short ray segments

centered at the surface of each model and aligned with the

negative gradient of the truncated signed distance function

(TSDF) as illustrated in Fig. 2. Each raylet is truncated at

distance ±τ from the surface. The raylet potential connects

all voxels intersecting the raylet and prefers the first occu-

pied voxel along the raylet to coincide with the shape model

surface. Since the raylet travels from the outside towards the

inside of the surface, it encourages voxels outside the sur-

face to be empty and voxels at the surface to be occupied.

The voxels inside the surface are not affected. The finite ex-

tent of the raylet ensures that the shape model affects only

voxels in its immediate surrounding, hence minimizing in-

terference with other surfaces in the scene.

We denote the set of all raylets defined by shape s in a

canonical pose as q ∈ Qs. The raylets Qs transform accord-

ing to the model pose ps, which we denote as Qs(ps). As

with the camera viewing rays, each raylet q ∈ Q intersects

an ordered set of voxels oq = {oq1, . . . , o
q
Nq

}.

We formulate the raylet potential as

κq(oq, bs,ps) =











Nq
∑

i=1

o
q
i

∏

j<i

(1− o
q
j) η

q
i (ps) if bs = 1

1 otherwise

(5)

where η
q
i (ps) is the probability of voxel i explaining the

shape model with pose ps. This probability is measured us-

ing the distance between voxel i and the object surface. De-

noting the unsigned distance between voxel i along raylet q

to the model surface as d
q
i (ps), we define η(·) as

η
q
i (ps) = exp

(

λp max

(

0, 1−
d
q
i (ps)

τ

))

(6)

where λp > 0 is a hyperparameter of our model. For voxels

close to the surface η evaluates high, whereas for voxels

further away from the surface η is small.

While the raylet potential attains its highest value when

the voxel geometry matches the surface prior, i.e. all voxels

in front of the surface are empty and the voxel at the surface

is occupied, it allows for deviations, which helps cope with

inaccuracies in the input models. Finally, if the model is not

present in the scene, i.e., bs = 0, the raylet potential does

not influence the voxel geometry and it is equal to 1. Since

η ≥ 1, the potential favors solutions where surfaces in the

reconstruction are explained by plausible shape models.

Object Presence Prior: We model the prior belief about

the presence of each shape model in the scene using

ϕb
s(bs) = exp(−λb |Qs| bs). (7)

where we choose λb > 0 to favor simple explanations of

the scene with few object models. Note that we scale the

potential by the number of raylets |Qs| to achieve invariance

to raylet sampling.

Object Pose Prior: If available, prior knowledge about the

object pose can be integrated via the pose prior ϕp
s(ps). In

this work, we make no assumptions about the object pose

and therefore use a uniform prior ϕp
s(ps) ∝ 1.

4. Inference

In this section, we briefly present our inference algorithm

based on belief propagation. Additional details and detailed

derivations of the message equations can be found in the

supplementary document.

In this work, we are interested in estimating a probabilis-

tic 3D reconstruction rather than the most likely one. Our

inference technique estimates the marginal distributions of

occupancy and appearance at each voxel, as well as the ex-

istence and pose parameters of each shape model in the

database. The marginal distributions enable analysis of un-

certainty in the 3D reconstruction and are thus useful for

subsequent algorithms that utilize the resulting 3D models.

Inference in our MRF is challenging due to the high or-

der ray and raylet potentials (Eq. 4+5), the mixed discrete

(o,b) and continuous (a,p) state spaces of the variables,

and the large number of variables (millions of voxels) and

factors (hundreds of millions of ray and raylet potentials).

Moreover, our MRF contains a large number of loops due to

intersecting viewing rays R and raylets Qs, rendering exact

inference intractable. We thus present an approximate in-

ference algorithm. Our approach is based on sum-product

particle belief propagation [18] and addresses the aforemen-

tioned challenges.

While naı̈ve belief propagation on high-order ray poten-

tials is intractable, Ulusoy et al. [34] demonstrate that the

algebraic structure of the ray potentials allows the complex-

ity to be reduced from exponential to linear time. The raylet
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potentials proposed in this paper possess a similar structure,

which we exploit to achieve efficient (linear time) message

passing. For details, we refer to the supp. document.

Additionally, the continuous variables (a,p) in our

model complicate belief propagation. In particular, the in-

tegrals that arise in the message equations do not admit

closed-form solutions. For the pose variables p, we follow a

particle based strategy [18] and maintain a sample distribu-

tion {p
(1)
s , . . . ,p

(K)
s } to approximate the continuous state

space of p. This discretization allows Monte Carlo esti-

mates of the integral equations (see supp. document). We

discuss our sampling strategy in Section 5.

For the voxel appearance variables a, the messages to

the variable can be computed analytically and represented

as a constant plus weighted Gaussian distributions. The

variable-to-factor messages however cannot be computed

analytically. We follow [34] and approximate these mes-

sages using Mixture-of-Gaussians (MoG) distributions.

5. Implementation

Due to the highly loopy nature of our MRF, the quality

of inference depends on the message passing schedule. Em-

pirically we found the following strategy to perform well.

First, we pass messages among the ray potentials, ignoring

the raylet potentials, i.e., the shape prior. This corresponds

to the method of [34] and yields an initial 3D reconstruc-

tion. We then incorporate the raylet potentials into the in-

ference, which regularizes the reconstruction according to

the 3D shape models. We interleave message passing for

the ray and raylet potentials until convergence. As object

surfaces are regularized, the ray potentials exploit the re-

fined free-space and visibility constraints to improve the re-

construction in other parts of the scene as well. We show

examples of this behavior in Section 6.

Particle Sampling: In the following, we describe our ap-

proach to sampling the pose parameter particles. Ideally, we

would like to draw K particles {p
(1)
s , . . . ,p

(K)
s } for each

shape model s directly from the belief of ps,

belief(ps) =
∏

q∈Qs

µκq→ps
(ps) (8)

where µκq→ps
is the message from the raylet potential

κq to the pose variable p. Unfortunately, directly sam-

pling from this distribution is difficult. We therefore re-

sort to Metropolis-Hastings (MH) sampling [17] and run

a Markov Chain to obtain the desired sample set. How-

ever, a straightforward application of MCMC sampling [2]

to Eq. 8 is highly inefficient as each function evaluation

requires processing all voxels along each raylet of shape

model s, densely querying the voxel grid. Instead, we seek

a proposal distribution ωs(p) that is efficient to evaluate and

approximates Eq. 8 sufficiently well.

We observe that most voxels along each raylet can be ig-

nored when computing µκq→ps
. Since the raylet potential

in Eq. 5 evaluates the TSDF of only the first visible voxel,

voxels with small occupancy belief do not contribute sig-

nificantly to the equation. Thus, we consider only the vox-

els with substantial occupancy belief to accelerate MCMC

sampling. In particular, our approach extracts a sparse cloud

of voxel centers from the volume, ignoring voxels with low

occupancy belief. The proposal distribution ω(ps) is

− logω(ps) =

L
∑

ℓ=1

max

(

0, 1−
dℓ(ps)

τ

)

(9)

where L is the number of voxels with substantial occupancy

belief and dℓ(ps) denotes the distance of voxel ℓ to the

model surface at pose ps. Our parallelized implementation

requires about 1ms to evaluate a single proposal ps given

100k 3D points. For each surface model s, we drawK = 64
samples from Eq. 9.

Runtime: Our implementation uses grid-octree data struc-

tures [24] and GPGPU parallelization for message passing.

Passing all ray potential messages takes 7 seconds for a

1MP image and a scene with roughly 30 million voxels.

The MCMC sampling (10K iterations) and the raylet po-

tential message passing for a single shape model typically

takes roughly 5 and 10 seconds, respectively.

6. Experimental Evaluation

We evaluate our algorithm on four challenging datasets

with ground truth geometry. Sample images from each

dataset are presented in Fig. 3.

The LIVINGROOM dataset contains realistic renderings

of a synthetic living room. The data is part of the “aug-

mented ICL-NUIM dataset” distributed by Choi et al. [9].

We use the “Living room 2” camera trajectory 2 and sample

every tenth image, for a total of 234 images. The images

are 640x480 pixels in size. Choi et al. [9] used this dataset

for camera tracking and reconstruction from depth images.

In our work, we assume fixed camera poses and consider

reconstruction from RGB images. To simulate a realistic

setting, we do not use the ground truth camera poses pro-

vided by the dataset but obtain the poses and camera cali-

bration using structure from motion [35,36]. This dataset is

highly challenging due to the large textureless surfaces such

as walls, limited viewpoints and many reflective materials.

The other three datasets were captured in urban environ-

ments from an aerial platform. The images, camera poses

and LIDAR points are provided by Restrepo et al. [28]. The

images are one Megapixel in size and each dataset con-

tains ∼200 images. The original datasets are distributed

with sparse LIDAR points. Ulusoy et al. triangulated these

2http://redwood-data.org/indoor/dataset.html/
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(a) LIVINGROOM (b) CAPITOL

(c) DOWNTOWN (d) DOWNTOWN2

Figure 3: Sample images from the datasets we use.

points to obtain a dense ground truth mesh [34]. We use

their meshes for a fair comparison to the baselines.

While the DOWNTOWN and DOWNTOWN2 datasets

were captured roughly at the same location, illumination

conditions are significantly different as seen in Fig. 3c+3d.

While DOWNTOWN was recorded on a cloudy day, DOWN-

TOWN2 was captured on a sunny day close to sunset, caus-

ing long shadows and strong reflections.

Object Shape Proposals: Our approach requires a set of

plausible object shapes. The method to retrieve these pro-

posals is scene-dependent and in particular, depends on the

available semantic information.

For the LIVINGROOM dataset, we cropped four objects

from the ground-truth mesh: a chair, sofa, table and cup-

board. While these models allow for evaluation given un-

known object pose but “perfect” object shape, in most re-

alistic scenarios, available shape models are often approx-

imate. We therefore test our algorithm’s robustness to ap-

proximate input object shapes using IKEA furniture models

from [21] that only coarsely resemble the true object shapes.

For the aerial datasets, we use the approximate geoloca-

tion information to retrieve relevant 3D models from Trim-

ble 3D Warehouse. All three aerial datasets were collected

in downtown Providence, Rhode Island, USA. A search for

the keywords “Providence, Rhode Island” on the Trimble

3D Warehouse returned several building models. We use the

rough geolocation information of each model to filter out

models that are not contained within the scene boundary.

For the CAPITOL dataset, this resulted in a single building

model which is the Rhode Island State House as shown in

Fig. 7a. For the DOWNTOWN and DOWNTOWN2 datasets,

we obtained eleven building models as shown in Fig. 1b.

The retrieved models are geometrically inaccurate and do

not match the ground truth. Moreover, five of the eleven re-

trieved models are located in the periphery of the scene and

visible only in a few input images. Our inference typically

assigns low probability to the presence of these objects. We

provide detection experiments in the supp. document.

Coarse Object Localization: To accelerate the MCMC

pose sampling process (see Section 5), we first coarsely dis-

cretize the pose space and evaluate the pose likelihood Eq. 9

at each point. We then use the modes of this distribution to

initialize Markov chains that explore the pose space locally.

In particular, we use the knowledge of the ground plane,

that is estimated via robust plane fitting, to restrict the poses

to translations on the ground plane and rotations around the

up vector. Fast evaluation of Eq. 9 and the restricted pose

space allows for exhaustive search in a few seconds. While

this strategy worked well for the aerial scenes, we observed

a few failure cases for the LIVINGROOM dataset. For these

cases, a rough initial pose estimate can be obtained by se-

mantic segmentation or object detection.

Model Parameters: We use the same set of parameters for

the aerial and indoor datasets. Our supp. document provides

details and experiments with varying sets of parameters.

Baselines: We compare our results to several state-of-the-

art approaches. First, we compare against Ulusoy et al. [34]

whose formulation is equivalent to removing the object

shape prior from our model and which we refer to as “No

prior” in the following. Second, we compare against [33],

which integrates a planarity prior into the formulation of

[34] and achieves state-of-the-art results on both the CAPI-

TOL and the DOWNTOWN datasets. We refer to this baseline

as “Planarity prior”. Finally, we evaluate a combination of

the planarity prior [33] with our object shape prior, which

we refer to as “Object+Planarity”.

Evaluation Protocol: We follow [34] and evaluate recon-

struction accuracy as the absolute error in depth map pre-

diction with respect to the depth maps that are generated by

projecting the ground truth meshes into all input views. In

particular, we compute the percentage of pixels falling be-

low an error threshold while varying this threshold from 0
to 3 meters for the indoor dataset and 0 to 10 meters for the

aerial datasets. See Fig. 5 in [34] for an illustration. We ob-

tain a single accuracy value between 0 and 1 by considering

the normalized area under this curve.

To compute depth maps from the probabilistic 3D mod-

els, we follow Ulusoy et al. [34], who showed that choos-

ing the median value of each pixel’s depth distribution min-

imizes our error metric. They further showed that sum-

product belief propagation yields per-pixel depth distribu-

tions as a by-product. Note that the depth distributions in

their approach rely only on the image evidence whereas

the depth distributions in our approach integrate informa-

tion from both the input images and object shape models.

We evaluate the aforementioned baselines on all four

2419



50 100 15012 192
Num images 

0.90

0.91

0.92

0.93

0.94

0.95

R
e
co

n
st

ru
ct

io
n
 a

cc
u
ra

cy

No prior

Planarity prior

(True) Object shape prior

(IKEA)Object shape prior

Planarity+Object(True) prior

(a) LIVINGROOM

50 100 150 20012 243
Num images 

0.55

0.60

0.65

0.70

0.75

0.80

R
e
co

n
st

ru
ct

io
n
 a

cc
u
ra

cy

No prior

Planarity prior

Object shape prior

Object+Planarity prior

(b) CAPITOL

40 80 120 1609
Num images 

0.4

0.5

0.6

0.7

R
e
co

n
st

ru
ct

io
n
 a

cc
u
ra

cy

No Prior

Planarity prior

Object shape prior

Objects+Planarity prior

(c) DOWNTOWN

50 100 150 20013 238
Num images 

0.2

0.3

0.4

0.5

0.6

0.7
R

e
co

n
st

ru
ct

io
n
 a

cc
u
ra

cy

No Prior

Planarity prior

Object shape prior

Objects+Planarity prior

(d) DOWNTOWN2

Figure 4: Comparison of reconstruction accuracy of several

baselines for varying number of images. Higher is better.

datasets and report the results in Fig. 4. We also varied

the number of images in each dataset by subsampling the

input views uniformly in space. This experiment illustrates

the benefit of the proposed object shape prior in particular

when reconstructing from a small set of input images.

The results indicate that both the proposed object shape

prior and the planarity prior [33] improve reconstruction

accuracy over the baseline with no prior [34]. For LIVIN-

GROOM, our shape prior performs better than the planarity

prior independent of the number of images used. For CAPI-

TOL, the planarity prior achieves higher accuracy due to the

flat textureless grass region where planarity is an appropri-

ate prior [33]. For DOWNTOWN and DOWNTOWN2, the ob-

ject shape prior results in significantly better performance

than the planarity prior, in particular for small number of

input images. Given sufficiently many images, the planarity

prior achieves similar or better results. Overall, combining

the planarity and object shape prior achieves the best results.

We provide a more detailed analysis below.

Small number of images: Fig. 4 shows that for a small

number (∼10) of images, the object shape prior achieves

significant improvements over the baseline without priors.

In contrast, the planarity prior yields little to no improve-

ment because it requires an adequate initial reconstruction

to sample plane hypothesis from. For ∼10 images, the ini-

tial reconstructions are highly ambiguous, therefore impair-

ing the planarity prior.

Fig. 5 visualizes the depth errors in one of the input

views. Our approach (Fig. 5d) significantly improves ac-

curacy with respect to the baseline (Fig. 5b). Note that

improvements are visible everywhere in the scene and not

(a) Reference image (b) No prior [34]

(c) Shape model fitting (d) Proposed shape prior

Figure 5: Visualization of depth errors for DOWNTOWN.

Cooler colors depict lower errors. See text for details.

limited at building surfaces for which shape priors apply.

Our inference scheme exploits the geometric knowledge in-

duced by the prior to refine free-space areas and visibility

constraints in the entire scene, leading to higher accuracy

also in regions for which no shape priors are available.

This improvement is made possible by our probabilistic

model that accurately models visibility using ray-potentials

and integrates shape priors in a principled manner. In con-

trast, existing methods first reconstruct a 3D model from the

images and then fuse shape models into this 3D reconstruc-

tion [3, 11, 39]. Such approaches can not achieve improve-

ments where no shape priors are available. We demonstrate

the benefit over such methods by comparing to a baseline

that reconstructs a 3D model using no prior [34] and then

incorporates shape models using a single iteration of raylet-

to-voxel message passing. As shown in Fig. 5c, the result is

significantly worse compared to our approach (Fig. 5d). We

provide further examples in the supplementary.

Robustness to approximate input shape: We evaluate

the robustness of our approach to approximate input shapes

using the LIVINGROOM dataset. The results in Fig. 4a

indicate that our approach improves accuracy even when

using IKEA models that are only coarse approximations

to the true 3D shapes. See Fig. 6a+6b for a comparison.

As expected, performance increases further when using the

true 3D shapes. We provide qualitative results in Fig. 6.

Combining image and shape evidence: Our method com-

bines image evidence and the input shape models to produce
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(a) True shape models for LIVINGROOM (b) Approximate shape models from IKEA [21]

(c) Reference image (d) No prior (e) Planarity prior (f) IKEA prior (g) True prior (h) Object+Planarity

(i) Our Reconstruction

Figure 6: (d-h) Visualization of depth errors for LIVINGROOM. Cooler

colors correspond to lower error. Top-row: The reflective table surface

causes large errors for the baseline without prior (d) [34]. The planarity

prior (e) [33] is unable to correct this error. Our approach significantly

improves accuracy even when using approximate IKEA models (f). Us-

ing the correct table prior (g) further improves the result. Combining

the true object shapes with the planarity prior (h) yields the best results.

Bottom-row: As above, our approach improves over the baseline with

no prior even when using the inaccurate IKEA chair model. However,

using the IKEA cupboard (second from right in (b)) causes incorrect

holes in the reconstruction (f). Left: (i) Point cloud of our dense 3D

reconstruction overlaid with a subset of the pose samples. Objects are

colored according to their belief (yellow=unlikely, red=likely).

(a) Input shape model (b) Reconstruction result

Figure 7: Our method is able to combine image evidence

(see Fig. 3b) and the approximate shape models (a) to pro-

duce detailed reconstructions (b).

detailed reconstructions. Fig. 7 presents an example where

our method has successfully recovered fine scale structures

that are not present in the input model. Note that our re-

construction includes details such as the small towers next

to the cupola and the tip of the cupola even though they are

absent from the input shape model.

7. Conclusion

In this paper, we present a probabilistic approach that

integrates object-level shape priors with image-based 3D

reconstruction. Our experiments demonstrate that the pro-

posed shape prior significantly improves reconstruction ac-

curacy, in particular when the number of input images is

small. To the best of our knowledge, our approach is the

first to simultaneously reconstruct a dense 3D model of the

entire scene and a structural representation of the objects

in it. Our experiments demonstrate the benefit of this joint

inference. Further, we believe such an integrated represen-

tation of 3D geometry and semantics is a step towards holis-

tic scene understanding and will benefit applications such as

augmented reality and autonomous driving.

Future directions include incorporating parametric shape

models to improve generality of our prior. We also believe

recent 3D pose estimation methods [14, 19, 23] can be used

to improve pose proposals during inference.
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